A comparative study of the scalability of a sensitivity-based learning algorithm for artificial neural networks

► Researchers must now study not only accuracy but also scalability. ► Researchers are investigating machine learning scalability to large scale problems. ► The scalability of popular training algorithms for ANNs is analyzed in this research. ► The training algorithm SBLLM performs better than other...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 40; no. 10; pp. 3900 - 3905
Main Authors: Peteiro-Barral, Diego, Guijarro-Berdiñas, Bertha, Pérez-Sánchez, Beatriz, Fontenla-Romero, Oscar
Format: Journal Article
Language:English
Published: Amsterdam Elsevier Ltd 01.08.2013
Elsevier
Subjects:
ISSN:0957-4174, 1873-6793
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract ► Researchers must now study not only accuracy but also scalability. ► Researchers are investigating machine learning scalability to large scale problems. ► The scalability of popular training algorithms for ANNs is analyzed in this research. ► The training algorithm SBLLM performs better than others in terms of scalability. ► This research contributes to the standardization of scalability studies. Until recently, the most common criterion in machine learning for evaluating the performance of algorithms was accuracy. However, the unrestrainable growth of the volume of data in recent years in fields such as bioinformatics, intrusion detection or engineering, has raised new challenges in machine learning not simply regarding accuracy but also scalability. In this research, we are concerned with the scalability of one of the most well-known paradigms in machine learning, artificial neural networks (ANNs), particularly with the training algorithm Sensitivity-Based Linear Learning Method (SBLLM). SBLLM is a learning method for two-layer feedforward ANNs based on sensitivity analysis, that calculates the weights by solving a linear system of equations. The results show that the training algorithm SBLLM performs better in terms of scalability than five of the most popular and efficient training algorithms for ANNs.
AbstractList Until recently, the most common criterion in machine learning for evaluating the performance of algorithms was accuracy. However, the unrestrainable growth of the volume of data in recent years in fields such as bioinformatics, intrusion detection or engineering, has raised new challenges in machine learning not simply regarding accuracy but also scalability. In this research, we are concerned with the scalability of one of the most well-known paradigms in machine learning, artificial neural networks (ANNs), particularly with the training algorithm Sensitivity-Based Linear Learning Method (SBLLM). SBLLM is a learning method for two-layer feedforward ANNs based on sensitivity analysis, that calculates the weights by solving a linear system of equations. The results show that the training algorithm SBLLM performs better in terms of scalability than five of the most popular and efficient training algorithms for ANNs.
► Researchers must now study not only accuracy but also scalability. ► Researchers are investigating machine learning scalability to large scale problems. ► The scalability of popular training algorithms for ANNs is analyzed in this research. ► The training algorithm SBLLM performs better than others in terms of scalability. ► This research contributes to the standardization of scalability studies. Until recently, the most common criterion in machine learning for evaluating the performance of algorithms was accuracy. However, the unrestrainable growth of the volume of data in recent years in fields such as bioinformatics, intrusion detection or engineering, has raised new challenges in machine learning not simply regarding accuracy but also scalability. In this research, we are concerned with the scalability of one of the most well-known paradigms in machine learning, artificial neural networks (ANNs), particularly with the training algorithm Sensitivity-Based Linear Learning Method (SBLLM). SBLLM is a learning method for two-layer feedforward ANNs based on sensitivity analysis, that calculates the weights by solving a linear system of equations. The results show that the training algorithm SBLLM performs better in terms of scalability than five of the most popular and efficient training algorithms for ANNs.
Author Peteiro-Barral, Diego
Fontenla-Romero, Oscar
Pérez-Sánchez, Beatriz
Guijarro-Berdiñas, Bertha
Author_xml – sequence: 1
  givenname: Diego
  surname: Peteiro-Barral
  fullname: Peteiro-Barral, Diego
  email: dpeteiro@udc.es
– sequence: 2
  givenname: Bertha
  surname: Guijarro-Berdiñas
  fullname: Guijarro-Berdiñas, Bertha
– sequence: 3
  givenname: Beatriz
  surname: Pérez-Sánchez
  fullname: Pérez-Sánchez, Beatriz
– sequence: 4
  givenname: Oscar
  surname: Fontenla-Romero
  fullname: Fontenla-Romero, Oscar
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27179561$$DView record in Pascal Francis
BookMark eNqNkUFrXCEUhaWk0EmaP5CVm0I3b6rP5_MJ3YTQJoVAN-1a7ug1cfpGp-ok5N_Xl0k3XYTChYuX7xzwnFNyElNEQi44W3PGx0_bNZZHWPeM9-s2TI1vyIpPSnSj0uKErJiWqhu4Gt6R01K2jHHFmFqRdElt2u0hQw0PSEs9uCeaPK337WFhhk2YQ30-AS0YS2hcO3QbKOjojJBjiHcU5ruUQ73fUZ8yhVyDDzbATCMe8vOqjyn_Ku_JWw9zwfOXfUZ-fv3y4-qmu_1-_e3q8razQo-181ozPlnvlNBODGoSSmwmLUDa0QlkPet7EKB6N0nBJI4SrdPSi95ZJpCLM_Lx6LvP6fcBSzW7UCzOM0RMh2La9zkbtdL_gYpBD1K28Br64QWFJRyfIdpQzD6HHeQn0yuutBwXy-nI2ZxKyeiNDbUlnGLNEGbDmVlqM1uz1GaW2kybVluT9v9I_7q_Kvp8FGGL9CFgNsUGjBZdyGircSm8Jv8DbGW0Mg
CitedBy_id crossref_primary_10_1016_j_eswa_2013_08_038
crossref_primary_10_1016_j_eswa_2014_07_007
Cites_doi 10.7551/mitpress/7496.003.0016
10.1016/j.patcog.2009.11.024
10.1007/978-3-642-02478-8_20
10.1016/S0893-6080(05)80056-5
10.1007/BFb0067700
10.7551/mitpress/7496.003.0006
10.1007/978-3-642-14264-2_5
ContentType Journal Article
Copyright 2012 Elsevier Ltd
2014 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2012.12.076
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1873-6793
EndPage 3905
ExternalDocumentID 27179561
10_1016_j_eswa_2012_12_076
S0957417412013176
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
08R
AALMO
AAPBV
ABPIF
ABPTK
ADALY
IPNFZ
IQODW
PQEST
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c396t-f99018cfd739d3478373b893a5c6d3e02022a3a72d85305e65ecd95f32dc03e13
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000317162900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sun Sep 28 09:31:22 EDT 2025
Sun Nov 09 13:47:28 EST 2025
Fri Nov 25 01:07:34 EST 2022
Sat Nov 29 04:44:35 EST 2025
Tue Nov 18 19:58:27 EST 2025
Fri Feb 23 02:26:28 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Algorithms
Neural nets
Classifier design and evaluation
Machine learning
Sensitivity analysis
Scalability
Intruder detector
Neural network
Modeling
Optimization
Learning (artificial intelligence)
Classification
Data field
Feedforward
Learning algorithm
Bioinformatics
Artificial intelligence
Computer security
Intrusion detection systems
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c396t-f99018cfd739d3478373b893a5c6d3e02022a3a72d85305e65ecd95f32dc03e13
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1349455417
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_1701069791
proquest_miscellaneous_1349455417
pascalfrancis_primary_27179561
crossref_citationtrail_10_1016_j_eswa_2012_12_076
crossref_primary_10_1016_j_eswa_2012_12_076
elsevier_sciencedirect_doi_10_1016_j_eswa_2012_12_076
PublicationCentury 2000
PublicationDate 2013-08-01
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Expert systems with applications
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Ph.D. thesis. School of Computer Science, University of Technology, Sydney, Australia.
Møller (b0060) 1993; 6
Bottou, L. (1991). Stochastic gradient learning in neural networks. In
Fontenla-Romero, Guijarro-Berdiñas, Pérez-Sánchez, Alonso-Betanzos (b0050) 2010; 43
Sonnenburg, S., Franc, V., Yom-Tov, E., & Sebag, M. (2008). Pascal large scale learning challenge. ICML’08 Workshop, URL
Weiss, Kulikowski (b0090) 1991
Collobert, Bengio (b0040) 2001; 1
Hecht-Nielsen (b0055) 1990
Bishop (b0010) 2006
Sonnenburg, Ratsch, Rieck (b0085) 2007
Dong (b0045) 2003
34.
.
Bengio, Y., & LeCun, Y. (2007). Scaling learning algorithms towards AI
Boullé (b0025) 2009; 10
Pérez-Sánchez, Fontenla-Romero, Guijarro-Berdiñas (b0075) 2010
Castillo, Guijarro-Berdiñas, Fontenla-Romero, Alonso-Betanzos (b0030) 2006; 7
More (b0065) 1978
Bottou, Bousquet (b0020) 2008; 20
Catlett, J. (1991).
Pérez-Sánchez, Fontenla-Romero, Guijarro-Berdiñas (b0070) 2009
Boullé (10.1016/j.eswa.2012.12.076_b0025) 2009; 10
10.1016/j.eswa.2012.12.076_b0035
10.1016/j.eswa.2012.12.076_b0005
10.1016/j.eswa.2012.12.076_b0015
Dong (10.1016/j.eswa.2012.12.076_b0045) 2003
Bottou (10.1016/j.eswa.2012.12.076_b0020) 2008; 20
More (10.1016/j.eswa.2012.12.076_b0065) 1978
Castillo (10.1016/j.eswa.2012.12.076_b0030) 2006; 7
Møller (10.1016/j.eswa.2012.12.076_b0060) 1993; 6
Weiss (10.1016/j.eswa.2012.12.076_b0090) 1991
Hecht-Nielsen (10.1016/j.eswa.2012.12.076_b0055) 1990
Bishop (10.1016/j.eswa.2012.12.076_b0010) 2006
Pérez-Sánchez (10.1016/j.eswa.2012.12.076_b0070) 2009
10.1016/j.eswa.2012.12.076_b0080
Sonnenburg (10.1016/j.eswa.2012.12.076_b0085) 2007
Fontenla-Romero (10.1016/j.eswa.2012.12.076_b0050) 2010; 43
Pérez-Sánchez (10.1016/j.eswa.2012.12.076_b0075) 2010
Collobert (10.1016/j.eswa.2012.12.076_b0040) 2001; 1
References_xml – start-page: 73
  year: 2007
  end-page: 104
  ident: b0085
  article-title: Large scale learning with string kernels
  publication-title: Large Scale Kernel Machines
– volume: 20
  start-page: 161
  year: 2008
  end-page: 168
  ident: b0020
  article-title: The tradeoffs of large scale learning
  publication-title: Advances in Neural Information Processing Systems
– start-page: 42
  year: 2010
  end-page: 50
  ident: b0075
  article-title: An incremental learning method for neural networks based on sensitivity analysis
  publication-title: Current Topics in Artificial Intelligence
– year: 2006
  ident: b0010
  article-title: Pattern recognition and machine learning
– volume: 10
  start-page: 1367
  year: 2009
  end-page: 1385
  ident: b0025
  article-title: A parameter-free classification method for large scale learning
  publication-title: Journal of Machine Learning Research
– reference: . Ph.D. thesis. School of Computer Science, University of Technology, Sydney, Australia.
– volume: 6
  start-page: 525
  year: 1993
  end-page: 533
  ident: b0060
  article-title: A scaled conjugate gradient algorithm for fast supervised learning
  publication-title: Neural Networks
– reference: , 34.
– year: 1991
  ident: b0090
  article-title: Computer systems that learn: Classification and prediction methods from statistics, neural nets, machine learning, and expert systems
– reference: .
– volume: 7
  start-page: 1159
  year: 2006
  end-page: 1182
  ident: b0030
  article-title: A very fast learning method for neural networks based on sensitivity analysis
  publication-title: Journal of Machine Learning Research
– volume: 1
  start-page: 160
  year: 2001
  ident: b0040
  article-title: SVMTorch: Support vector machines for large-scale regression problems
  publication-title: Journal of Machine Learning Research
– reference: Bottou, L. (1991). Stochastic gradient learning in neural networks. In
– reference: Bengio, Y., & LeCun, Y. (2007). Scaling learning algorithms towards AI,
– year: 1990
  ident: b0055
  article-title: Neurocomputing
– start-page: 157
  year: 2009
  end-page: 164
  ident: b0070
  article-title: A supervised learning method for neural networks based on sensitivity analysis with automatic regularization
  publication-title: Bio-Inspired Systems: Computational and Ambient Intelligence
– start-page: 105
  year: 1978
  end-page: 116
  ident: b0065
  article-title: The Levenberg–Marquardt algorithm: Implementation and theory
  publication-title: Numerical Analysis
– reference: Sonnenburg, S., Franc, V., Yom-Tov, E., & Sebag, M. (2008). Pascal large scale learning challenge. ICML’08 Workshop, URL
– reference: Catlett, J. (1991).
– year: 2003
  ident: b0045
  article-title: Speed and accuracy: Large-scale machine learning algorithms and their applications
– volume: 43
  start-page: 1984
  year: 2010
  end-page: 1992
  ident: b0050
  article-title: A new convex objective function for the supervised learning of single-layer neural networks
  publication-title: Pattern Recognition
– volume: 20
  start-page: 161
  year: 2008
  ident: 10.1016/j.eswa.2012.12.076_b0020
  article-title: The tradeoffs of large scale learning
  publication-title: Advances in Neural Information Processing Systems
– year: 2006
  ident: 10.1016/j.eswa.2012.12.076_b0010
– year: 1990
  ident: 10.1016/j.eswa.2012.12.076_b0055
– ident: 10.1016/j.eswa.2012.12.076_b0005
  doi: 10.7551/mitpress/7496.003.0016
– volume: 43
  start-page: 1984
  issue: 5
  year: 2010
  ident: 10.1016/j.eswa.2012.12.076_b0050
  article-title: A new convex objective function for the supervised learning of single-layer neural networks
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2009.11.024
– volume: 1
  start-page: 160
  year: 2001
  ident: 10.1016/j.eswa.2012.12.076_b0040
  article-title: SVMTorch: Support vector machines for large-scale regression problems
  publication-title: Journal of Machine Learning Research
– ident: 10.1016/j.eswa.2012.12.076_b0080
– start-page: 157
  year: 2009
  ident: 10.1016/j.eswa.2012.12.076_b0070
  article-title: A supervised learning method for neural networks based on sensitivity analysis with automatic regularization
  publication-title: Bio-Inspired Systems: Computational and Ambient Intelligence
  doi: 10.1007/978-3-642-02478-8_20
– volume: 6
  start-page: 525
  issue: 4
  year: 1993
  ident: 10.1016/j.eswa.2012.12.076_b0060
  article-title: A scaled conjugate gradient algorithm for fast supervised learning
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(05)80056-5
– volume: 7
  start-page: 1159
  year: 2006
  ident: 10.1016/j.eswa.2012.12.076_b0030
  article-title: A very fast learning method for neural networks based on sensitivity analysis
  publication-title: Journal of Machine Learning Research
– ident: 10.1016/j.eswa.2012.12.076_b0015
– start-page: 105
  year: 1978
  ident: 10.1016/j.eswa.2012.12.076_b0065
  article-title: The Levenberg–Marquardt algorithm: Implementation and theory
  publication-title: Numerical Analysis
  doi: 10.1007/BFb0067700
– volume: 10
  start-page: 1367
  year: 2009
  ident: 10.1016/j.eswa.2012.12.076_b0025
  article-title: A parameter-free classification method for large scale learning
  publication-title: Journal of Machine Learning Research
– year: 1991
  ident: 10.1016/j.eswa.2012.12.076_b0090
– start-page: 73
  year: 2007
  ident: 10.1016/j.eswa.2012.12.076_b0085
  article-title: Large scale learning with string kernels
  publication-title: Large Scale Kernel Machines
  doi: 10.7551/mitpress/7496.003.0006
– ident: 10.1016/j.eswa.2012.12.076_b0035
– start-page: 42
  year: 2010
  ident: 10.1016/j.eswa.2012.12.076_b0075
  article-title: An incremental learning method for neural networks based on sensitivity analysis
  publication-title: Current Topics in Artificial Intelligence
  doi: 10.1007/978-3-642-14264-2_5
– year: 2003
  ident: 10.1016/j.eswa.2012.12.076_b0045
SSID ssj0017007
Score 2.0741863
Snippet ► Researchers must now study not only accuracy but also scalability. ► Researchers are investigating machine learning scalability to large scale problems. ►...
Until recently, the most common criterion in machine learning for evaluating the performance of algorithms was accuracy. However, the unrestrainable growth of...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3900
SubjectTerms Algorithms
Applied sciences
Artificial intelligence
Artificial neural networks
Biological and medical sciences
Classifier design and evaluation
Computer science; control theory; systems
Computer systems and distributed systems. User interface
Connectionism. Neural networks
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
General aspects
Learning
Linear systems
Machine learning
Mathematical analysis
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Memory and file management (including protection and security)
Memory organisation. Data processing
Neural nets
Sensitivity analysis
Software
Training
Title A comparative study of the scalability of a sensitivity-based learning algorithm for artificial neural networks
URI https://dx.doi.org/10.1016/j.eswa.2012.12.076
https://www.proquest.com/docview/1349455417
https://www.proquest.com/docview/1701069791
Volume 40
WOSCitedRecordID wos000317162900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwMS4o4ol8lIiJfJKInjOn7sUCdAVYegQ32L3MTpRV1SknSM_Tn-GsdxnHZsVOMBqUrTqHHafl99To7P-Q5Cb4SIuMfUhESJcIjPqCKSMUUCSbvgz064X8Uhvw34cBiMx-Jzq_XL1sKcLXmaBufnYvVfoYZjALYunf0HuJtB4QDsA-iwBdhheyPge3VeuVH0LqxotHYwCwDE6HL_NHWRhU5fN_0jiLZnse0iMT2Qy2mWz8vZqcmzzKucIh1e1wqY1VOVP15cCu1r3eSyVoe2dXNbK-SbebhU8zwjhzLPq4YDMPOqadbkAq3nC60NSQ4V0Dc1JWewX87kZoRcXZCvQNmZCYEfKt1r4GJjVHVq_lKSL9mpMqU8x_Dt8-0gh244Edggh41WcuK7pqGPnbiNzpMlqLM1DVPhOFsmHV6ya82FiVws3qnih9agcr0qNMyv0eYeHodHJ4NBOOqPR29X34luW6aX9-seLrfQnseZCNpor_exP_7ULGRxx1Ts289f122ZFMM_L_s33-juSmqCJKbVyhWvoXKFRg_QvfoeBvcM9x6ilkofofu2PwiuzcVjlPXwFhVxRUWcJRioiLeoqA9JfIWK2FIRN1TEQEW8oSI2VMSWik_QyVF_9P4DqRt8kIiKbkkSvSgbREnMqYipzwPK6QQcaMmibkwV3Ml4nqSSezE4lQ5TXaaiWLCEenHkUOXSp6idZql6hnDsqngCxgqMZuC7cSxZQCcigCFcP5Ex6yDX_rRhVKvf6yYsy9CmOS5CDUeo4QjhAXB00EFzzspov-x8N7OIhbX3arzSENi287z9S_A2l_I4GEu4vemg1xbvEOZ-vaAnU5Wti1BLi_pwP-DyHe_hOuojuHCf32CcF-jO5u_3ErXLfK1eodvRWTkv8v2a3L8Be3LkrA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparative+study+of+the+scalability+of+a+sensitivity-based+learning+algorithm+for+artificial+neural+networks&rft.jtitle=Expert+systems+with+applications&rft.au=Peteiro-Barral%2C+Diego&rft.au=Guijarro-Berdinas%2C+Bertha&rft.au=Perez-Sanchez%2C+Beatriz&rft.au=Fontenla-Romero%2C+Oscar&rft.date=2013-08-01&rft.issn=0957-4174&rft.volume=40&rft.issue=10&rft.spage=3900&rft.epage=3905&rft_id=info:doi/10.1016%2Fj.eswa.2012.12.076&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon