A deep learning ensemble approach for crude oil price forecasting

As crude oil price is influenced by numerous factors, capturing its behavior precisely is quite challenging, and thus leads to the difficulty of forecasting. In this study, a deep learning ensemble approach is proposed to deal with this problem. In our approach, two techniques are utilized. One is a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy economics Jg. 66; S. 9 - 16
Hauptverfasser: Zhao, Yang, Li, Jianping, Yu, Lean
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Kidlington Elsevier B.V 01.08.2017
Elsevier Science Ltd
Schlagworte:
ISSN:0140-9883, 1873-6181
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract As crude oil price is influenced by numerous factors, capturing its behavior precisely is quite challenging, and thus leads to the difficulty of forecasting. In this study, a deep learning ensemble approach is proposed to deal with this problem. In our approach, two techniques are utilized. One is an advanced deep neural network model named stacked denoising autoencoders (SDAE) which is used to model the nonlinear and complex relationships of oil price with its factors. The other is a powerful ensemble method named bootstrap aggregation (bagging) which generates multiple data sets for training a set of base models (SDAEs). Our approach combines the merits of these two techniques and is especially suitable for oil price forecasting. In the empirical study, the WTI crude oil price series are investigated and 198 economic series are used as exogenous variables. Our approach is tested against some competing approaches and shows superior forecasting ability that is statistically proved by three tests. •A deep learning and ensemble learning based forecasting approach is proposed.•198 exogenous variables are included.•Stacked denoising autoencoders (SDAE) is used to model and forecast oil price.•Bootstrapping aggregation (bagging) is used to grow an ensemble.•Effectiveness of the proposed model is statistically confirmed.
AbstractList As crude oil price is influenced by numerous factors, capturing its behavior precisely is quite challenging, and thus leads to the difficulty of forecasting. In this study, a deep learning ensemble approach is proposed to deal with this problem. In our approach, two techniques are utilized. One is an advanced deep neural network model named stacked denoising autoencoders (SDAE) which is used to model the nonlinear and complex relationships of oil price with its factors. The other is a powerful ensemble method named bootstrap aggregation (bagging) which generates multiple data sets for training a set of base models (SDAEs). Our approach combines the merits of these two techniques and is especially suitable for oil price forecasting. In the empirical study, the WTI crude oil price series are investigated and 198 economic series are used as exogenous variables. Our approach is tested against some competing approaches and shows superior forecasting ability that is statistically proved by three tests.
As crude oil price is influenced by numerous factors, capturing its behavior precisely is quite challenging, and thus leads to the difficulty of forecasting. In this study, a deep learning ensemble approach is proposed to deal with this problem. In our approach, two techniques are utilized. One is an advanced deep neural network model named stacked denoising autoencoders (SDAE) which is used to model the nonlinear and complex relationships of oil price with its factors. The other is a powerful ensemble method named bootstrap aggregation (bagging) which generates multiple data sets for training a set of base models (SDAEs). Our approach combines the merits of these two techniques and is especially suitable for oil price forecasting. In the empirical study, the WTI crude oil price series are investigated and 198 economic series are used as exogenous variables. Our approach is tested against some competing approaches and shows superior forecasting ability that is statistically proved by three tests. •A deep learning and ensemble learning based forecasting approach is proposed.•198 exogenous variables are included.•Stacked denoising autoencoders (SDAE) is used to model and forecast oil price.•Bootstrapping aggregation (bagging) is used to grow an ensemble.•Effectiveness of the proposed model is statistically confirmed.
Author Li, Jianping
Zhao, Yang
Yu, Lean
Author_xml – sequence: 1
  givenname: Yang
  surname: Zhao
  fullname: Zhao, Yang
  organization: Institute of Policy and Management, Chinese Academy of Sciences, Beijing, China
– sequence: 2
  givenname: Jianping
  surname: Li
  fullname: Li, Jianping
  email: ljp@casipm.ac.cn
  organization: Institute of Policy and Management, Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Lean
  surname: Yu
  fullname: Yu, Lean
  organization: School of Economics and Management, Beijing University of Chemical Technology, Beijing, China
BookMark eNqFkD1PwzAQhi1UJNrCL2CJxJxgxx-xB4aq4kuqxAKz5TgXcJTawU6R-PcklIkBppNO99zd-6zQwgcPCF0SXBBMxHVXgAcbihKTqsC8wCU9QUsiK5oLIskCLTFhOFdS0jO0SqnDGHPB5RJtNlkDMGQ9mOidf83AJ9jXPWRmGGIw9i1rQ8xsPDSQBddnQ3QW5h5Yk8aJOEenrekTXPzUNXq5u33ePuS7p_vH7WaXW6rEmLdM8JY2sgTGawVSUVbxpraVqEopgJEac0644o2CFmD-r26hYmAYKXkp6RpdHfdOb70fII26C4fop5OaKEEZxVjMU-o4ZWNIKUKrrRvN6IIfo3G9JljPxnSnv43p2ZjGXE_GJpb-YqewexM__6FujhRM4T8cRJ2sA2-hcZOjUTfB_cl_Afe5hwk
CitedBy_id crossref_primary_10_1007_s10479_022_04908_9
crossref_primary_10_1016_j_jup_2021_101185
crossref_primary_10_1016_j_resourpol_2021_102195
crossref_primary_10_1016_j_aei_2022_101542
crossref_primary_10_3390_en13112980
crossref_primary_10_1002_for_2649
crossref_primary_10_3390_agriculture13081614
crossref_primary_10_1016_j_energy_2019_116778
crossref_primary_10_3390_su14159536
crossref_primary_10_1016_j_iswa_2023_200202
crossref_primary_10_1080_13504851_2019_1610704
crossref_primary_10_1007_s12065_020_00466_w
crossref_primary_10_1016_j_compchemeng_2021_107513
crossref_primary_10_1016_j_energy_2020_117520
crossref_primary_10_2478_erfin_2021_0006
crossref_primary_10_3390_signals1010004
crossref_primary_10_1016_j_epidem_2019_05_004
crossref_primary_10_1002_widm_1235
crossref_primary_10_1016_j_jmsy_2020_07_020
crossref_primary_10_1007_s10614_020_10013_5
crossref_primary_10_3390_en13030550
crossref_primary_10_1016_j_cosrev_2020_100356
crossref_primary_10_3390_s18082674
crossref_primary_10_1016_j_energy_2018_03_099
crossref_primary_10_1016_j_jup_2023_101612
crossref_primary_10_1109_ACCESS_2018_2830661
crossref_primary_10_1016_j_physa_2020_124178
crossref_primary_10_1016_j_procs_2018_10_219
crossref_primary_10_1007_s10614_021_10198_3
crossref_primary_10_1016_j_physa_2019_123532
crossref_primary_10_3390_jrfm17110475
crossref_primary_10_1016_j_eneco_2019_05_006
crossref_primary_10_1016_j_procs_2021_07_038
crossref_primary_10_1016_j_eneco_2018_04_043
crossref_primary_10_1016_j_resourpol_2020_101806
crossref_primary_10_1016_j_energy_2021_121082
crossref_primary_10_1016_j_eswa_2023_119617
crossref_primary_10_3390_jrfm12010009
crossref_primary_10_1016_j_eneco_2024_107466
crossref_primary_10_1016_j_eswa_2023_122463
crossref_primary_10_1186_s40854_024_00637_z
crossref_primary_10_1016_j_energy_2021_121756
crossref_primary_10_1007_s10614_019_09965_0
crossref_primary_10_1016_j_apenergy_2020_115035
crossref_primary_10_1016_j_asoc_2018_08_024
crossref_primary_10_1016_j_energy_2020_118831
crossref_primary_10_1016_j_frl_2024_106153
crossref_primary_10_1007_s00521_020_05169_y
crossref_primary_10_1007_s10614_023_10412_4
crossref_primary_10_1016_j_eneco_2022_106467
crossref_primary_10_1016_j_energy_2018_05_146
crossref_primary_10_1109_ACCESS_2021_3134138
crossref_primary_10_1186_s40537_020_00299_5
crossref_primary_10_1016_j_physa_2018_09_120
crossref_primary_10_1016_j_ptlrs_2025_06_007
crossref_primary_10_1016_j_resourpol_2023_103513
crossref_primary_10_1109_ACCESS_2021_3123255
crossref_primary_10_1016_j_heliyon_2024_e34437
crossref_primary_10_1016_j_enpol_2021_112553
crossref_primary_10_1016_j_ijforecast_2020_02_002
crossref_primary_10_1016_j_procs_2022_01_110
crossref_primary_10_1177_1748006X20976817
crossref_primary_10_3390_joitmc5040081
crossref_primary_10_1007_s11063_019_10094_w
crossref_primary_10_1109_ACCESS_2025_3593046
crossref_primary_10_3934_DSFE_2025007
crossref_primary_10_1002_for_2971
crossref_primary_10_1016_j_cities_2024_105115
crossref_primary_10_1093_jjfinec_nbab004
crossref_primary_10_1016_j_eneco_2018_10_015
crossref_primary_10_1007_s41060_024_00692_w
crossref_primary_10_1016_j_eswa_2022_118622
crossref_primary_10_1016_j_eneco_2023_107089
crossref_primary_10_1007_s10614_023_10393_4
crossref_primary_10_1016_j_eswa_2020_114091
crossref_primary_10_1016_j_asoc_2019_105837
crossref_primary_10_1016_j_compind_2024_104150
crossref_primary_10_1016_j_meaene_2024_100001
crossref_primary_10_1109_JSEN_2019_2923982
crossref_primary_10_3390_electronics10121411
crossref_primary_10_1080_00207543_2023_2217286
crossref_primary_10_1016_j_apenergy_2021_116688
crossref_primary_10_1016_j_energy_2019_04_077
crossref_primary_10_3390_su10082801
crossref_primary_10_1109_ACCESS_2020_3038564
crossref_primary_10_3390_axioms11080374
crossref_primary_10_1002_fut_22407
crossref_primary_10_1007_s10614_023_10502_3
crossref_primary_10_1016_j_eneco_2019_07_009
crossref_primary_10_3389_fenrg_2022_991602
crossref_primary_10_3390_en13071852
crossref_primary_10_1016_j_apenergy_2024_123302
crossref_primary_10_3917_mav_137_0113
crossref_primary_10_1016_j_ins_2022_09_002
crossref_primary_10_1016_j_resourpol_2022_102780
crossref_primary_10_1109_ACCESS_2023_3239658
crossref_primary_10_1109_JESTIE_2023_3322122
crossref_primary_10_1155_2022_3216036
crossref_primary_10_1007_s00521_021_05903_0
crossref_primary_10_1109_ACCESS_2023_3243232
crossref_primary_10_1080_09537287_2024_2436464
crossref_primary_10_1016_j_jbi_2020_103564
crossref_primary_10_1007_s10614_021_10110_z
crossref_primary_10_1155_2022_4952215
crossref_primary_10_1007_s42524_025_4075_5
crossref_primary_10_3390_en15114003
crossref_primary_10_1155_2022_3741370
crossref_primary_10_1080_13683500_2020_1770705
crossref_primary_10_1016_j_aei_2020_101160
crossref_primary_10_1016_j_asoc_2021_107291
crossref_primary_10_1007_s10479_020_03701_w
crossref_primary_10_1108_JDQS_12_2024_0050
crossref_primary_10_1007_s10479_024_05821_z
crossref_primary_10_3389_fenrg_2021_707937
crossref_primary_10_1016_j_frl_2024_105789
crossref_primary_10_1016_j_eneco_2019_07_026
crossref_primary_10_1016_j_najef_2018_10_002
crossref_primary_10_1007_s12652_020_01960_w
crossref_primary_10_1016_j_eneco_2020_104721
crossref_primary_10_3390_en16124824
crossref_primary_10_1002_for_3174
crossref_primary_10_1016_j_eneco_2019_104648
crossref_primary_10_1016_j_energy_2018_01_007
crossref_primary_10_3390_su14127078
crossref_primary_10_1080_14697688_2022_2112065
crossref_primary_10_1016_j_heliyon_2024_e33387
crossref_primary_10_1016_j_resourpol_2023_103956
crossref_primary_10_1016_j_eswa_2024_124195
crossref_primary_10_1016_j_asoc_2021_108032
crossref_primary_10_1007_s00500_020_05390_w
crossref_primary_10_1007_s13042_019_00922_9
crossref_primary_10_3390_en15145206
crossref_primary_10_1016_j_eneco_2024_107609
crossref_primary_10_1016_j_engappai_2023_106408
crossref_primary_10_1007_s10479_025_06784_5
crossref_primary_10_1007_s42243_024_01198_2
crossref_primary_10_1186_s42162_021_00166_4
crossref_primary_10_1016_j_energy_2022_124684
crossref_primary_10_1016_j_knosys_2020_106669
crossref_primary_10_1016_j_asoc_2020_106181
crossref_primary_10_1007_s10462_022_10283_5
crossref_primary_10_3390_electronics12112521
crossref_primary_10_1016_j_energy_2018_04_175
crossref_primary_10_1016_j_enconman_2019_111799
crossref_primary_10_24136_oc_2023_032
crossref_primary_10_1016_j_eswa_2022_118658
crossref_primary_10_1016_j_energy_2020_117494
crossref_primary_10_1017_S0043933919000254
crossref_primary_10_1007_s10489_025_06275_x
crossref_primary_10_1016_j_procs_2019_06_115
crossref_primary_10_1186_s40537_024_00991_w
crossref_primary_10_1016_j_econlet_2024_112128
crossref_primary_10_1016_j_procs_2017_11_369
crossref_primary_10_3390_en14248494
crossref_primary_10_1016_j_aei_2021_101443
crossref_primary_10_3390_su152416725
crossref_primary_10_1016_j_neucom_2021_06_051
crossref_primary_10_1016_j_eneco_2021_105129
crossref_primary_10_1016_j_eneco_2018_08_010
crossref_primary_10_3390_en14154604
crossref_primary_10_1002_ese3_1666
crossref_primary_10_1016_j_eneco_2023_107106
crossref_primary_10_1108_IJESM_11_2021_0019
crossref_primary_10_1016_j_procs_2018_10_528
crossref_primary_10_1016_j_swevo_2025_101977
crossref_primary_10_1016_j_resourpol_2023_104438
crossref_primary_10_1016_j_procs_2018_10_526
crossref_primary_10_1016_j_compag_2024_109439
crossref_primary_10_1016_j_inffus_2023_101918
crossref_primary_10_3390_w14142221
crossref_primary_10_1016_j_dsm_2024_07_003
crossref_primary_10_3390_fi14090252
crossref_primary_10_1007_s10479_022_05004_8
crossref_primary_10_3390_math11030547
crossref_primary_10_3390_risks9030050
crossref_primary_10_1088_1742_6596_1703_1_012037
crossref_primary_10_2118_223621_PA
crossref_primary_10_1007_s42979_022_01195_w
crossref_primary_10_3390_s22010247
crossref_primary_10_1016_j_ejor_2019_11_007
crossref_primary_10_1007_s10586_024_04684_0
crossref_primary_10_1080_15567249_2022_2083728
crossref_primary_10_1016_j_asoc_2023_110865
crossref_primary_10_3390_app15094669
crossref_primary_10_1177_13548166211025160
crossref_primary_10_1007_s40745_020_00256_2
crossref_primary_10_1016_j_procs_2022_11_295
crossref_primary_10_1016_j_scitotenv_2020_142052
crossref_primary_10_1007_s10479_023_05810_8
crossref_primary_10_1016_j_energy_2024_131185
crossref_primary_10_1016_j_resourpol_2022_102956
crossref_primary_10_1016_j_resourpol_2023_104060
crossref_primary_10_1007_s10614_024_10550_3
crossref_primary_10_1016_j_eneco_2021_105500
crossref_primary_10_1016_j_jclepro_2018_03_066
crossref_primary_10_3390_math11081785
crossref_primary_10_1016_j_eneco_2023_107129
crossref_primary_10_1016_j_procs_2019_12_032
crossref_primary_10_1016_j_asoc_2019_105553
crossref_primary_10_1016_j_petrol_2020_107013
crossref_primary_10_1016_j_apenergy_2023_122069
crossref_primary_10_1016_j_apenergy_2018_03_148
crossref_primary_10_1016_j_eswa_2023_121117
crossref_primary_10_1007_s00521_021_06621_3
crossref_primary_10_1088_1757_899X_864_1_012094
crossref_primary_10_1002_fut_22367
crossref_primary_10_1007_s00521_019_04212_x
crossref_primary_10_1016_j_frl_2020_101755
crossref_primary_10_1109_ACCESS_2021_3124802
crossref_primary_10_1080_23249935_2019_1692956
crossref_primary_10_3390_en14113308
crossref_primary_10_1007_s10479_022_05070_y
crossref_primary_10_1016_j_asoc_2020_106091
crossref_primary_10_1111_coin_12488
crossref_primary_10_1007_s00521_020_05234_6
crossref_primary_10_1007_s00181_021_02093_5
crossref_primary_10_1016_j_energy_2024_133102
crossref_primary_10_1016_j_resourpol_2022_102737
crossref_primary_10_3390_jrfm15080350
crossref_primary_10_14267_VEZTUD_2022_01_06
crossref_primary_10_1016_j_ejor_2019_04_013
crossref_primary_10_1109_TCSS_2021_3084847
crossref_primary_10_1016_j_eneco_2023_106736
crossref_primary_10_1016_j_petrol_2021_110012
crossref_primary_10_1016_j_cor_2024_106831
crossref_primary_10_1080_00036846_2018_1564122
crossref_primary_10_1016_j_eneco_2020_104790
crossref_primary_10_1109_ACCESS_2023_3239924
crossref_primary_10_1016_j_eneco_2023_107266
crossref_primary_10_1016_j_asoc_2021_107693
crossref_primary_10_1016_j_irfa_2025_104124
crossref_primary_10_1109_ACCESS_2025_3561193
crossref_primary_10_1016_j_jcomm_2025_100478
crossref_primary_10_1016_j_asoc_2021_107699
crossref_primary_10_1155_2022_1265837
crossref_primary_10_3390_ijfs12020034
crossref_primary_10_1016_j_asoc_2020_106509
crossref_primary_10_1016_j_compbiomed_2019_04_034
crossref_primary_10_1016_j_eswa_2022_117580
crossref_primary_10_1016_j_techfore_2020_120126
crossref_primary_10_1016_j_ins_2024_121082
crossref_primary_10_1177_16878132221130573
crossref_primary_10_1016_j_eneco_2023_106960
crossref_primary_10_1016_j_eneco_2023_107136
crossref_primary_10_1016_j_infoecopol_2019_05_002
crossref_primary_10_1080_10293523_2024_2405294
crossref_primary_10_1016_j_asoc_2023_110302
crossref_primary_10_1016_j_petrol_2020_107240
crossref_primary_10_1016_j_asoc_2023_110548
crossref_primary_10_1016_j_procs_2019_11_252
crossref_primary_10_3390_s20154220
Cites_doi 10.5547/ISSN0195-6574-EJ-Vol27-No4-4
10.1016/j.eswa.2013.12.011
10.1016/j.apenergy.2015.01.005
10.1561/2200000006
10.1162/neco.2006.18.7.1527
10.1016/j.econmod.2015.12.014
10.1016/j.dss.2012.11.009
10.1016/B978-0-444-53683-9.00008-6
10.1093/biomet/75.2.335
10.1016/j.eneco.2014.09.019
10.1257/jep.30.1.139
10.1016/j.eneco.2016.09.020
10.1126/science.1127647
10.1111/j.1468-2354.2012.00704.x
10.1038/nature14539
10.1287/mnsc.2015.2389
10.1111/1468-0262.00152
10.1016/j.apenergy.2014.12.045
10.1016/j.iref.2013.01.001
10.1198/073500105000000063
10.1016/j.eswa.2009.10.012
10.1007/BF00058655
10.1016/j.enpol.2005.03.017
10.1016/j.eneco.2011.07.018
10.1016/j.ijforecast.2015.02.006
10.1080/07350015.1998.10524759
10.1016/j.eneco.2008.05.003
10.1080/07350015.1995.10524599
10.1016/j.eneco.2009.01.006
10.1016/j.eneco.2009.11.003
10.1016/j.eswa.2007.01.009
10.1016/j.enpol.2013.12.049
10.1016/j.eneco.2016.02.017
10.1016/j.eneco.2013.07.028
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright Elsevier Science Ltd. Aug 2017
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Aug 2017
DBID AAYXX
CITATION
7ST
7TA
7TQ
8BJ
8FD
C1K
DHY
DON
FQK
JBE
JG9
SOI
DOI 10.1016/j.eneco.2017.05.023
DatabaseName CrossRef
Environment Abstracts
Materials Business File
PAIS Index
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Environmental Sciences and Pollution Management
PAIS International
PAIS International (Ovid)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
Materials Research Database
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
PAIS International
Environment Abstracts
Materials Business File
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Economics
EISSN 1873-6181
EndPage 16
ExternalDocumentID 10_1016_j_eneco_2017_05_023
S0140988317301871
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFFL
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAPFB
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACHQT
ACIWK
ACRLP
ACROA
ADBBV
ADEZE
ADFHU
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AEYQN
AFKWA
AFODL
AFRAH
AFTJW
AGHFR
AGTHC
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIIAU
AIKHN
AITUG
AJBFU
AJOXV
AJWLA
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AXLSJ
AZFZN
BEHZQ
BELTK
BEZPJ
BGSCR
BKOJK
BKOMP
BLXMC
BNTGB
BPUDD
BULVW
BZJEE
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMB
HVGLF
HZ~
IHE
IXIXF
J1W
JARJE
KOM
KZ1
LY5
LY6
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SAC
SCC
SDF
SDG
SDP
SEB
SEE
SES
SEW
SPC
SPCBC
SSB
SSF
SSR
SSZ
T5K
TN5
U5U
WH7
WUQ
YK3
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADMHG
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7ST
7TA
7TQ
8BJ
8FD
C1K
DHY
DON
FQK
JBE
JG9
SOI
ID FETCH-LOGICAL-c396t-f465f3d82e45b9e893475dbc767286e41b0551595d9efee0056bfe74ea4125283
ISICitedReferencesCount 262
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000412033900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0140-9883
IngestDate Mon Nov 10 01:00:27 EST 2025
Sat Nov 29 02:54:29 EST 2025
Tue Nov 18 21:48:12 EST 2025
Fri Feb 23 02:34:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords C53
Deep learning
C52
C63
Crude oil price forecasting
C45
Q47
Stacked denoising autoencoder
E37
Ensemble learning
Bagging
Multivariate forecasting
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c396t-f465f3d82e45b9e893475dbc767286e41b0551595d9efee0056bfe74ea4125283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1963430068
PQPubID 32146
PageCount 8
ParticipantIDs proquest_journals_1963430068
crossref_citationtrail_10_1016_j_eneco_2017_05_023
crossref_primary_10_1016_j_eneco_2017_05_023
elsevier_sciencedirect_doi_10_1016_j_eneco_2017_05_023
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Energy economics
PublicationYear 2017
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Mostafa, El-Masry (bb0150) 2016; 54
Ng (bb0165) 2011
Bengio (bb0015) 2009; 2
Alquist, Kilian, Vigfusson (bb0005) 2013
Hansen (bb0090) 2005; 23
Naifar, Al Dohaiman (bb0155) 2013; 27
Xie, Yu, Xu, Wang (bb0200) 2006
Gabralla, Jammazi, Abraham (bb0060) 2013
White (bb0195) 2000; 68
LeCun, Bengio, Hinton (bb0140) 2015; 521
Naser (bb0160) 2016; 56
Yu, Zhao, Tang (bb0230) 2016
Diebold, Mariano (bb0045) 1995; 13
Grushka-Cockayne, Jose, Lichtendahl (bb0085) 2017; 63
Hastie, Tibshirani, Friedman (bb0100) 2009
Yu, Wang, Lai (bb0220) 2008; 30
Baumeister, Kilian (bb0010) 2016; 30
Chiroma, Abdulkareem, Herawan (bb0040) 2015; 142
Hinton, Salakhutdinov (bb0105) 2006; 313
Vincent, Larochelle, Bengio, Manzagol (bb0180) 2008
Ye, Zyren, Shore (bb0210) 2006; 34
Brooks (bb0035) 2014
Shin, Hou, Park, Park, Choi (bb0175) 2013; 55
Harvey, Leybourne, Newbold (bb0095) 1998; 16
Zagaglia (bb0235) 2010; 32
Moshiri, Foroutan (bb0145) 2006; 27
Breiman (bb0030) 1996
Efron, Tibshirani (bb0055) 1993
Wang, Wu, Yang (bb0190) 2016; 32
Goodfellow, Bengio, Courville (bb0080) 2016
Gibbons, Chakraborti (bb0070) 2011
Hinton, Osindero, Teh (bb0110) 2006; 18
Drachal (bb0050) 2016; 60
Kim, Kang (bb0125) 2010; 37
Koop, Korobilis (bb0130) 2012; 53
Jammazi, Aloui (bb0115) 2012; 34
Kourentzes, Barrow, Crone (bb0135) 2014; 41
Godarzi, Amiri, Talaei, Jamasb (bb0075) 2014; 68
Zhang, Zhang (bb0240) 2015; 143
Ghaffari, Zare (bb0065) 2009; 31
Yu, Wang, Lai (bb0215) 2008; 34
Peter, Perron (bb0170) 1988; 75
Breiman (bb0025) 1996; 24
Kaboudan (bb0120) 2001
Vincent, Larochelle, Lajoie, Bengio, Manzagol (bb0185) 2010; 11
Xiong, Bao, Hu (bb0205) 2013; 40
Yu, Zhao, Tang (bb0225) 2014; 46
Bengio (bb0020) 2013
Grushka-Cockayne (10.1016/j.eneco.2017.05.023_bb0085) 2017; 63
Drachal (10.1016/j.eneco.2017.05.023_bb0050) 2016; 60
Breiman (10.1016/j.eneco.2017.05.023_bb0030) 1996
Gabralla (10.1016/j.eneco.2017.05.023_bb0060) 2013
Yu (10.1016/j.eneco.2017.05.023_bb0215) 2008; 34
Naser (10.1016/j.eneco.2017.05.023_bb0160) 2016; 56
Koop (10.1016/j.eneco.2017.05.023_bb0130) 2012; 53
Kaboudan (10.1016/j.eneco.2017.05.023_bb0120) 2001
Brooks (10.1016/j.eneco.2017.05.023_bb0035) 2014
LeCun (10.1016/j.eneco.2017.05.023_bb0140) 2015; 521
Breiman (10.1016/j.eneco.2017.05.023_bb0025) 1996; 24
Efron (10.1016/j.eneco.2017.05.023_bb0055) 1993
Hastie (10.1016/j.eneco.2017.05.023_bb0100) 2009
Hinton (10.1016/j.eneco.2017.05.023_bb0105) 2006; 313
Xiong (10.1016/j.eneco.2017.05.023_bb0205) 2013; 40
Godarzi (10.1016/j.eneco.2017.05.023_bb0075) 2014; 68
Mostafa (10.1016/j.eneco.2017.05.023_bb0150) 2016; 54
Vincent (10.1016/j.eneco.2017.05.023_bb0185) 2010; 11
Yu (10.1016/j.eneco.2017.05.023_bb0230) 2016
Diebold (10.1016/j.eneco.2017.05.023_bb0045) 1995; 13
Xie (10.1016/j.eneco.2017.05.023_bb0200) 2006
Bengio (10.1016/j.eneco.2017.05.023_bb0015) 2009; 2
Moshiri (10.1016/j.eneco.2017.05.023_bb0145) 2006; 27
Gibbons (10.1016/j.eneco.2017.05.023_bb0070) 2011
Wang (10.1016/j.eneco.2017.05.023_bb0190) 2016; 32
Peter (10.1016/j.eneco.2017.05.023_bb0170) 1988; 75
White (10.1016/j.eneco.2017.05.023_bb0195) 2000; 68
Shin (10.1016/j.eneco.2017.05.023_bb0175) 2013; 55
Naifar (10.1016/j.eneco.2017.05.023_bb0155) 2013; 27
Bengio (10.1016/j.eneco.2017.05.023_bb0020) 2013
Ye (10.1016/j.eneco.2017.05.023_bb0210) 2006; 34
Chiroma (10.1016/j.eneco.2017.05.023_bb0040) 2015; 142
Yu (10.1016/j.eneco.2017.05.023_bb0220) 2008; 30
Zagaglia (10.1016/j.eneco.2017.05.023_bb0235) 2010; 32
Yu (10.1016/j.eneco.2017.05.023_bb0225) 2014; 46
Goodfellow (10.1016/j.eneco.2017.05.023_bb0080) 2016
Zhang (10.1016/j.eneco.2017.05.023_bb0240) 2015; 143
Ng (10.1016/j.eneco.2017.05.023_bb0165) 2011
Hansen (10.1016/j.eneco.2017.05.023_bb0090) 2005; 23
Harvey (10.1016/j.eneco.2017.05.023_bb0095) 1998; 16
Vincent (10.1016/j.eneco.2017.05.023_bb0180) 2008
Hinton (10.1016/j.eneco.2017.05.023_bb0110) 2006; 18
Kim (10.1016/j.eneco.2017.05.023_bb0125) 2010; 37
Alquist (10.1016/j.eneco.2017.05.023_bb0005) 2013
Baumeister (10.1016/j.eneco.2017.05.023_bb0010) 2016; 30
Ghaffari (10.1016/j.eneco.2017.05.023_bb0065) 2009; 31
Jammazi (10.1016/j.eneco.2017.05.023_bb0115) 2012; 34
Kourentzes (10.1016/j.eneco.2017.05.023_bb0135) 2014; 41
References_xml – volume: 13
  start-page: 253
  year: 1995
  end-page: 263
  ident: bb0045
  article-title: Comparing predictive accuracy
  publication-title: J. Bus. Econ. Stat.
– start-page: 444
  year: 2006
  end-page: 451
  ident: bb0200
  article-title: A new method for crude oil price forecasting based on support vector machines
  publication-title: Computational Science – ICCS 2006: 6th International Conference, Reading, UK, May 28–31, 2006, Proceedings, Part IV
– volume: 30
  start-page: 2623
  year: 2008
  end-page: 2635
  ident: bb0220
  article-title: Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm
  publication-title: Energy Econ.
– volume: 55
  start-page: 348
  year: 2013
  end-page: 358
  ident: bb0175
  article-title: Prediction of movement direction in crude oil prices based on semi-supervised learning
  publication-title: Decis. Support. Syst.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: bb0105
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 34
  start-page: 2736
  year: 2006
  end-page: 2743
  ident: bb0210
  article-title: Forecasting short-run crude oil price using high- and low-inventory variables
  publication-title: Energ Policy
– start-page: 283
  year: 2001
  end-page: 287
  ident: bb0120
  article-title: Compumetric forecasting of crude oil prices
  publication-title: IEEE C Evol. Comput.
– volume: 34
  start-page: 1434
  year: 2008
  end-page: 1444
  ident: bb0215
  article-title: Credit risk assessment with a multistage neural network ensemble learning approach
  publication-title: Expert Syst. Appl.
– start-page: 1096
  year: 2008
  end-page: 1103
  ident: bb0180
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: Proceedings of the 25th International Conference on Machine Learning
– volume: 60
  start-page: 35
  year: 2016
  end-page: 46
  ident: bb0050
  article-title: Forecasting spot oil price in a dynamic model averaging framework — have the determinants changed over time?
  publication-title: Energy Econ.
– start-page: 674
  year: 2013
  end-page: 679
  ident: bb0060
  article-title: Oil price prediction using ensemble machine learning
  publication-title: Computing, Electrical and Electronics Engineering (ICCEEE), 2013 International Conference on
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: bb0110
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– volume: 27
  start-page: 81
  year: 2006
  end-page: 95
  ident: bb0145
  article-title: Forecasting nonlinear crude oil futures prices
  publication-title: Energy J.
– volume: 68
  start-page: 1097
  year: 2000
  end-page: 1126
  ident: bb0195
  article-title: A reality check for data snooping
  publication-title: Econometrica
– volume: 32
  start-page: 1
  year: 2016
  end-page: 9
  ident: bb0190
  article-title: Forecasting crude oil market volatility: a Markov switching multifractal volatility approach
  publication-title: Int. J. Forecast.
– volume: 68
  start-page: 371
  year: 2014
  end-page: 382
  ident: bb0075
  article-title: Predicting oil price movements: a dynamic artificial neural network approach
  publication-title: Energ Policy
– volume: 53
  start-page: 867
  year: 2012
  end-page: 886
  ident: bb0130
  article-title: Forecasting inflation using dynamic model averaging*
  publication-title: Int. Econ. Rev.
– volume: 142
  start-page: 266
  year: 2015
  end-page: 273
  ident: bb0040
  article-title: Evolutionary neural network model for West Texas intermediate crude oil price prediction
  publication-title: Appl. Energy
– volume: 37
  start-page: 3373
  year: 2010
  end-page: 3379
  ident: bb0125
  article-title: Ensemble with neural networks for bankruptcy prediction
  publication-title: Expert Syst. Appl.
– start-page: 389
  year: 2009
  end-page: 416
  ident: bb0100
  article-title: Neural Networks, The Elements of Statistical Learning: Data Mining, Inference, and Prediction
– volume: 54
  start-page: 40
  year: 2016
  end-page: 53
  ident: bb0150
  article-title: Oil price forecasting using gene expression programming and artificial neural networks
  publication-title: Econ. Model.
– year: 2014
  ident: bb0035
  article-title: Introductory Econometrics for Finance
– start-page: 1
  year: 2011
  end-page: 19
  ident: bb0165
  article-title: Sparse autoencoder
  publication-title: CS294A Lecture notes 72
– start-page: 2350
  year: 1996
  end-page: 2383
  ident: bb0030
  article-title: Heuristics of Instability and Stabilization in Model Selection
– volume: 40
  start-page: 405
  year: 2013
  end-page: 415
  ident: bb0205
  article-title: Beyond one-step-ahead forecasting: evaluation of alternative multi-step-ahead forecasting models for crude oil prices
  publication-title: Energy Econ.
– year: 1993
  ident: bb0055
  article-title: An Introduction to the Bootstrap
– start-page: 977
  year: 2011
  end-page: 979
  ident: bb0070
  article-title: Nonparametric statistical inference
  publication-title: International Encyclopedia of Statistical Science
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: bb0025
  article-title: Bagging predictors
  publication-title: Mach. Learn.
– volume: 31
  start-page: 531
  year: 2009
  end-page: 536
  ident: bb0065
  article-title: A novel algorithm for prediction of crude oil price variation based on soft computing
  publication-title: Energy Econ.
– start-page: 1
  year: 2013
  end-page: 37
  ident: bb0020
  article-title: Deep learning of representations: looking forward
  publication-title: Statistical Language and Speech Processing: First International Conference, SLSP 2013, Tarragona, Spain, July 29–31, 2013. Proceedings
– volume: 56
  start-page: 75
  year: 2016
  end-page: 87
  ident: bb0160
  article-title: Estimating and forecasting the real prices of crude oil: a data rich model using a dynamic model averaging (DMA) approach
  publication-title: Energy Econ.
– year: 2016
  ident: bb0230
  article-title: Ensemble forecasting for complex time series using sparse representation and neural networks
  publication-title: J. Forecast.
– volume: 63
  start-page: 1110
  year: 2017
  end-page: 1130
  ident: bb0085
  article-title: Ensembles of overfit and overconfident forecasts
  publication-title: Manag. Sci.
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: bb0185
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 30
  start-page: 139
  year: 2016
  end-page: 160
  ident: bb0010
  article-title: Forty years of oil price fluctuations: why the price of oil may still surprise us
  publication-title: J. Econ. Perspect.
– volume: 16
  start-page: 254
  year: 1998
  end-page: 259
  ident: bb0095
  article-title: Tests for forecast encompassing
  publication-title: J. Bus. Econ. Stat.
– volume: 32
  start-page: 409
  year: 2010
  end-page: 417
  ident: bb0235
  article-title: Macroeconomic factors and oil futures prices: a data-rich model
  publication-title: Energy Econ.
– volume: 75
  start-page: 335
  year: 1988
  end-page: 346
  ident: bb0170
  article-title: Testing for a unit root in time series regression
  publication-title: Biometrika
– start-page: 427
  year: 2013
  end-page: 507
  ident: bb0005
  article-title: Chapter 8 - forecasting the price of oil
  publication-title: Handbook of Economic Forecasting
– volume: 2
  start-page: 1
  year: 2009
  end-page: 127
  ident: bb0015
  article-title: Learning deep architectures for AI. Found
  publication-title: Trends Mach. Learn.
– volume: 46
  start-page: 236
  year: 2014
  end-page: 245
  ident: bb0225
  article-title: A compressed sensing based AI learning paradigm for crude oil price forecasting
  publication-title: Energy Econ.
– volume: 23
  start-page: 365
  year: 2005
  end-page: 380
  ident: bb0090
  article-title: A test for superior predictive ability
  publication-title: J. Bus. Econ. Stat.
– volume: 34
  start-page: 828
  year: 2012
  end-page: 841
  ident: bb0115
  article-title: Crude oil price forecasting: experimental evidence from wavelet decomposition and neural network modeling
  publication-title: Energy Econ.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bb0140
  article-title: Deep learning
  publication-title: Nature
– volume: 41
  start-page: 4235
  year: 2014
  end-page: 4244
  ident: bb0135
  article-title: Neural network ensemble operators for time series forecasting
  publication-title: Expert Syst. Appl.
– volume: 27
  start-page: 416
  year: 2013
  end-page: 431
  ident: bb0155
  article-title: Nonlinear analysis among crude oil prices, stock markets' return and macroeconomic variables
  publication-title: Int. Rev. Econ. Financ.
– year: 2016
  ident: bb0080
  article-title: Deep Learning
– volume: 143
  start-page: 96
  year: 2015
  end-page: 109
  ident: bb0240
  article-title: Interpreting the crude oil price movements: evidence from the Markov regime switching model
  publication-title: Appl. Energy
– volume: 27
  start-page: 81
  year: 2006
  ident: 10.1016/j.eneco.2017.05.023_bb0145
  article-title: Forecasting nonlinear crude oil futures prices
  publication-title: Energy J.
  doi: 10.5547/ISSN0195-6574-EJ-Vol27-No4-4
– start-page: 283
  year: 2001
  ident: 10.1016/j.eneco.2017.05.023_bb0120
  article-title: Compumetric forecasting of crude oil prices
  publication-title: IEEE C Evol. Comput.
– start-page: 1096
  year: 2008
  ident: 10.1016/j.eneco.2017.05.023_bb0180
  article-title: Extracting and composing robust features with denoising autoencoders
– start-page: 977
  year: 2011
  ident: 10.1016/j.eneco.2017.05.023_bb0070
  article-title: Nonparametric statistical inference
– volume: 41
  start-page: 4235
  year: 2014
  ident: 10.1016/j.eneco.2017.05.023_bb0135
  article-title: Neural network ensemble operators for time series forecasting
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.12.011
– volume: 143
  start-page: 96
  year: 2015
  ident: 10.1016/j.eneco.2017.05.023_bb0240
  article-title: Interpreting the crude oil price movements: evidence from the Markov regime switching model
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.01.005
– volume: 2
  start-page: 1
  year: 2009
  ident: 10.1016/j.eneco.2017.05.023_bb0015
  article-title: Learning deep architectures for AI. Found
  publication-title: Trends Mach. Learn.
  doi: 10.1561/2200000006
– volume: 18
  start-page: 1527
  year: 2006
  ident: 10.1016/j.eneco.2017.05.023_bb0110
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 54
  start-page: 40
  year: 2016
  ident: 10.1016/j.eneco.2017.05.023_bb0150
  article-title: Oil price forecasting using gene expression programming and artificial neural networks
  publication-title: Econ. Model.
  doi: 10.1016/j.econmod.2015.12.014
– volume: 55
  start-page: 348
  year: 2013
  ident: 10.1016/j.eneco.2017.05.023_bb0175
  article-title: Prediction of movement direction in crude oil prices based on semi-supervised learning
  publication-title: Decis. Support. Syst.
  doi: 10.1016/j.dss.2012.11.009
– start-page: 427
  year: 2013
  ident: 10.1016/j.eneco.2017.05.023_bb0005
  article-title: Chapter 8 - forecasting the price of oil
  doi: 10.1016/B978-0-444-53683-9.00008-6
– volume: 75
  start-page: 335
  year: 1988
  ident: 10.1016/j.eneco.2017.05.023_bb0170
  article-title: Testing for a unit root in time series regression
  publication-title: Biometrika
  doi: 10.1093/biomet/75.2.335
– volume: 46
  start-page: 236
  year: 2014
  ident: 10.1016/j.eneco.2017.05.023_bb0225
  article-title: A compressed sensing based AI learning paradigm for crude oil price forecasting
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2014.09.019
– volume: 30
  start-page: 139
  year: 2016
  ident: 10.1016/j.eneco.2017.05.023_bb0010
  article-title: Forty years of oil price fluctuations: why the price of oil may still surprise us
  publication-title: J. Econ. Perspect.
  doi: 10.1257/jep.30.1.139
– volume: 60
  start-page: 35
  year: 2016
  ident: 10.1016/j.eneco.2017.05.023_bb0050
  article-title: Forecasting spot oil price in a dynamic model averaging framework — have the determinants changed over time?
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2016.09.020
– volume: 313
  start-page: 504
  year: 2006
  ident: 10.1016/j.eneco.2017.05.023_bb0105
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– year: 2014
  ident: 10.1016/j.eneco.2017.05.023_bb0035
– year: 1993
  ident: 10.1016/j.eneco.2017.05.023_bb0055
– volume: 53
  start-page: 867
  year: 2012
  ident: 10.1016/j.eneco.2017.05.023_bb0130
  article-title: Forecasting inflation using dynamic model averaging*
  publication-title: Int. Econ. Rev.
  doi: 10.1111/j.1468-2354.2012.00704.x
– year: 2016
  ident: 10.1016/j.eneco.2017.05.023_bb0080
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.eneco.2017.05.023_bb0140
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 11
  start-page: 3371
  year: 2010
  ident: 10.1016/j.eneco.2017.05.023_bb0185
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 63
  start-page: 1110
  year: 2017
  ident: 10.1016/j.eneco.2017.05.023_bb0085
  article-title: Ensembles of overfit and overconfident forecasts
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.2015.2389
– volume: 68
  start-page: 1097
  year: 2000
  ident: 10.1016/j.eneco.2017.05.023_bb0195
  article-title: A reality check for data snooping
  publication-title: Econometrica
  doi: 10.1111/1468-0262.00152
– volume: 142
  start-page: 266
  year: 2015
  ident: 10.1016/j.eneco.2017.05.023_bb0040
  article-title: Evolutionary neural network model for West Texas intermediate crude oil price prediction
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.12.045
– volume: 27
  start-page: 416
  year: 2013
  ident: 10.1016/j.eneco.2017.05.023_bb0155
  article-title: Nonlinear analysis among crude oil prices, stock markets' return and macroeconomic variables
  publication-title: Int. Rev. Econ. Financ.
  doi: 10.1016/j.iref.2013.01.001
– volume: 23
  start-page: 365
  year: 2005
  ident: 10.1016/j.eneco.2017.05.023_bb0090
  article-title: A test for superior predictive ability
  publication-title: J. Bus. Econ. Stat.
  doi: 10.1198/073500105000000063
– volume: 37
  start-page: 3373
  year: 2010
  ident: 10.1016/j.eneco.2017.05.023_bb0125
  article-title: Ensemble with neural networks for bankruptcy prediction
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.10.012
– volume: 24
  start-page: 123
  year: 1996
  ident: 10.1016/j.eneco.2017.05.023_bb0025
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1007/BF00058655
– volume: 34
  start-page: 2736
  year: 2006
  ident: 10.1016/j.eneco.2017.05.023_bb0210
  article-title: Forecasting short-run crude oil price using high- and low-inventory variables
  publication-title: Energ Policy
  doi: 10.1016/j.enpol.2005.03.017
– volume: 34
  start-page: 828
  year: 2012
  ident: 10.1016/j.eneco.2017.05.023_bb0115
  article-title: Crude oil price forecasting: experimental evidence from wavelet decomposition and neural network modeling
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2011.07.018
– volume: 32
  start-page: 1
  year: 2016
  ident: 10.1016/j.eneco.2017.05.023_bb0190
  article-title: Forecasting crude oil market volatility: a Markov switching multifractal volatility approach
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2015.02.006
– start-page: 1
  year: 2011
  ident: 10.1016/j.eneco.2017.05.023_bb0165
  article-title: Sparse autoencoder
– volume: 16
  start-page: 254
  year: 1998
  ident: 10.1016/j.eneco.2017.05.023_bb0095
  article-title: Tests for forecast encompassing
  publication-title: J. Bus. Econ. Stat.
  doi: 10.1080/07350015.1998.10524759
– start-page: 1
  year: 2013
  ident: 10.1016/j.eneco.2017.05.023_bb0020
  article-title: Deep learning of representations: looking forward
– volume: 30
  start-page: 2623
  year: 2008
  ident: 10.1016/j.eneco.2017.05.023_bb0220
  article-title: Forecasting crude oil price with an EMD-based neural network ensemble learning paradigm
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2008.05.003
– volume: 13
  start-page: 253
  year: 1995
  ident: 10.1016/j.eneco.2017.05.023_bb0045
  article-title: Comparing predictive accuracy
  publication-title: J. Bus. Econ. Stat.
  doi: 10.1080/07350015.1995.10524599
– volume: 31
  start-page: 531
  year: 2009
  ident: 10.1016/j.eneco.2017.05.023_bb0065
  article-title: A novel algorithm for prediction of crude oil price variation based on soft computing
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2009.01.006
– year: 2016
  ident: 10.1016/j.eneco.2017.05.023_bb0230
  article-title: Ensemble forecasting for complex time series using sparse representation and neural networks
  publication-title: J. Forecast.
– start-page: 444
  year: 2006
  ident: 10.1016/j.eneco.2017.05.023_bb0200
  article-title: A new method for crude oil price forecasting based on support vector machines
– volume: 32
  start-page: 409
  year: 2010
  ident: 10.1016/j.eneco.2017.05.023_bb0235
  article-title: Macroeconomic factors and oil futures prices: a data-rich model
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2009.11.003
– start-page: 2350
  year: 1996
  ident: 10.1016/j.eneco.2017.05.023_bb0030
– volume: 34
  start-page: 1434
  year: 2008
  ident: 10.1016/j.eneco.2017.05.023_bb0215
  article-title: Credit risk assessment with a multistage neural network ensemble learning approach
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.01.009
– start-page: 674
  year: 2013
  ident: 10.1016/j.eneco.2017.05.023_bb0060
  article-title: Oil price prediction using ensemble machine learning
– volume: 68
  start-page: 371
  year: 2014
  ident: 10.1016/j.eneco.2017.05.023_bb0075
  article-title: Predicting oil price movements: a dynamic artificial neural network approach
  publication-title: Energ Policy
  doi: 10.1016/j.enpol.2013.12.049
– start-page: 389
  year: 2009
  ident: 10.1016/j.eneco.2017.05.023_bb0100
– volume: 56
  start-page: 75
  year: 2016
  ident: 10.1016/j.eneco.2017.05.023_bb0160
  article-title: Estimating and forecasting the real prices of crude oil: a data rich model using a dynamic model averaging (DMA) approach
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2016.02.017
– volume: 40
  start-page: 405
  year: 2013
  ident: 10.1016/j.eneco.2017.05.023_bb0205
  article-title: Beyond one-step-ahead forecasting: evaluation of alternative multi-step-ahead forecasting models for crude oil prices
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2013.07.028
SSID ssj0005658
Score 2.6125581
Snippet As crude oil price is influenced by numerous factors, capturing its behavior precisely is quite challenging, and thus leads to the difficulty of forecasting....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9
SubjectTerms Artificial neural networks
Bagging
Cognitive style
Crude oil
Crude oil price forecasting
Crude oil prices
Data analysis
Datasets
Deep learning
Denoising
Energy economics
Ensemble learning
Forecasting
Mathematical models
Multivariate forecasting
Networks
Neural networks
Noise reduction
Petroleum
Stacked denoising autoencoder
Studies
Training
Title A deep learning ensemble approach for crude oil price forecasting
URI https://dx.doi.org/10.1016/j.eneco.2017.05.023
https://www.proquest.com/docview/1963430068
Volume 66
WOSCitedRecordID wos000412033900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6181
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005658
  issn: 0140-9883
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbpNBeSp80bVp06G3rsrZly7oETEhIQgk9pGXTi5DlcbNh65h9hPz8jF7ebUKX5tCLWYQtvPrkmW_EfDOEfGKxinXKVSRM-UemWBqpjFURq4DHDVJ0bdv5_PjKT0-L8Vh8Gwz2ghbmesrbtri5Ed1_hRrHEGwjnX0A3P2kOIC_EXS8Iux4_Sfgy2EN0IV2EL-GGKfCb6OPCuXDbWahni1rGF5NpsPOlBUyY6DVfBE8WTisd9JA8PLlnoD_vFD2jPVc-ftNTo9NDDjB_dZNVqPnSxv6g9-F_oABnVZIb1udOY4iUbh-M8Fo5utWT6y5T6ecvGeY3RnB5Rc04NpoLmNXMNVpjf8sg33HPfVJgyEf7VLaSaSZRI4yiZM8ItsJzwRate3y-GB8skryyW2H1v4vhLpTNsPv3rv8jZvc8dKWepw9J898zEBLh_ULMoD2JXkSJOXzV6QsqcGcBsxpwJwGzCniSy3mFDGnFnO6hvlr8v3w4Gz_KPK9MSKdinwRNSzPmrQuEmBZJQBZJ-NZXWme86TIgcXVKDNUNasFNABmJaoGOAPFkNIip3xDttqrFt4SyjRg2N3EqsHguk4TUTMQgKFuo4AlKt4hSVgVqX3heNO_ZCo3ILJDPvcPda5uyubb87Dc0lM_R-kkbqDND-4GcKT_COfSeBWWGvXTu4e9xnvydPUF7JKtxWwJH8hjfb2YzGcf_ea6BWmjgwM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+ensemble+approach+for+crude+oil+price+forecasting&rft.jtitle=Energy+economics&rft.au=Zhao%2C+Yang&rft.au=Li%2C+Jianping&rft.au=Yu%2C+Lean&rft.date=2017-08-01&rft.issn=0140-9883&rft.volume=66&rft.spage=9&rft.epage=16&rft_id=info:doi/10.1016%2Fj.eneco.2017.05.023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eneco_2017_05_023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-9883&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-9883&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-9883&client=summon