A deep learning ensemble approach for crude oil price forecasting
As crude oil price is influenced by numerous factors, capturing its behavior precisely is quite challenging, and thus leads to the difficulty of forecasting. In this study, a deep learning ensemble approach is proposed to deal with this problem. In our approach, two techniques are utilized. One is a...
Gespeichert in:
| Veröffentlicht in: | Energy economics Jg. 66; S. 9 - 16 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Kidlington
Elsevier B.V
01.08.2017
Elsevier Science Ltd |
| Schlagworte: | |
| ISSN: | 0140-9883, 1873-6181 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | As crude oil price is influenced by numerous factors, capturing its behavior precisely is quite challenging, and thus leads to the difficulty of forecasting. In this study, a deep learning ensemble approach is proposed to deal with this problem. In our approach, two techniques are utilized. One is an advanced deep neural network model named stacked denoising autoencoders (SDAE) which is used to model the nonlinear and complex relationships of oil price with its factors. The other is a powerful ensemble method named bootstrap aggregation (bagging) which generates multiple data sets for training a set of base models (SDAEs). Our approach combines the merits of these two techniques and is especially suitable for oil price forecasting. In the empirical study, the WTI crude oil price series are investigated and 198 economic series are used as exogenous variables. Our approach is tested against some competing approaches and shows superior forecasting ability that is statistically proved by three tests.
•A deep learning and ensemble learning based forecasting approach is proposed.•198 exogenous variables are included.•Stacked denoising autoencoders (SDAE) is used to model and forecast oil price.•Bootstrapping aggregation (bagging) is used to grow an ensemble.•Effectiveness of the proposed model is statistically confirmed. |
|---|---|
| AbstractList | As crude oil price is influenced by numerous factors, capturing its behavior precisely is quite challenging, and thus leads to the difficulty of forecasting. In this study, a deep learning ensemble approach is proposed to deal with this problem. In our approach, two techniques are utilized. One is an advanced deep neural network model named stacked denoising autoencoders (SDAE) which is used to model the nonlinear and complex relationships of oil price with its factors. The other is a powerful ensemble method named bootstrap aggregation (bagging) which generates multiple data sets for training a set of base models (SDAEs). Our approach combines the merits of these two techniques and is especially suitable for oil price forecasting. In the empirical study, the WTI crude oil price series are investigated and 198 economic series are used as exogenous variables. Our approach is tested against some competing approaches and shows superior forecasting ability that is statistically proved by three tests. As crude oil price is influenced by numerous factors, capturing its behavior precisely is quite challenging, and thus leads to the difficulty of forecasting. In this study, a deep learning ensemble approach is proposed to deal with this problem. In our approach, two techniques are utilized. One is an advanced deep neural network model named stacked denoising autoencoders (SDAE) which is used to model the nonlinear and complex relationships of oil price with its factors. The other is a powerful ensemble method named bootstrap aggregation (bagging) which generates multiple data sets for training a set of base models (SDAEs). Our approach combines the merits of these two techniques and is especially suitable for oil price forecasting. In the empirical study, the WTI crude oil price series are investigated and 198 economic series are used as exogenous variables. Our approach is tested against some competing approaches and shows superior forecasting ability that is statistically proved by three tests. •A deep learning and ensemble learning based forecasting approach is proposed.•198 exogenous variables are included.•Stacked denoising autoencoders (SDAE) is used to model and forecast oil price.•Bootstrapping aggregation (bagging) is used to grow an ensemble.•Effectiveness of the proposed model is statistically confirmed. |
| Author | Li, Jianping Zhao, Yang Yu, Lean |
| Author_xml | – sequence: 1 givenname: Yang surname: Zhao fullname: Zhao, Yang organization: Institute of Policy and Management, Chinese Academy of Sciences, Beijing, China – sequence: 2 givenname: Jianping surname: Li fullname: Li, Jianping email: ljp@casipm.ac.cn organization: Institute of Policy and Management, Chinese Academy of Sciences, Beijing, China – sequence: 3 givenname: Lean surname: Yu fullname: Yu, Lean organization: School of Economics and Management, Beijing University of Chemical Technology, Beijing, China |
| BookMark | eNqFkD1PwzAQhi1UJNrCL2CJxJxgxx-xB4aq4kuqxAKz5TgXcJTawU6R-PcklIkBppNO99zd-6zQwgcPCF0SXBBMxHVXgAcbihKTqsC8wCU9QUsiK5oLIskCLTFhOFdS0jO0SqnDGHPB5RJtNlkDMGQ9mOidf83AJ9jXPWRmGGIw9i1rQ8xsPDSQBddnQ3QW5h5Yk8aJOEenrekTXPzUNXq5u33ePuS7p_vH7WaXW6rEmLdM8JY2sgTGawVSUVbxpraVqEopgJEac0644o2CFmD-r26hYmAYKXkp6RpdHfdOb70fII26C4fop5OaKEEZxVjMU-o4ZWNIKUKrrRvN6IIfo3G9JljPxnSnv43p2ZjGXE_GJpb-YqewexM__6FujhRM4T8cRJ2sA2-hcZOjUTfB_cl_Afe5hwk |
| CitedBy_id | crossref_primary_10_1007_s10479_022_04908_9 crossref_primary_10_1016_j_jup_2021_101185 crossref_primary_10_1016_j_resourpol_2021_102195 crossref_primary_10_1016_j_aei_2022_101542 crossref_primary_10_3390_en13112980 crossref_primary_10_1002_for_2649 crossref_primary_10_3390_agriculture13081614 crossref_primary_10_1016_j_energy_2019_116778 crossref_primary_10_3390_su14159536 crossref_primary_10_1016_j_iswa_2023_200202 crossref_primary_10_1080_13504851_2019_1610704 crossref_primary_10_1007_s12065_020_00466_w crossref_primary_10_1016_j_compchemeng_2021_107513 crossref_primary_10_1016_j_energy_2020_117520 crossref_primary_10_2478_erfin_2021_0006 crossref_primary_10_3390_signals1010004 crossref_primary_10_1016_j_epidem_2019_05_004 crossref_primary_10_1002_widm_1235 crossref_primary_10_1016_j_jmsy_2020_07_020 crossref_primary_10_1007_s10614_020_10013_5 crossref_primary_10_3390_en13030550 crossref_primary_10_1016_j_cosrev_2020_100356 crossref_primary_10_3390_s18082674 crossref_primary_10_1016_j_energy_2018_03_099 crossref_primary_10_1016_j_jup_2023_101612 crossref_primary_10_1109_ACCESS_2018_2830661 crossref_primary_10_1016_j_physa_2020_124178 crossref_primary_10_1016_j_procs_2018_10_219 crossref_primary_10_1007_s10614_021_10198_3 crossref_primary_10_1016_j_physa_2019_123532 crossref_primary_10_3390_jrfm17110475 crossref_primary_10_1016_j_eneco_2019_05_006 crossref_primary_10_1016_j_procs_2021_07_038 crossref_primary_10_1016_j_eneco_2018_04_043 crossref_primary_10_1016_j_resourpol_2020_101806 crossref_primary_10_1016_j_energy_2021_121082 crossref_primary_10_1016_j_eswa_2023_119617 crossref_primary_10_3390_jrfm12010009 crossref_primary_10_1016_j_eneco_2024_107466 crossref_primary_10_1016_j_eswa_2023_122463 crossref_primary_10_1186_s40854_024_00637_z crossref_primary_10_1016_j_energy_2021_121756 crossref_primary_10_1007_s10614_019_09965_0 crossref_primary_10_1016_j_apenergy_2020_115035 crossref_primary_10_1016_j_asoc_2018_08_024 crossref_primary_10_1016_j_energy_2020_118831 crossref_primary_10_1016_j_frl_2024_106153 crossref_primary_10_1007_s00521_020_05169_y crossref_primary_10_1007_s10614_023_10412_4 crossref_primary_10_1016_j_eneco_2022_106467 crossref_primary_10_1016_j_energy_2018_05_146 crossref_primary_10_1109_ACCESS_2021_3134138 crossref_primary_10_1186_s40537_020_00299_5 crossref_primary_10_1016_j_physa_2018_09_120 crossref_primary_10_1016_j_ptlrs_2025_06_007 crossref_primary_10_1016_j_resourpol_2023_103513 crossref_primary_10_1109_ACCESS_2021_3123255 crossref_primary_10_1016_j_heliyon_2024_e34437 crossref_primary_10_1016_j_enpol_2021_112553 crossref_primary_10_1016_j_ijforecast_2020_02_002 crossref_primary_10_1016_j_procs_2022_01_110 crossref_primary_10_1177_1748006X20976817 crossref_primary_10_3390_joitmc5040081 crossref_primary_10_1007_s11063_019_10094_w crossref_primary_10_1109_ACCESS_2025_3593046 crossref_primary_10_3934_DSFE_2025007 crossref_primary_10_1002_for_2971 crossref_primary_10_1016_j_cities_2024_105115 crossref_primary_10_1093_jjfinec_nbab004 crossref_primary_10_1016_j_eneco_2018_10_015 crossref_primary_10_1007_s41060_024_00692_w crossref_primary_10_1016_j_eswa_2022_118622 crossref_primary_10_1016_j_eneco_2023_107089 crossref_primary_10_1007_s10614_023_10393_4 crossref_primary_10_1016_j_eswa_2020_114091 crossref_primary_10_1016_j_asoc_2019_105837 crossref_primary_10_1016_j_compind_2024_104150 crossref_primary_10_1016_j_meaene_2024_100001 crossref_primary_10_1109_JSEN_2019_2923982 crossref_primary_10_3390_electronics10121411 crossref_primary_10_1080_00207543_2023_2217286 crossref_primary_10_1016_j_apenergy_2021_116688 crossref_primary_10_1016_j_energy_2019_04_077 crossref_primary_10_3390_su10082801 crossref_primary_10_1109_ACCESS_2020_3038564 crossref_primary_10_3390_axioms11080374 crossref_primary_10_1002_fut_22407 crossref_primary_10_1007_s10614_023_10502_3 crossref_primary_10_1016_j_eneco_2019_07_009 crossref_primary_10_3389_fenrg_2022_991602 crossref_primary_10_3390_en13071852 crossref_primary_10_1016_j_apenergy_2024_123302 crossref_primary_10_3917_mav_137_0113 crossref_primary_10_1016_j_ins_2022_09_002 crossref_primary_10_1016_j_resourpol_2022_102780 crossref_primary_10_1109_ACCESS_2023_3239658 crossref_primary_10_1109_JESTIE_2023_3322122 crossref_primary_10_1155_2022_3216036 crossref_primary_10_1007_s00521_021_05903_0 crossref_primary_10_1109_ACCESS_2023_3243232 crossref_primary_10_1080_09537287_2024_2436464 crossref_primary_10_1016_j_jbi_2020_103564 crossref_primary_10_1007_s10614_021_10110_z crossref_primary_10_1155_2022_4952215 crossref_primary_10_1007_s42524_025_4075_5 crossref_primary_10_3390_en15114003 crossref_primary_10_1155_2022_3741370 crossref_primary_10_1080_13683500_2020_1770705 crossref_primary_10_1016_j_aei_2020_101160 crossref_primary_10_1016_j_asoc_2021_107291 crossref_primary_10_1007_s10479_020_03701_w crossref_primary_10_1108_JDQS_12_2024_0050 crossref_primary_10_1007_s10479_024_05821_z crossref_primary_10_3389_fenrg_2021_707937 crossref_primary_10_1016_j_frl_2024_105789 crossref_primary_10_1016_j_eneco_2019_07_026 crossref_primary_10_1016_j_najef_2018_10_002 crossref_primary_10_1007_s12652_020_01960_w crossref_primary_10_1016_j_eneco_2020_104721 crossref_primary_10_3390_en16124824 crossref_primary_10_1002_for_3174 crossref_primary_10_1016_j_eneco_2019_104648 crossref_primary_10_1016_j_energy_2018_01_007 crossref_primary_10_3390_su14127078 crossref_primary_10_1080_14697688_2022_2112065 crossref_primary_10_1016_j_heliyon_2024_e33387 crossref_primary_10_1016_j_resourpol_2023_103956 crossref_primary_10_1016_j_eswa_2024_124195 crossref_primary_10_1016_j_asoc_2021_108032 crossref_primary_10_1007_s00500_020_05390_w crossref_primary_10_1007_s13042_019_00922_9 crossref_primary_10_3390_en15145206 crossref_primary_10_1016_j_eneco_2024_107609 crossref_primary_10_1016_j_engappai_2023_106408 crossref_primary_10_1007_s10479_025_06784_5 crossref_primary_10_1007_s42243_024_01198_2 crossref_primary_10_1186_s42162_021_00166_4 crossref_primary_10_1016_j_energy_2022_124684 crossref_primary_10_1016_j_knosys_2020_106669 crossref_primary_10_1016_j_asoc_2020_106181 crossref_primary_10_1007_s10462_022_10283_5 crossref_primary_10_3390_electronics12112521 crossref_primary_10_1016_j_energy_2018_04_175 crossref_primary_10_1016_j_enconman_2019_111799 crossref_primary_10_24136_oc_2023_032 crossref_primary_10_1016_j_eswa_2022_118658 crossref_primary_10_1016_j_energy_2020_117494 crossref_primary_10_1017_S0043933919000254 crossref_primary_10_1007_s10489_025_06275_x crossref_primary_10_1016_j_procs_2019_06_115 crossref_primary_10_1186_s40537_024_00991_w crossref_primary_10_1016_j_econlet_2024_112128 crossref_primary_10_1016_j_procs_2017_11_369 crossref_primary_10_3390_en14248494 crossref_primary_10_1016_j_aei_2021_101443 crossref_primary_10_3390_su152416725 crossref_primary_10_1016_j_neucom_2021_06_051 crossref_primary_10_1016_j_eneco_2021_105129 crossref_primary_10_1016_j_eneco_2018_08_010 crossref_primary_10_3390_en14154604 crossref_primary_10_1002_ese3_1666 crossref_primary_10_1016_j_eneco_2023_107106 crossref_primary_10_1108_IJESM_11_2021_0019 crossref_primary_10_1016_j_procs_2018_10_528 crossref_primary_10_1016_j_swevo_2025_101977 crossref_primary_10_1016_j_resourpol_2023_104438 crossref_primary_10_1016_j_procs_2018_10_526 crossref_primary_10_1016_j_compag_2024_109439 crossref_primary_10_1016_j_inffus_2023_101918 crossref_primary_10_3390_w14142221 crossref_primary_10_1016_j_dsm_2024_07_003 crossref_primary_10_3390_fi14090252 crossref_primary_10_1007_s10479_022_05004_8 crossref_primary_10_3390_math11030547 crossref_primary_10_3390_risks9030050 crossref_primary_10_1088_1742_6596_1703_1_012037 crossref_primary_10_2118_223621_PA crossref_primary_10_1007_s42979_022_01195_w crossref_primary_10_3390_s22010247 crossref_primary_10_1016_j_ejor_2019_11_007 crossref_primary_10_1007_s10586_024_04684_0 crossref_primary_10_1080_15567249_2022_2083728 crossref_primary_10_1016_j_asoc_2023_110865 crossref_primary_10_3390_app15094669 crossref_primary_10_1177_13548166211025160 crossref_primary_10_1007_s40745_020_00256_2 crossref_primary_10_1016_j_procs_2022_11_295 crossref_primary_10_1016_j_scitotenv_2020_142052 crossref_primary_10_1007_s10479_023_05810_8 crossref_primary_10_1016_j_energy_2024_131185 crossref_primary_10_1016_j_resourpol_2022_102956 crossref_primary_10_1016_j_resourpol_2023_104060 crossref_primary_10_1007_s10614_024_10550_3 crossref_primary_10_1016_j_eneco_2021_105500 crossref_primary_10_1016_j_jclepro_2018_03_066 crossref_primary_10_3390_math11081785 crossref_primary_10_1016_j_eneco_2023_107129 crossref_primary_10_1016_j_procs_2019_12_032 crossref_primary_10_1016_j_asoc_2019_105553 crossref_primary_10_1016_j_petrol_2020_107013 crossref_primary_10_1016_j_apenergy_2023_122069 crossref_primary_10_1016_j_apenergy_2018_03_148 crossref_primary_10_1016_j_eswa_2023_121117 crossref_primary_10_1007_s00521_021_06621_3 crossref_primary_10_1088_1757_899X_864_1_012094 crossref_primary_10_1002_fut_22367 crossref_primary_10_1007_s00521_019_04212_x crossref_primary_10_1016_j_frl_2020_101755 crossref_primary_10_1109_ACCESS_2021_3124802 crossref_primary_10_1080_23249935_2019_1692956 crossref_primary_10_3390_en14113308 crossref_primary_10_1007_s10479_022_05070_y crossref_primary_10_1016_j_asoc_2020_106091 crossref_primary_10_1111_coin_12488 crossref_primary_10_1007_s00521_020_05234_6 crossref_primary_10_1007_s00181_021_02093_5 crossref_primary_10_1016_j_energy_2024_133102 crossref_primary_10_1016_j_resourpol_2022_102737 crossref_primary_10_3390_jrfm15080350 crossref_primary_10_14267_VEZTUD_2022_01_06 crossref_primary_10_1016_j_ejor_2019_04_013 crossref_primary_10_1109_TCSS_2021_3084847 crossref_primary_10_1016_j_eneco_2023_106736 crossref_primary_10_1016_j_petrol_2021_110012 crossref_primary_10_1016_j_cor_2024_106831 crossref_primary_10_1080_00036846_2018_1564122 crossref_primary_10_1016_j_eneco_2020_104790 crossref_primary_10_1109_ACCESS_2023_3239924 crossref_primary_10_1016_j_eneco_2023_107266 crossref_primary_10_1016_j_asoc_2021_107693 crossref_primary_10_1016_j_irfa_2025_104124 crossref_primary_10_1109_ACCESS_2025_3561193 crossref_primary_10_1016_j_jcomm_2025_100478 crossref_primary_10_1016_j_asoc_2021_107699 crossref_primary_10_1155_2022_1265837 crossref_primary_10_3390_ijfs12020034 crossref_primary_10_1016_j_asoc_2020_106509 crossref_primary_10_1016_j_compbiomed_2019_04_034 crossref_primary_10_1016_j_eswa_2022_117580 crossref_primary_10_1016_j_techfore_2020_120126 crossref_primary_10_1016_j_ins_2024_121082 crossref_primary_10_1177_16878132221130573 crossref_primary_10_1016_j_eneco_2023_106960 crossref_primary_10_1016_j_eneco_2023_107136 crossref_primary_10_1016_j_infoecopol_2019_05_002 crossref_primary_10_1080_10293523_2024_2405294 crossref_primary_10_1016_j_asoc_2023_110302 crossref_primary_10_1016_j_petrol_2020_107240 crossref_primary_10_1016_j_asoc_2023_110548 crossref_primary_10_1016_j_procs_2019_11_252 crossref_primary_10_3390_s20154220 |
| Cites_doi | 10.5547/ISSN0195-6574-EJ-Vol27-No4-4 10.1016/j.eswa.2013.12.011 10.1016/j.apenergy.2015.01.005 10.1561/2200000006 10.1162/neco.2006.18.7.1527 10.1016/j.econmod.2015.12.014 10.1016/j.dss.2012.11.009 10.1016/B978-0-444-53683-9.00008-6 10.1093/biomet/75.2.335 10.1016/j.eneco.2014.09.019 10.1257/jep.30.1.139 10.1016/j.eneco.2016.09.020 10.1126/science.1127647 10.1111/j.1468-2354.2012.00704.x 10.1038/nature14539 10.1287/mnsc.2015.2389 10.1111/1468-0262.00152 10.1016/j.apenergy.2014.12.045 10.1016/j.iref.2013.01.001 10.1198/073500105000000063 10.1016/j.eswa.2009.10.012 10.1007/BF00058655 10.1016/j.enpol.2005.03.017 10.1016/j.eneco.2011.07.018 10.1016/j.ijforecast.2015.02.006 10.1080/07350015.1998.10524759 10.1016/j.eneco.2008.05.003 10.1080/07350015.1995.10524599 10.1016/j.eneco.2009.01.006 10.1016/j.eneco.2009.11.003 10.1016/j.eswa.2007.01.009 10.1016/j.enpol.2013.12.049 10.1016/j.eneco.2016.02.017 10.1016/j.eneco.2013.07.028 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. Copyright Elsevier Science Ltd. Aug 2017 |
| Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Aug 2017 |
| DBID | AAYXX CITATION 7ST 7TA 7TQ 8BJ 8FD C1K DHY DON FQK JBE JG9 SOI |
| DOI | 10.1016/j.eneco.2017.05.023 |
| DatabaseName | CrossRef Environment Abstracts Materials Business File PAIS Index International Bibliography of the Social Sciences (IBSS) Technology Research Database Environmental Sciences and Pollution Management PAIS International PAIS International (Ovid) International Bibliography of the Social Sciences International Bibliography of the Social Sciences Materials Research Database Environment Abstracts |
| DatabaseTitle | CrossRef Materials Research Database International Bibliography of the Social Sciences (IBSS) Technology Research Database PAIS International Environment Abstracts Materials Business File Environmental Sciences and Pollution Management |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics |
| EISSN | 1873-6181 |
| EndPage | 16 |
| ExternalDocumentID | 10_1016_j_eneco_2017_05_023 S0140988317301871 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFFL AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAPFB AAQFI AAQXK AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACHQT ACIWK ACRLP ACROA ADBBV ADEZE ADFHU ADIYS ADMUD AEBSH AEFWE AEKER AEYQN AFKWA AFODL AFRAH AFTJW AGHFR AGTHC AGUBO AGYEJ AHHHB AHIDL AIEXJ AIIAU AIKHN AITUG AJBFU AJOXV AJWLA ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AXLSJ AZFZN BEHZQ BELTK BEZPJ BGSCR BKOJK BKOMP BLXMC BNTGB BPUDD BULVW BZJEE CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMB HVGLF HZ~ IHE IXIXF J1W JARJE KOM KZ1 LY5 LY6 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SAC SCC SDF SDG SDP SEB SEE SES SEW SPC SPCBC SSB SSF SSR SSZ T5K TN5 U5U WH7 WUQ YK3 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADMHG ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7ST 7TA 7TQ 8BJ 8FD C1K DHY DON FQK JBE JG9 SOI |
| ID | FETCH-LOGICAL-c396t-f465f3d82e45b9e893475dbc767286e41b0551595d9efee0056bfe74ea4125283 |
| ISICitedReferencesCount | 262 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000412033900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0140-9883 |
| IngestDate | Mon Nov 10 01:00:27 EST 2025 Sat Nov 29 02:54:29 EST 2025 Tue Nov 18 21:48:12 EST 2025 Fri Feb 23 02:34:11 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | C53 Deep learning C52 C63 Crude oil price forecasting C45 Q47 Stacked denoising autoencoder E37 Ensemble learning Bagging Multivariate forecasting |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c396t-f465f3d82e45b9e893475dbc767286e41b0551595d9efee0056bfe74ea4125283 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1963430068 |
| PQPubID | 32146 |
| PageCount | 8 |
| ParticipantIDs | proquest_journals_1963430068 crossref_citationtrail_10_1016_j_eneco_2017_05_023 crossref_primary_10_1016_j_eneco_2017_05_023 elsevier_sciencedirect_doi_10_1016_j_eneco_2017_05_023 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-08-01 |
| PublicationDateYYYYMMDD | 2017-08-01 |
| PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Energy economics |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
| References | Mostafa, El-Masry (bb0150) 2016; 54 Ng (bb0165) 2011 Bengio (bb0015) 2009; 2 Alquist, Kilian, Vigfusson (bb0005) 2013 Hansen (bb0090) 2005; 23 Naifar, Al Dohaiman (bb0155) 2013; 27 Xie, Yu, Xu, Wang (bb0200) 2006 Gabralla, Jammazi, Abraham (bb0060) 2013 White (bb0195) 2000; 68 LeCun, Bengio, Hinton (bb0140) 2015; 521 Naser (bb0160) 2016; 56 Yu, Zhao, Tang (bb0230) 2016 Diebold, Mariano (bb0045) 1995; 13 Grushka-Cockayne, Jose, Lichtendahl (bb0085) 2017; 63 Hastie, Tibshirani, Friedman (bb0100) 2009 Yu, Wang, Lai (bb0220) 2008; 30 Baumeister, Kilian (bb0010) 2016; 30 Chiroma, Abdulkareem, Herawan (bb0040) 2015; 142 Hinton, Salakhutdinov (bb0105) 2006; 313 Vincent, Larochelle, Bengio, Manzagol (bb0180) 2008 Ye, Zyren, Shore (bb0210) 2006; 34 Brooks (bb0035) 2014 Shin, Hou, Park, Park, Choi (bb0175) 2013; 55 Harvey, Leybourne, Newbold (bb0095) 1998; 16 Zagaglia (bb0235) 2010; 32 Moshiri, Foroutan (bb0145) 2006; 27 Breiman (bb0030) 1996 Efron, Tibshirani (bb0055) 1993 Wang, Wu, Yang (bb0190) 2016; 32 Goodfellow, Bengio, Courville (bb0080) 2016 Gibbons, Chakraborti (bb0070) 2011 Hinton, Osindero, Teh (bb0110) 2006; 18 Drachal (bb0050) 2016; 60 Kim, Kang (bb0125) 2010; 37 Koop, Korobilis (bb0130) 2012; 53 Jammazi, Aloui (bb0115) 2012; 34 Kourentzes, Barrow, Crone (bb0135) 2014; 41 Godarzi, Amiri, Talaei, Jamasb (bb0075) 2014; 68 Zhang, Zhang (bb0240) 2015; 143 Ghaffari, Zare (bb0065) 2009; 31 Yu, Wang, Lai (bb0215) 2008; 34 Peter, Perron (bb0170) 1988; 75 Breiman (bb0025) 1996; 24 Kaboudan (bb0120) 2001 Vincent, Larochelle, Lajoie, Bengio, Manzagol (bb0185) 2010; 11 Xiong, Bao, Hu (bb0205) 2013; 40 Yu, Zhao, Tang (bb0225) 2014; 46 Bengio (bb0020) 2013 Grushka-Cockayne (10.1016/j.eneco.2017.05.023_bb0085) 2017; 63 Drachal (10.1016/j.eneco.2017.05.023_bb0050) 2016; 60 Breiman (10.1016/j.eneco.2017.05.023_bb0030) 1996 Gabralla (10.1016/j.eneco.2017.05.023_bb0060) 2013 Yu (10.1016/j.eneco.2017.05.023_bb0215) 2008; 34 Naser (10.1016/j.eneco.2017.05.023_bb0160) 2016; 56 Koop (10.1016/j.eneco.2017.05.023_bb0130) 2012; 53 Kaboudan (10.1016/j.eneco.2017.05.023_bb0120) 2001 Brooks (10.1016/j.eneco.2017.05.023_bb0035) 2014 LeCun (10.1016/j.eneco.2017.05.023_bb0140) 2015; 521 Breiman (10.1016/j.eneco.2017.05.023_bb0025) 1996; 24 Efron (10.1016/j.eneco.2017.05.023_bb0055) 1993 Hastie (10.1016/j.eneco.2017.05.023_bb0100) 2009 Hinton (10.1016/j.eneco.2017.05.023_bb0105) 2006; 313 Xiong (10.1016/j.eneco.2017.05.023_bb0205) 2013; 40 Godarzi (10.1016/j.eneco.2017.05.023_bb0075) 2014; 68 Mostafa (10.1016/j.eneco.2017.05.023_bb0150) 2016; 54 Vincent (10.1016/j.eneco.2017.05.023_bb0185) 2010; 11 Yu (10.1016/j.eneco.2017.05.023_bb0230) 2016 Diebold (10.1016/j.eneco.2017.05.023_bb0045) 1995; 13 Xie (10.1016/j.eneco.2017.05.023_bb0200) 2006 Bengio (10.1016/j.eneco.2017.05.023_bb0015) 2009; 2 Moshiri (10.1016/j.eneco.2017.05.023_bb0145) 2006; 27 Gibbons (10.1016/j.eneco.2017.05.023_bb0070) 2011 Wang (10.1016/j.eneco.2017.05.023_bb0190) 2016; 32 Peter (10.1016/j.eneco.2017.05.023_bb0170) 1988; 75 White (10.1016/j.eneco.2017.05.023_bb0195) 2000; 68 Shin (10.1016/j.eneco.2017.05.023_bb0175) 2013; 55 Naifar (10.1016/j.eneco.2017.05.023_bb0155) 2013; 27 Bengio (10.1016/j.eneco.2017.05.023_bb0020) 2013 Ye (10.1016/j.eneco.2017.05.023_bb0210) 2006; 34 Chiroma (10.1016/j.eneco.2017.05.023_bb0040) 2015; 142 Yu (10.1016/j.eneco.2017.05.023_bb0220) 2008; 30 Zagaglia (10.1016/j.eneco.2017.05.023_bb0235) 2010; 32 Yu (10.1016/j.eneco.2017.05.023_bb0225) 2014; 46 Goodfellow (10.1016/j.eneco.2017.05.023_bb0080) 2016 Zhang (10.1016/j.eneco.2017.05.023_bb0240) 2015; 143 Ng (10.1016/j.eneco.2017.05.023_bb0165) 2011 Hansen (10.1016/j.eneco.2017.05.023_bb0090) 2005; 23 Harvey (10.1016/j.eneco.2017.05.023_bb0095) 1998; 16 Vincent (10.1016/j.eneco.2017.05.023_bb0180) 2008 Hinton (10.1016/j.eneco.2017.05.023_bb0110) 2006; 18 Kim (10.1016/j.eneco.2017.05.023_bb0125) 2010; 37 Alquist (10.1016/j.eneco.2017.05.023_bb0005) 2013 Baumeister (10.1016/j.eneco.2017.05.023_bb0010) 2016; 30 Ghaffari (10.1016/j.eneco.2017.05.023_bb0065) 2009; 31 Jammazi (10.1016/j.eneco.2017.05.023_bb0115) 2012; 34 Kourentzes (10.1016/j.eneco.2017.05.023_bb0135) 2014; 41 |
| References_xml | – volume: 13 start-page: 253 year: 1995 end-page: 263 ident: bb0045 article-title: Comparing predictive accuracy publication-title: J. Bus. Econ. Stat. – start-page: 444 year: 2006 end-page: 451 ident: bb0200 article-title: A new method for crude oil price forecasting based on support vector machines publication-title: Computational Science – ICCS 2006: 6th International Conference, Reading, UK, May 28–31, 2006, Proceedings, Part IV – volume: 30 start-page: 2623 year: 2008 end-page: 2635 ident: bb0220 article-title: Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm publication-title: Energy Econ. – volume: 55 start-page: 348 year: 2013 end-page: 358 ident: bb0175 article-title: Prediction of movement direction in crude oil prices based on semi-supervised learning publication-title: Decis. Support. Syst. – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: bb0105 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 34 start-page: 2736 year: 2006 end-page: 2743 ident: bb0210 article-title: Forecasting short-run crude oil price using high- and low-inventory variables publication-title: Energ Policy – start-page: 283 year: 2001 end-page: 287 ident: bb0120 article-title: Compumetric forecasting of crude oil prices publication-title: IEEE C Evol. Comput. – volume: 34 start-page: 1434 year: 2008 end-page: 1444 ident: bb0215 article-title: Credit risk assessment with a multistage neural network ensemble learning approach publication-title: Expert Syst. Appl. – start-page: 1096 year: 2008 end-page: 1103 ident: bb0180 article-title: Extracting and composing robust features with denoising autoencoders publication-title: Proceedings of the 25th International Conference on Machine Learning – volume: 60 start-page: 35 year: 2016 end-page: 46 ident: bb0050 article-title: Forecasting spot oil price in a dynamic model averaging framework — have the determinants changed over time? publication-title: Energy Econ. – start-page: 674 year: 2013 end-page: 679 ident: bb0060 article-title: Oil price prediction using ensemble machine learning publication-title: Computing, Electrical and Electronics Engineering (ICCEEE), 2013 International Conference on – volume: 18 start-page: 1527 year: 2006 end-page: 1554 ident: bb0110 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. – volume: 27 start-page: 81 year: 2006 end-page: 95 ident: bb0145 article-title: Forecasting nonlinear crude oil futures prices publication-title: Energy J. – volume: 68 start-page: 1097 year: 2000 end-page: 1126 ident: bb0195 article-title: A reality check for data snooping publication-title: Econometrica – volume: 32 start-page: 1 year: 2016 end-page: 9 ident: bb0190 article-title: Forecasting crude oil market volatility: a Markov switching multifractal volatility approach publication-title: Int. J. Forecast. – volume: 68 start-page: 371 year: 2014 end-page: 382 ident: bb0075 article-title: Predicting oil price movements: a dynamic artificial neural network approach publication-title: Energ Policy – volume: 53 start-page: 867 year: 2012 end-page: 886 ident: bb0130 article-title: Forecasting inflation using dynamic model averaging* publication-title: Int. Econ. Rev. – volume: 142 start-page: 266 year: 2015 end-page: 273 ident: bb0040 article-title: Evolutionary neural network model for West Texas intermediate crude oil price prediction publication-title: Appl. Energy – volume: 37 start-page: 3373 year: 2010 end-page: 3379 ident: bb0125 article-title: Ensemble with neural networks for bankruptcy prediction publication-title: Expert Syst. Appl. – start-page: 389 year: 2009 end-page: 416 ident: bb0100 article-title: Neural Networks, The Elements of Statistical Learning: Data Mining, Inference, and Prediction – volume: 54 start-page: 40 year: 2016 end-page: 53 ident: bb0150 article-title: Oil price forecasting using gene expression programming and artificial neural networks publication-title: Econ. Model. – year: 2014 ident: bb0035 article-title: Introductory Econometrics for Finance – start-page: 1 year: 2011 end-page: 19 ident: bb0165 article-title: Sparse autoencoder publication-title: CS294A Lecture notes 72 – start-page: 2350 year: 1996 end-page: 2383 ident: bb0030 article-title: Heuristics of Instability and Stabilization in Model Selection – volume: 40 start-page: 405 year: 2013 end-page: 415 ident: bb0205 article-title: Beyond one-step-ahead forecasting: evaluation of alternative multi-step-ahead forecasting models for crude oil prices publication-title: Energy Econ. – year: 1993 ident: bb0055 article-title: An Introduction to the Bootstrap – start-page: 977 year: 2011 end-page: 979 ident: bb0070 article-title: Nonparametric statistical inference publication-title: International Encyclopedia of Statistical Science – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: bb0025 article-title: Bagging predictors publication-title: Mach. Learn. – volume: 31 start-page: 531 year: 2009 end-page: 536 ident: bb0065 article-title: A novel algorithm for prediction of crude oil price variation based on soft computing publication-title: Energy Econ. – start-page: 1 year: 2013 end-page: 37 ident: bb0020 article-title: Deep learning of representations: looking forward publication-title: Statistical Language and Speech Processing: First International Conference, SLSP 2013, Tarragona, Spain, July 29–31, 2013. Proceedings – volume: 56 start-page: 75 year: 2016 end-page: 87 ident: bb0160 article-title: Estimating and forecasting the real prices of crude oil: a data rich model using a dynamic model averaging (DMA) approach publication-title: Energy Econ. – year: 2016 ident: bb0230 article-title: Ensemble forecasting for complex time series using sparse representation and neural networks publication-title: J. Forecast. – volume: 63 start-page: 1110 year: 2017 end-page: 1130 ident: bb0085 article-title: Ensembles of overfit and overconfident forecasts publication-title: Manag. Sci. – volume: 11 start-page: 3371 year: 2010 end-page: 3408 ident: bb0185 article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – volume: 30 start-page: 139 year: 2016 end-page: 160 ident: bb0010 article-title: Forty years of oil price fluctuations: why the price of oil may still surprise us publication-title: J. Econ. Perspect. – volume: 16 start-page: 254 year: 1998 end-page: 259 ident: bb0095 article-title: Tests for forecast encompassing publication-title: J. Bus. Econ. Stat. – volume: 32 start-page: 409 year: 2010 end-page: 417 ident: bb0235 article-title: Macroeconomic factors and oil futures prices: a data-rich model publication-title: Energy Econ. – volume: 75 start-page: 335 year: 1988 end-page: 346 ident: bb0170 article-title: Testing for a unit root in time series regression publication-title: Biometrika – start-page: 427 year: 2013 end-page: 507 ident: bb0005 article-title: Chapter 8 - forecasting the price of oil publication-title: Handbook of Economic Forecasting – volume: 2 start-page: 1 year: 2009 end-page: 127 ident: bb0015 article-title: Learning deep architectures for AI. Found publication-title: Trends Mach. Learn. – volume: 46 start-page: 236 year: 2014 end-page: 245 ident: bb0225 article-title: A compressed sensing based AI learning paradigm for crude oil price forecasting publication-title: Energy Econ. – volume: 23 start-page: 365 year: 2005 end-page: 380 ident: bb0090 article-title: A test for superior predictive ability publication-title: J. Bus. Econ. Stat. – volume: 34 start-page: 828 year: 2012 end-page: 841 ident: bb0115 article-title: Crude oil price forecasting: experimental evidence from wavelet decomposition and neural network modeling publication-title: Energy Econ. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bb0140 article-title: Deep learning publication-title: Nature – volume: 41 start-page: 4235 year: 2014 end-page: 4244 ident: bb0135 article-title: Neural network ensemble operators for time series forecasting publication-title: Expert Syst. Appl. – volume: 27 start-page: 416 year: 2013 end-page: 431 ident: bb0155 article-title: Nonlinear analysis among crude oil prices, stock markets' return and macroeconomic variables publication-title: Int. Rev. Econ. Financ. – year: 2016 ident: bb0080 article-title: Deep Learning – volume: 143 start-page: 96 year: 2015 end-page: 109 ident: bb0240 article-title: Interpreting the crude oil price movements: evidence from the Markov regime switching model publication-title: Appl. Energy – volume: 27 start-page: 81 year: 2006 ident: 10.1016/j.eneco.2017.05.023_bb0145 article-title: Forecasting nonlinear crude oil futures prices publication-title: Energy J. doi: 10.5547/ISSN0195-6574-EJ-Vol27-No4-4 – start-page: 283 year: 2001 ident: 10.1016/j.eneco.2017.05.023_bb0120 article-title: Compumetric forecasting of crude oil prices publication-title: IEEE C Evol. Comput. – start-page: 1096 year: 2008 ident: 10.1016/j.eneco.2017.05.023_bb0180 article-title: Extracting and composing robust features with denoising autoencoders – start-page: 977 year: 2011 ident: 10.1016/j.eneco.2017.05.023_bb0070 article-title: Nonparametric statistical inference – volume: 41 start-page: 4235 year: 2014 ident: 10.1016/j.eneco.2017.05.023_bb0135 article-title: Neural network ensemble operators for time series forecasting publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.12.011 – volume: 143 start-page: 96 year: 2015 ident: 10.1016/j.eneco.2017.05.023_bb0240 article-title: Interpreting the crude oil price movements: evidence from the Markov regime switching model publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.01.005 – volume: 2 start-page: 1 year: 2009 ident: 10.1016/j.eneco.2017.05.023_bb0015 article-title: Learning deep architectures for AI. Found publication-title: Trends Mach. Learn. doi: 10.1561/2200000006 – volume: 18 start-page: 1527 year: 2006 ident: 10.1016/j.eneco.2017.05.023_bb0110 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – volume: 54 start-page: 40 year: 2016 ident: 10.1016/j.eneco.2017.05.023_bb0150 article-title: Oil price forecasting using gene expression programming and artificial neural networks publication-title: Econ. Model. doi: 10.1016/j.econmod.2015.12.014 – volume: 55 start-page: 348 year: 2013 ident: 10.1016/j.eneco.2017.05.023_bb0175 article-title: Prediction of movement direction in crude oil prices based on semi-supervised learning publication-title: Decis. Support. Syst. doi: 10.1016/j.dss.2012.11.009 – start-page: 427 year: 2013 ident: 10.1016/j.eneco.2017.05.023_bb0005 article-title: Chapter 8 - forecasting the price of oil doi: 10.1016/B978-0-444-53683-9.00008-6 – volume: 75 start-page: 335 year: 1988 ident: 10.1016/j.eneco.2017.05.023_bb0170 article-title: Testing for a unit root in time series regression publication-title: Biometrika doi: 10.1093/biomet/75.2.335 – volume: 46 start-page: 236 year: 2014 ident: 10.1016/j.eneco.2017.05.023_bb0225 article-title: A compressed sensing based AI learning paradigm for crude oil price forecasting publication-title: Energy Econ. doi: 10.1016/j.eneco.2014.09.019 – volume: 30 start-page: 139 year: 2016 ident: 10.1016/j.eneco.2017.05.023_bb0010 article-title: Forty years of oil price fluctuations: why the price of oil may still surprise us publication-title: J. Econ. Perspect. doi: 10.1257/jep.30.1.139 – volume: 60 start-page: 35 year: 2016 ident: 10.1016/j.eneco.2017.05.023_bb0050 article-title: Forecasting spot oil price in a dynamic model averaging framework — have the determinants changed over time? publication-title: Energy Econ. doi: 10.1016/j.eneco.2016.09.020 – volume: 313 start-page: 504 year: 2006 ident: 10.1016/j.eneco.2017.05.023_bb0105 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – year: 2014 ident: 10.1016/j.eneco.2017.05.023_bb0035 – year: 1993 ident: 10.1016/j.eneco.2017.05.023_bb0055 – volume: 53 start-page: 867 year: 2012 ident: 10.1016/j.eneco.2017.05.023_bb0130 article-title: Forecasting inflation using dynamic model averaging* publication-title: Int. Econ. Rev. doi: 10.1111/j.1468-2354.2012.00704.x – year: 2016 ident: 10.1016/j.eneco.2017.05.023_bb0080 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.eneco.2017.05.023_bb0140 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 11 start-page: 3371 year: 2010 ident: 10.1016/j.eneco.2017.05.023_bb0185 article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – volume: 63 start-page: 1110 year: 2017 ident: 10.1016/j.eneco.2017.05.023_bb0085 article-title: Ensembles of overfit and overconfident forecasts publication-title: Manag. Sci. doi: 10.1287/mnsc.2015.2389 – volume: 68 start-page: 1097 year: 2000 ident: 10.1016/j.eneco.2017.05.023_bb0195 article-title: A reality check for data snooping publication-title: Econometrica doi: 10.1111/1468-0262.00152 – volume: 142 start-page: 266 year: 2015 ident: 10.1016/j.eneco.2017.05.023_bb0040 article-title: Evolutionary neural network model for West Texas intermediate crude oil price prediction publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.12.045 – volume: 27 start-page: 416 year: 2013 ident: 10.1016/j.eneco.2017.05.023_bb0155 article-title: Nonlinear analysis among crude oil prices, stock markets' return and macroeconomic variables publication-title: Int. Rev. Econ. Financ. doi: 10.1016/j.iref.2013.01.001 – volume: 23 start-page: 365 year: 2005 ident: 10.1016/j.eneco.2017.05.023_bb0090 article-title: A test for superior predictive ability publication-title: J. Bus. Econ. Stat. doi: 10.1198/073500105000000063 – volume: 37 start-page: 3373 year: 2010 ident: 10.1016/j.eneco.2017.05.023_bb0125 article-title: Ensemble with neural networks for bankruptcy prediction publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.10.012 – volume: 24 start-page: 123 year: 1996 ident: 10.1016/j.eneco.2017.05.023_bb0025 article-title: Bagging predictors publication-title: Mach. Learn. doi: 10.1007/BF00058655 – volume: 34 start-page: 2736 year: 2006 ident: 10.1016/j.eneco.2017.05.023_bb0210 article-title: Forecasting short-run crude oil price using high- and low-inventory variables publication-title: Energ Policy doi: 10.1016/j.enpol.2005.03.017 – volume: 34 start-page: 828 year: 2012 ident: 10.1016/j.eneco.2017.05.023_bb0115 article-title: Crude oil price forecasting: experimental evidence from wavelet decomposition and neural network modeling publication-title: Energy Econ. doi: 10.1016/j.eneco.2011.07.018 – volume: 32 start-page: 1 year: 2016 ident: 10.1016/j.eneco.2017.05.023_bb0190 article-title: Forecasting crude oil market volatility: a Markov switching multifractal volatility approach publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2015.02.006 – start-page: 1 year: 2011 ident: 10.1016/j.eneco.2017.05.023_bb0165 article-title: Sparse autoencoder – volume: 16 start-page: 254 year: 1998 ident: 10.1016/j.eneco.2017.05.023_bb0095 article-title: Tests for forecast encompassing publication-title: J. Bus. Econ. Stat. doi: 10.1080/07350015.1998.10524759 – start-page: 1 year: 2013 ident: 10.1016/j.eneco.2017.05.023_bb0020 article-title: Deep learning of representations: looking forward – volume: 30 start-page: 2623 year: 2008 ident: 10.1016/j.eneco.2017.05.023_bb0220 article-title: Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm publication-title: Energy Econ. doi: 10.1016/j.eneco.2008.05.003 – volume: 13 start-page: 253 year: 1995 ident: 10.1016/j.eneco.2017.05.023_bb0045 article-title: Comparing predictive accuracy publication-title: J. Bus. Econ. Stat. doi: 10.1080/07350015.1995.10524599 – volume: 31 start-page: 531 year: 2009 ident: 10.1016/j.eneco.2017.05.023_bb0065 article-title: A novel algorithm for prediction of crude oil price variation based on soft computing publication-title: Energy Econ. doi: 10.1016/j.eneco.2009.01.006 – year: 2016 ident: 10.1016/j.eneco.2017.05.023_bb0230 article-title: Ensemble forecasting for complex time series using sparse representation and neural networks publication-title: J. Forecast. – start-page: 444 year: 2006 ident: 10.1016/j.eneco.2017.05.023_bb0200 article-title: A new method for crude oil price forecasting based on support vector machines – volume: 32 start-page: 409 year: 2010 ident: 10.1016/j.eneco.2017.05.023_bb0235 article-title: Macroeconomic factors and oil futures prices: a data-rich model publication-title: Energy Econ. doi: 10.1016/j.eneco.2009.11.003 – start-page: 2350 year: 1996 ident: 10.1016/j.eneco.2017.05.023_bb0030 – volume: 34 start-page: 1434 year: 2008 ident: 10.1016/j.eneco.2017.05.023_bb0215 article-title: Credit risk assessment with a multistage neural network ensemble learning approach publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.01.009 – start-page: 674 year: 2013 ident: 10.1016/j.eneco.2017.05.023_bb0060 article-title: Oil price prediction using ensemble machine learning – volume: 68 start-page: 371 year: 2014 ident: 10.1016/j.eneco.2017.05.023_bb0075 article-title: Predicting oil price movements: a dynamic artificial neural network approach publication-title: Energ Policy doi: 10.1016/j.enpol.2013.12.049 – start-page: 389 year: 2009 ident: 10.1016/j.eneco.2017.05.023_bb0100 – volume: 56 start-page: 75 year: 2016 ident: 10.1016/j.eneco.2017.05.023_bb0160 article-title: Estimating and forecasting the real prices of crude oil: a data rich model using a dynamic model averaging (DMA) approach publication-title: Energy Econ. doi: 10.1016/j.eneco.2016.02.017 – volume: 40 start-page: 405 year: 2013 ident: 10.1016/j.eneco.2017.05.023_bb0205 article-title: Beyond one-step-ahead forecasting: evaluation of alternative multi-step-ahead forecasting models for crude oil prices publication-title: Energy Econ. doi: 10.1016/j.eneco.2013.07.028 |
| SSID | ssj0005658 |
| Score | 2.6125581 |
| Snippet | As crude oil price is influenced by numerous factors, capturing its behavior precisely is quite challenging, and thus leads to the difficulty of forecasting.... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 9 |
| SubjectTerms | Artificial neural networks Bagging Cognitive style Crude oil Crude oil price forecasting Crude oil prices Data analysis Datasets Deep learning Denoising Energy economics Ensemble learning Forecasting Mathematical models Multivariate forecasting Networks Neural networks Noise reduction Petroleum Stacked denoising autoencoder Studies Training |
| Title | A deep learning ensemble approach for crude oil price forecasting |
| URI | https://dx.doi.org/10.1016/j.eneco.2017.05.023 https://www.proquest.com/docview/1963430068 |
| Volume | 66 |
| WOSCitedRecordID | wos000412033900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6181 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005658 issn: 0140-9883 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbpNBeSp80bVp06G3rsrZly7oETEhIQgk9pGXTi5DlcbNh65h9hPz8jF7ebUKX5tCLWYQtvPrkmW_EfDOEfGKxinXKVSRM-UemWBqpjFURq4DHDVJ0bdv5_PjKT0-L8Vh8Gwz2ghbmesrbtri5Ed1_hRrHEGwjnX0A3P2kOIC_EXS8Iux4_Sfgy2EN0IV2EL-GGKfCb6OPCuXDbWahni1rGF5NpsPOlBUyY6DVfBE8WTisd9JA8PLlnoD_vFD2jPVc-ftNTo9NDDjB_dZNVqPnSxv6g9-F_oABnVZIb1udOY4iUbh-M8Fo5utWT6y5T6ecvGeY3RnB5Rc04NpoLmNXMNVpjf8sg33HPfVJgyEf7VLaSaSZRI4yiZM8ItsJzwRate3y-GB8skryyW2H1v4vhLpTNsPv3rv8jZvc8dKWepw9J898zEBLh_ULMoD2JXkSJOXzV6QsqcGcBsxpwJwGzCniSy3mFDGnFnO6hvlr8v3w4Gz_KPK9MSKdinwRNSzPmrQuEmBZJQBZJ-NZXWme86TIgcXVKDNUNasFNABmJaoGOAPFkNIip3xDttqrFt4SyjRg2N3EqsHguk4TUTMQgKFuo4AlKt4hSVgVqX3heNO_ZCo3ILJDPvcPda5uyubb87Dc0lM_R-kkbqDND-4GcKT_COfSeBWWGvXTu4e9xnvydPUF7JKtxWwJH8hjfb2YzGcf_ea6BWmjgwM |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+ensemble+approach+for+crude+oil+price+forecasting&rft.jtitle=Energy+economics&rft.au=Zhao%2C+Yang&rft.au=Li%2C+Jianping&rft.au=Yu%2C+Lean&rft.date=2017-08-01&rft.issn=0140-9883&rft.volume=66&rft.spage=9&rft.epage=16&rft_id=info:doi/10.1016%2Fj.eneco.2017.05.023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eneco_2017_05_023 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-9883&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-9883&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-9883&client=summon |