A rapid learning algorithm for vehicle classification

•A fast learning algorithm is introduced for real-time vehicle classification.•A fast feature selection method for AdaBoost is presented by combining a sample’s feature value with its class label.•A rapid incremental learning algorithm of AdaBoost is designed. AdaBoost is a popular method for vehicl...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information sciences Ročník 295; s. 395 - 406
Hlavní autoři: Wen, Xuezhi, Shao, Ling, Xue, Yu, Fang, Wei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 20.02.2015
Témata:
ISSN:0020-0255
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A fast learning algorithm is introduced for real-time vehicle classification.•A fast feature selection method for AdaBoost is presented by combining a sample’s feature value with its class label.•A rapid incremental learning algorithm of AdaBoost is designed. AdaBoost is a popular method for vehicle detection, but the training process is quite time-consuming. In this paper, a rapid learning algorithm is proposed to tackle this weakness of AdaBoost for vehicle classification. Firstly, an algorithm for computing the Haar-like feature pool on a 32×32 grayscale image patch by using all simple and rotated Haar-like prototypes is introduced to represent a vehicle’s appearance. Then, a fast training approach for the weak classifier is presented by combining a sample’s feature value with its class label. Finally, a rapid incremental learning algorithm of AdaBoost is designed to significantly improve the performance of AdaBoost. Experimental results demonstrate that the proposed approaches not only speed up the training and incremental learning processes of AdaBoost, but also yield better or competitive vehicle classification accuracies compared with several state-of-the-art methods, showing their potential for real-time applications.
AbstractList AdaBoost is a popular method for vehicle detection, but the training process is quite time-consuming. In this paper, a rapid learning algorithm is proposed to tackle this weakness of AdaBoost for vehicle classification. Firstly, an algorithm for computing the Haar-like feature pool on a 3232 grayscale image patch by using all simple and rotated Haar-like prototypes is introduced to represent a vehicle's appearance. Then, a fast training approach for the weak classifier is presented by combining a sample's feature value with its class label. Finally, a rapid incremental learning algorithm of AdaBoost is designed to significantly improve the performance of AdaBoost. Experimental results demonstrate that the proposed approaches not only speed up the training and incremental learning processes of AdaBoost, but also yield better or competitive vehicle classification accuracies compared with several state-of-the-art methods, showing their potential for real-time applications.
•A fast learning algorithm is introduced for real-time vehicle classification.•A fast feature selection method for AdaBoost is presented by combining a sample’s feature value with its class label.•A rapid incremental learning algorithm of AdaBoost is designed. AdaBoost is a popular method for vehicle detection, but the training process is quite time-consuming. In this paper, a rapid learning algorithm is proposed to tackle this weakness of AdaBoost for vehicle classification. Firstly, an algorithm for computing the Haar-like feature pool on a 32×32 grayscale image patch by using all simple and rotated Haar-like prototypes is introduced to represent a vehicle’s appearance. Then, a fast training approach for the weak classifier is presented by combining a sample’s feature value with its class label. Finally, a rapid incremental learning algorithm of AdaBoost is designed to significantly improve the performance of AdaBoost. Experimental results demonstrate that the proposed approaches not only speed up the training and incremental learning processes of AdaBoost, but also yield better or competitive vehicle classification accuracies compared with several state-of-the-art methods, showing their potential for real-time applications.
Author Shao, Ling
Wen, Xuezhi
Xue, Yu
Fang, Wei
Author_xml – sequence: 1
  givenname: Xuezhi
  surname: Wen
  fullname: Wen, Xuezhi
  organization: Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information Science and Technology, Nanjing 210044, China
– sequence: 2
  givenname: Ling
  surname: Shao
  fullname: Shao, Ling
  email: ling.shao@ieee.org
  organization: Department of Computer Science and Digital Technologies, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
– sequence: 3
  givenname: Yu
  surname: Xue
  fullname: Xue, Yu
  organization: Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information Science and Technology, Nanjing 210044, China
– sequence: 4
  givenname: Wei
  surname: Fang
  fullname: Fang, Wei
  organization: Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information Science and Technology, Nanjing 210044, China
BookMark eNp9kD1PwzAQhj0UiRb4AWwZWRLOduIkYqoqvqRKLDBbxjm3V6V2sdNK_HtSysTQ6XSn9znpfWZs4oNHxm45FBy4ut8U5FMhgJfjXkAJEzYFEJCDqKpLNktpAwBlrdSUVfMsmh11WY8mevKrzPSrEGlYbzMXYnbANdkeM9ublMiRNQMFf80unOkT3vzNK_bx9Pi-eMmXb8-vi_kyt7JVQ-4Ed7WosEZRY4NOltiayrQOpVFlKTmvlLMCJFZcyk9bNqJuQDWmVrKTrZVX7O70dxfD1x7ToLeULPa98Rj2SXOlABohoRmj_BS1MaQU0eldpK2J35qDPmrRGz1q0Uctx9OoZWTqf4yl4bfgEA31Z8mHE4lj-wNh1MkSeosdRbSD7gKdoX8A31d_xg
CitedBy_id crossref_primary_10_1016_j_asoc_2016_08_056
crossref_primary_10_1016_j_knosys_2017_12_016
crossref_primary_10_1002_dac_3317
crossref_primary_10_1007_s00500_016_2163_5
crossref_primary_10_1109_TMC_2016_2591524
crossref_primary_10_32604_cmc_2021_015504
crossref_primary_10_1016_j_jvcir_2016_08_013
crossref_primary_10_1038_s41598_017_06201_3
crossref_primary_10_21595_jve_2016_16859
crossref_primary_10_1155_2016_4397061
crossref_primary_10_1007_s00500_016_2393_6
crossref_primary_10_1016_j_datak_2017_07_008
crossref_primary_10_1016_j_ins_2017_12_029
crossref_primary_10_1007_s11042_017_4830_7
crossref_primary_10_3390_e19010014
crossref_primary_10_1007_s00500_017_2759_4
crossref_primary_10_1007_s11704_016_5113_6
crossref_primary_10_1049_iet_cvi_2016_0426
crossref_primary_10_1155_2016_4374603
crossref_primary_10_1109_ACCESS_2025_3542507
crossref_primary_10_1007_s13042_016_0611_2
crossref_primary_10_1038_srep38367
crossref_primary_10_3390_met13050939
crossref_primary_10_1007_s12652_018_1096_5
crossref_primary_10_21595_jve_2016_17838
crossref_primary_10_1007_s11042_019_7444_4
crossref_primary_10_1007_s00500_016_2389_2
crossref_primary_10_1007_s00500_017_2531_9
crossref_primary_10_1007_s00521_017_2870_6
crossref_primary_10_1007_s13131_024_2363_2
crossref_primary_10_1016_j_adhoc_2016_11_001
crossref_primary_10_1371_journal_pone_0165496
crossref_primary_10_1007_s11042_024_18445_z
crossref_primary_10_1016_j_resconrec_2016_05_011
crossref_primary_10_1080_02331934_2017_1372438
crossref_primary_10_1016_j_neucom_2016_11_018
crossref_primary_10_1007_s00521_020_05392_7
crossref_primary_10_1007_s10462_017_9595_x
crossref_primary_10_1007_s12524_018_0875_y
crossref_primary_10_1109_TCBB_2017_2760832
crossref_primary_10_1016_j_ins_2017_11_001
crossref_primary_10_1007_s11042_016_4238_9
crossref_primary_10_1109_TNSE_2022_3184975
crossref_primary_10_1007_s00138_017_0846_2
crossref_primary_10_1016_j_vlsi_2016_01_004
crossref_primary_10_1016_j_jpdc_2017_06_006
crossref_primary_10_1007_s00521_017_2878_y
crossref_primary_10_1016_j_ins_2016_09_032
crossref_primary_10_1109_TMM_2017_2696825
crossref_primary_10_1109_TITS_2018_2838117
crossref_primary_10_1111_exsy_12340
crossref_primary_10_1007_s00500_017_2872_4
crossref_primary_10_1016_j_matpr_2022_03_691
crossref_primary_10_1049_iet_ipr_2016_0391
crossref_primary_10_1007_s00500_016_2372_y
crossref_primary_10_3233_JIFS_169017
crossref_primary_10_1007_s00500_016_2296_6
crossref_primary_10_1016_j_cose_2016_11_009
crossref_primary_10_1177_0016986219867483
crossref_primary_10_1109_ACCESS_2019_2894906
crossref_primary_10_1155_2021_6644861
crossref_primary_10_1007_s11042_017_5193_9
crossref_primary_10_1080_00207721_2018_1424964
crossref_primary_10_1007_s12293_016_0216_z
crossref_primary_10_1016_j_artmed_2016_09_002
crossref_primary_10_1016_j_electacta_2016_08_143
crossref_primary_10_1186_s13638_017_0815_5
crossref_primary_10_1109_JSEN_2022_3229030
crossref_primary_10_1007_s11042_016_4243_z
crossref_primary_10_1111_exsy_12233
crossref_primary_10_3390_s21227545
crossref_primary_10_1155_2017_4826206
crossref_primary_10_1016_j_ins_2016_10_025
crossref_primary_10_1007_s00500_017_2604_9
crossref_primary_10_1007_s11042_016_4289_y
crossref_primary_10_1007_s00521_016_2620_1
crossref_primary_10_1016_j_ins_2016_01_004
crossref_primary_10_1061_JTEPBS_TEENG_8751
crossref_primary_10_1109_ACCESS_2019_2928365
crossref_primary_10_1007_s00232_016_9935_9
crossref_primary_10_1038_s41598_017_15235_6
crossref_primary_10_1080_19427867_2016_1258972
crossref_primary_10_1007_s00500_017_2703_7
crossref_primary_10_1007_s12648_019_01551_2
crossref_primary_10_1049_itr2_12139
crossref_primary_10_1016_j_ins_2017_03_020
crossref_primary_10_1007_s10586_017_0796_5
crossref_primary_10_1007_s00500_016_2104_3
crossref_primary_10_3233_AIC_170739
crossref_primary_10_1016_j_aei_2024_102433
crossref_primary_10_1109_ACCESS_2018_2879328
crossref_primary_10_1016_j_future_2017_07_043
crossref_primary_10_1109_JSEN_2024_3498910
crossref_primary_10_1007_s00500_016_2334_4
crossref_primary_10_1007_s00500_017_2775_4
crossref_primary_10_3390_s17030642
crossref_primary_10_1002_sec_1393
crossref_primary_10_1016_j_sigpro_2016_11_013
crossref_primary_10_1016_j_neucom_2017_09_078
crossref_primary_10_1109_ACCESS_2016_2607841
crossref_primary_10_1109_TCBB_2016_2602872
crossref_primary_10_3390_s16071090
crossref_primary_10_1016_j_dsp_2017_02_009
crossref_primary_10_1155_2016_5182106
crossref_primary_10_1186_s10033_019_0325_y
crossref_primary_10_1186_s13634_016_0413_4
crossref_primary_10_1016_j_neucom_2015_11_033
crossref_primary_10_1109_TNSM_2023_3257993
crossref_primary_10_1155_2019_7482138
crossref_primary_10_1177_1550147716684842
crossref_primary_10_1109_TIP_2017_2651396
crossref_primary_10_1016_j_neucom_2016_02_070
crossref_primary_10_1016_j_neucom_2016_12_019
crossref_primary_10_1155_2017_5385708
crossref_primary_10_1016_j_future_2016_11_011
crossref_primary_10_1002_for_2856
crossref_primary_10_1007_s12559_016_9446_0
crossref_primary_10_1007_s11042_017_5262_0
crossref_primary_10_1007_s00500_016_2071_8
crossref_primary_10_1007_s12559_017_9449_5
crossref_primary_10_1080_19427867_2016_1252876
crossref_primary_10_1016_j_patrec_2017_07_001
crossref_primary_10_1007_s00521_016_2489_z
crossref_primary_10_1007_s11390_017_1751_x
crossref_primary_10_1002_ett_4427
crossref_primary_10_3233_JIFS_169107
crossref_primary_10_1002_cpe_3975
crossref_primary_10_1109_TMM_2016_2614187
crossref_primary_10_1016_j_neucom_2017_09_065
crossref_primary_10_3233_JIFS_169104
crossref_primary_10_1002_rnc_3734
crossref_primary_10_1007_s13042_017_0666_8
crossref_primary_10_1371_journal_pone_0138898
crossref_primary_10_1007_s00500_017_2513_y
crossref_primary_10_3390_s21134564
crossref_primary_10_5772_62157
crossref_primary_10_1007_s00500_017_2704_6
crossref_primary_10_1155_2017_7962828
crossref_primary_10_3390_s23177596
crossref_primary_10_1109_JIOT_2019_2915793
crossref_primary_10_1007_s00500_016_2116_z
crossref_primary_10_1007_s11280_016_0425_x
crossref_primary_10_1007_s00500_017_2813_2
crossref_primary_10_1155_2016_5483485
crossref_primary_10_1049_iet_bmt_2016_0097
crossref_primary_10_1016_j_neucom_2015_10_135
crossref_primary_10_1016_j_jbi_2017_02_007
crossref_primary_10_1002_asjc_1456
crossref_primary_10_1007_s12293_017_0224_7
crossref_primary_10_1007_s00500_016_2407_4
crossref_primary_10_1016_j_ins_2016_12_048
crossref_primary_10_1016_j_apsusc_2016_09_152
crossref_primary_10_3390_sym9100212
crossref_primary_10_3390_s16081314
crossref_primary_10_1080_01969722_2025_2545842
crossref_primary_10_1007_s00779_017_1055_8
crossref_primary_10_3390_a12110238
crossref_primary_10_21595_jve_2017_17654
crossref_primary_10_1080_01605682_2021_1952117
crossref_primary_10_1371_journal_pone_0162830
crossref_primary_10_1007_s11042_018_6622_0
crossref_primary_10_1016_j_ins_2017_02_017
crossref_primary_10_1371_journal_pone_0173297
crossref_primary_10_1007_s10462_021_10089_x
crossref_primary_10_1145_3379504
crossref_primary_10_3390_math7090767
crossref_primary_10_1109_TCDS_2016_2614675
crossref_primary_10_2478_pomr_2018_0016
crossref_primary_10_1007_s10586_017_1060_8
crossref_primary_10_1109_TBDATA_2017_2710347
crossref_primary_10_1177_0954406219845406
crossref_primary_10_1016_j_eswa_2016_09_003
crossref_primary_10_1007_s00500_016_2130_1
crossref_primary_10_1016_j_enconman_2016_08_052
crossref_primary_10_1080_19427867_2017_1386871
crossref_primary_10_1109_ACCESS_2017_2680437
crossref_primary_10_1016_j_ins_2016_08_049
crossref_primary_10_1109_JSAC_2017_2680998
crossref_primary_10_1109_MCOM_2016_1600621CM
crossref_primary_10_1007_s11042_016_3857_5
crossref_primary_10_1016_j_cogsys_2018_01_003
crossref_primary_10_1109_ACCESS_2019_2893320
crossref_primary_10_1109_TSMC_2016_2629509
crossref_primary_10_1007_s11042_016_4258_5
crossref_primary_10_21595_jve_2017_18052
crossref_primary_10_1155_2017_6310827
crossref_primary_10_1016_j_ins_2016_12_024
crossref_primary_10_1109_ACCESS_2016_2624558
crossref_primary_10_3390_info8030093
crossref_primary_10_1093_comjnl_bxx070
crossref_primary_10_1007_s13042_016_0627_7
crossref_primary_10_1016_j_rinam_2024_100531
crossref_primary_10_21595_jve_2017_17879
crossref_primary_10_1016_j_asoc_2017_08_050
crossref_primary_10_1007_s11704_017_6538_2
crossref_primary_10_1016_j_patcog_2017_02_010
crossref_primary_10_1093_comjnl_bxx077
crossref_primary_10_1109_JSYST_2016_2563519
crossref_primary_10_1155_2016_1358142
crossref_primary_10_1016_j_knosys_2017_06_035
crossref_primary_10_1007_s00500_018_3261_3
crossref_primary_10_1016_j_jcct_2018_04_010
crossref_primary_10_1109_JIOT_2017_2665339
crossref_primary_10_3390_su14010264
crossref_primary_10_1016_j_asoc_2018_02_022
crossref_primary_10_1007_s00138_022_01274_1
crossref_primary_10_1038_srep33870
crossref_primary_10_3390_s22134740
crossref_primary_10_1155_2017_5418978
crossref_primary_10_1016_j_ijleo_2019_163730
crossref_primary_10_1155_2017_5159690
crossref_primary_10_1177_1550147717743696
crossref_primary_10_1016_j_patcog_2016_04_013
crossref_primary_10_1016_j_im_2016_04_005
crossref_primary_10_1016_j_jenvman_2024_124001
crossref_primary_10_1109_TITS_2019_2906821
crossref_primary_10_1177_14759217221140645
crossref_primary_10_1007_s11042_017_4347_0
crossref_primary_10_1007_s11042_017_4639_4
crossref_primary_10_1016_j_ins_2017_02_043
crossref_primary_10_1016_j_neucom_2016_08_006
crossref_primary_10_1109_LGRS_2017_2683495
crossref_primary_10_1007_s12351_016_0251_z
crossref_primary_10_1109_JSEN_2023_3289230
crossref_primary_10_1016_j_image_2017_07_001
crossref_primary_10_1109_ACCESS_2016_2572206
crossref_primary_10_3390_s17030509
crossref_primary_10_1016_j_jvcir_2016_06_023
crossref_primary_10_1016_j_neucom_2016_09_019
crossref_primary_10_3233_JIFS_169094
crossref_primary_10_1007_s12652_018_0682_x
crossref_primary_10_1016_j_image_2016_06_002
crossref_primary_10_1007_s11042_023_14868_2
crossref_primary_10_1109_ACCESS_2016_2602304
crossref_primary_10_1007_s11042_017_4566_4
crossref_primary_10_1016_j_asoc_2016_09_005
crossref_primary_10_1007_s00500_017_2563_1
crossref_primary_10_1109_TITS_2016_2579162
crossref_primary_10_1057_s41274_017_0182_y
crossref_primary_10_1007_s12083_017_0593_1
crossref_primary_10_1007_s00500_017_2487_9
crossref_primary_10_1007_s00521_016_2599_7
crossref_primary_10_1016_j_eswa_2017_03_020
crossref_primary_10_1007_s11047_016_9606_x
crossref_primary_10_1021_acs_energyfuels_5c01119
crossref_primary_10_1007_s00500_016_2314_8
crossref_primary_10_1109_ACCESS_2018_2825229
crossref_primary_10_1016_j_ijleo_2016_07_046
crossref_primary_10_1007_s00521_016_2675_z
crossref_primary_10_1007_s12652_017_0669_z
crossref_primary_10_1515_ttj_2017_0027
crossref_primary_10_1016_j_jvcir_2018_11_002
crossref_primary_10_1049_iet_cvi_2016_0243
crossref_primary_10_1007_s11042_018_6394_6
crossref_primary_10_1007_s00500_017_2608_5
crossref_primary_10_1177_1550147717692586
crossref_primary_10_1155_2018_3138278
crossref_primary_10_1002_cpe_4248
crossref_primary_10_1109_TIFS_2017_2668602
crossref_primary_10_1007_s12652_017_0554_9
crossref_primary_10_1109_TKDE_2022_3196936
crossref_primary_10_1007_s13349_021_00544_2
crossref_primary_10_1016_j_swevo_2017_07_005
crossref_primary_10_1109_MMUL_2017_1
crossref_primary_10_1371_journal_pone_0168449
crossref_primary_10_1007_s00500_016_2161_7
crossref_primary_10_1109_TMM_2017_2726900
crossref_primary_10_1177_1550147716686979
crossref_primary_10_1109_TC_2015_2451643
crossref_primary_10_1007_s13042_016_0621_0
crossref_primary_10_1007_s10669_020_09769_w
crossref_primary_10_1007_s10586_017_0849_9
crossref_primary_10_1007_s11042_016_3977_y
crossref_primary_10_1155_2017_6328438
crossref_primary_10_1088_1742_6596_1802_3_032075
crossref_primary_10_12677_SEA_2022_116149
crossref_primary_10_1016_j_neunet_2017_09_014
crossref_primary_10_1007_s11276_018_1803_3
crossref_primary_10_1109_TKDE_2017_2659740
crossref_primary_10_1016_j_knosys_2017_01_008
crossref_primary_10_1007_s11042_016_4105_8
crossref_primary_10_1038_s41598_017_00416_0
crossref_primary_10_1016_j_ins_2017_11_016
crossref_primary_10_1007_s11760_016_0936_z
crossref_primary_10_1016_j_patrec_2015_06_012
crossref_primary_10_3390_geosciences9050216
crossref_primary_10_1007_s00500_016_2424_3
crossref_primary_10_1016_j_neucom_2016_08_138
crossref_primary_10_1109_ACCESS_2018_2869869
crossref_primary_10_1007_s10773_016_3152_2
crossref_primary_10_1016_j_engfailanal_2022_106884
crossref_primary_10_1109_TNNLS_2016_2615085
crossref_primary_10_1007_s11042_017_4643_8
crossref_primary_10_1016_j_cogsys_2018_12_003
crossref_primary_10_1007_s13042_017_0652_1
crossref_primary_10_1016_j_cose_2016_11_013
crossref_primary_10_1155_2016_5767569
crossref_primary_10_1016_j_neucom_2017_01_021
crossref_primary_10_1007_s11063_017_9746_8
crossref_primary_10_1007_s00500_017_2537_3
crossref_primary_10_1109_TNET_2018_2809583
crossref_primary_10_1155_2019_6375176
crossref_primary_10_1016_j_displa_2016_06_002
crossref_primary_10_1007_s10462_016_9491_9
crossref_primary_10_1007_s00500_016_2282_z
crossref_primary_10_1007_s00521_016_2589_9
crossref_primary_10_1007_s11042_017_4803_x
crossref_primary_10_1016_j_jocs_2017_03_016
crossref_primary_10_1109_TNET_2016_2533612
crossref_primary_10_1007_s00500_016_2281_0
crossref_primary_10_1109_ACCESS_2021_3050548
crossref_primary_10_1016_j_neucom_2017_01_054
crossref_primary_10_1109_ACCESS_2016_2633281
crossref_primary_10_1109_TNET_2016_2533613
crossref_primary_10_1016_j_knosys_2016_08_011
crossref_primary_10_1177_1550147716688696
crossref_primary_10_1007_s00500_018_3171_4
crossref_primary_10_1109_TMC_2016_2635643
crossref_primary_10_1371_journal_pone_0159945
crossref_primary_10_1007_s00500_016_2062_9
crossref_primary_10_1007_s13042_017_0648_x
crossref_primary_10_1016_j_ymssp_2017_06_008
crossref_primary_10_1109_TMECH_2016_2572720
crossref_primary_10_1109_TCSVT_2017_2684759
crossref_primary_10_1016_j_asoc_2017_01_037
crossref_primary_10_1016_j_jhydrol_2023_129502
crossref_primary_10_1016_j_knosys_2020_105791
crossref_primary_10_1109_TNNLS_2016_2609437
crossref_primary_10_1007_s13042_017_0636_1
crossref_primary_10_21595_jve_2016_17263
crossref_primary_10_3390_s18093108
crossref_primary_10_1007_s00500_017_2867_1
crossref_primary_10_1109_TAFFC_2016_2622690
crossref_primary_10_1016_j_patcog_2016_12_021
crossref_primary_10_1016_j_ins_2016_07_015
crossref_primary_10_1080_03081079_2019_1609954
crossref_primary_10_1007_s00500_019_03852_4
crossref_primary_10_1016_j_neucom_2017_02_073
crossref_primary_10_1007_s11036_017_0959_x
crossref_primary_10_1016_j_neucom_2015_12_139
crossref_primary_10_1038_srep36054
crossref_primary_10_1007_s11042_016_4032_8
crossref_primary_10_1016_j_jfranklin_2019_09_001
crossref_primary_10_1109_TMM_2017_2652065
crossref_primary_10_1007_s00500_016_2320_x
crossref_primary_10_1016_j_engappai_2023_107497
crossref_primary_10_1109_TNET_2016_2533605
crossref_primary_10_3233_JIFS_169162
crossref_primary_10_1007_s11042_023_14852_w
crossref_primary_10_3390_e19070330
crossref_primary_10_1016_j_ins_2016_08_053
crossref_primary_10_1002_cpe_3914
crossref_primary_10_1049_iet_ipr_2017_0059
Cites_doi 10.1109/TIP.2006.877062
10.1109/TIP.2013.2256919
10.1109/IVS.2007.4290123
10.1109/TCSVT.2005.859028
10.1109/ITSC.2008.4732681
10.1109/TITS.2013.2266661
10.1109/ITSC.2006.1707383
10.1109/ITSC.2007.4357724
10.1109/TITS.2012.2188630
10.1109/ITSC.2006.1706793
10.1016/j.ins.2013.02.018
10.1109/ICCV.1999.790410
10.1109/TITS.2002.804752
10.1109/ISSP.2013.6526936
10.1109/34.655648
10.1109/ITSC.2006.1706798
10.1109/ICISE.2010.5690648
10.1016/j.neucom.2013.11.052
10.1109/CVPR.2001.990517
10.1016/j.cviu.2007.09.014
10.1016/0967-0661(96)00028-7
10.1109/TCSVT.2013.2242594
10.1023/A:1008162616689
10.1109/TITS.2013.2262045
10.1109/IVS.2005.1505089
10.1109/IVS.2010.5548101
10.1109/TCYB.2013.2273174
10.1109/IVS.2007.4290161
10.1109/IVS.2006.1689658
10.1109/ICARCV.2006.345157
10.1109/IJCNN.2001.939090
10.1109/ITSC.2011.6083135
10.1109/TPAMI.2007.1181
10.1109/ICIP.2002.1038171
10.1016/j.patcog.2012.10.004
10.1016/j.ins.2006.09.003
10.1016/j.patcog.2011.03.013
10.1109/ICCV.1999.790417
10.1016/j.ins.2014.05.021
10.1016/j.isprsjprs.2013.12.011
10.1007/978-3-540-45243-0_39
10.1109/TITS.2011.2182649
10.1109/IVS.2009.5164330
ContentType Journal Article
Copyright 2014 Elsevier Inc.
Copyright_xml – notice: 2014 Elsevier Inc.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ins.2014.10.040
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EndPage 406
ExternalDocumentID 10_1016_j_ins_2014_10_040
S0020025514010238
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABUCO
ACDAQ
ACGFS
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSB
SSD
SSH
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
ZMT
~02
~G-
1OL
29I
77I
9DU
AAAKG
AAQXK
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
ADVLN
AFFNX
AFJKZ
AGQPQ
AIGII
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFLBG
FEDTE
FGOYB
HLZ
HVGLF
HZ~
H~9
R2-
SBC
SDS
SEW
UHS
WUQ
YYP
ZY4
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c396t-f21f725e7e27e8ef34e9a5a9fe3a64431156fc203e5133bc48278068a763d39c3
ISICitedReferencesCount 451
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000346543000023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sun Nov 09 14:42:58 EST 2025
Sat Nov 29 07:59:04 EST 2025
Tue Nov 18 21:19:01 EST 2025
Fri Jul 18 18:51:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Haar-like features
AdaBoost
Incremental learning
Vehicle classification
Weak classifier
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c396t-f21f725e7e27e8ef34e9a5a9fe3a64431156fc203e5133bc48278068a763d39c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1660082308
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_1660082308
crossref_primary_10_1016_j_ins_2014_10_040
crossref_citationtrail_10_1016_j_ins_2014_10_040
elsevier_sciencedirect_doi_10_1016_j_ins_2014_10_040
PublicationCentury 2000
PublicationDate 2015-02-20
PublicationDateYYYYMMDD 2015-02-20
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-20
  day: 20
PublicationDecade 2010
PublicationTitle Information sciences
PublicationYear 2015
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Matthews, An, Charnley, Harris (b0120) 1996; 4
Papageorgiou, Poggio (b0135) 2000; 38
Han, Zhou, Zhang, Cheng, Guo, Liu, Bu, Wu (b0050) 2014; 89
X. Wen, Y. Zheng, An improved algorithm based on AdaBoost for vehicle recognition, in: The 2nd International Conference on Information Science and Engineering (ICISE2010), Hangzhou, China, 2010, pp. 4–7.
Wu, Brubaker, Mullin, Rehg (b0220) 2008; 30
I. Kallenbach, R. Schweiger, G. Palm, and O. Lohlein, Multi-class object detection in vision systems using a hierarchy of cascaded classifiers, in: Proceedings of the IEEE Intelligence and Vehicular Symposium, 2006, pp. 383–387.
Z. Sun, G. Bebis, R. Miller, Quantized wavelet features and support vector machines for on-road vehicle detection, in: 7th International Conference on Control, Automation, Robotics and Vision, 2002, pp. 1641–1646.
X. Wen, H. Zhao, et al., A rear-vehicle detection system for static images based on monocular vision, in: 9th International Conference on Control, Automation, Robotics and Vision, Singapore, March 2006, pp. 2421–2424.
Sivaraman, Trivedi (b0175) 2013; 14
J. Cui, F. Liu, Z. Li, and Z. Jia, Vehicle localization using a single camera, in: Proceedings of the IEEE IV, June 2010, pp. 871–876.
Han, Ji, Hu, Zhu, Li, Jiang, Cui, Guo, Liu (b0040) 2013; 22
Prioletti, Mogelmose, Grisleri, Trivedi, Broggi, Moeslund (b0150) 2013; 14
Lin, Chan, Fu, Hsiao, Chuang, Huang, Lo (b0090) 2012; 13
Z. Sun, G. Bebis, R. Miller, On-road vehicle detection using Gabor filters and support vector machines, in: International Conference on Digital Signal Processing, 2002, pp. 1019–1022.
Zhen, Shao, Li (b0240) 2014; 281
T. Liu, N. Zheng, L. Zhao, H. Cheng, Learning based symmetric features selection for vehicle detection, in: Proceedings of the IEEE Intelligence and Vehicular Symposium, June 2005, pp. 124–129.
Phung, Chai, Bouzerdoum (b0145) 2001; 7
Shao, Kadir, Brady (b0165) 2007; 177
Liu, Shao, Rockett (b0095) 2013; 46
W. Liu, X.Z. Wen, B.B. Duan, et al., Rear vehicle detection and tracking for lane change assist, in: Proceedings of the IEEE Intelligent Vehicles Symposium, Istanbul, Turkey, 2007, pp. 252–257.
P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple features, in: IEEE Conference on Computer Vision and Pattern Recognition, January 2001, pp. 511–518.
Shao, Zhen, Tao, Li (b0170) 2014; 44
A. Khammari, F. Nashashibi, Y. Abramson, and C. Laurgeau, Vehicle detection combining gradient analysis and AdaBoost classification, in: Proceedings of the IEEE Intelligence Transportation Systems, September 2005, pp. 66–71.
A.J. Patel, J.S. Patel, Ensemble systems and incremental learning, in: 2013 International Conference on Intelligent Systems and Signal Processing (ISSP), 2013, pp. 365–368.
Cheon, Lee, Yoon, Park (b0020) 2012; 13
Han, Ngan, Li, Zhang (b0045) 2006; 16
Sung, Poggio (b0200) 1998; 20
Han, Ji, Hu, Han, Liu (b0035) 2014; 144
Bay, Ess, Tuytelaars, Gool (b0010) 2008; 110
Z. Kim, Realtime obstacle detection and tracking based on constrained Delaunay triangulation, in: Proceedings of the IEEE ITSC, September 2006, pp. 548–553.
Y. Zhang, S. Kiselewich, W. Bauson, Legendre and Gabor moments for vehicle recognition in forward collision warning, in: Proceedings of the IEEE ITSC, September 2006, pp. 1185–1190.
R. Lienhart, J. Maydt, An extended set of Haar – like features for rapid object detection, in: The IEEE International Conference on Image Processing, January 2002, pp. 900–903.
N. Blanc, B. Steux, and T. Hinz, LaRASideCam: A fast and robust vision-based blindspot detection system, in: Proceedings of the IEEE Intelligence and Vehicular Symposium, June 2007, pp. 480–485.
O. Ludwig, U. Nunes, Improving the generalization properties of neural networks: an application to vehicle detection, in: Proceedings of the 11th International IEEE Conference on ITSC, October 2008, pp. 310–315.
Kato, Ninomiya, Masaki (b0065) 2002; 3
R. Lienhart, A. Kuranov, V. Pisarevsky, Empirical analysis of detection cascades of boosted classifiers for rapid object detection, in: Proceedings of the 25th German Pattern Recognition Symposium, 2003, pp. 297–304.
Mohammed, Minhas, Wu, Sid-Ahmed (b0130) 2011; 44
J. Wu, X. Zhang, A PCA classifier and its application in vehicle detection, in: Proceedings of the IEEE International Joint Conference on Neural Networks, vol. 1, 2001, pp. 600–604.
D. Acunzo, Y. Zhu, B. Xie, G. Baratoff, Context-adaptive approach for vehicle detection under varying lighting conditions, in: Proceedings of the IEEE ITSC, 2007, pp. 654–660.
Jones, Shao (b0055) 2013; 236
T. Son, S. Mita, Car detection using multi-feature selection for varying poses, in: Proceedings of the IEEE Intelligent Vehicular Symposium, June 2009, pp. 507–512.
Han, He, Qian, Wang, Guo, Liu (b0030) 2013; 23
D. Lowe, Object recognition from local scale-invariant features, in: Proceedigns of the International Conference on Computer Vision, 1999, pp. 1150–1157.
A.N. Rajagopalan, P. Burlina, R. Chellapa, Higher order statistical learning for vehicle detection in images, in: Proceedings of the IEEE International Conference on Computer Vision, vol. 2, 1999, pp. 1204–1209.
X. Zhang, N. Zheng, Y. He, F. Wang, Vehicle detection using an extended hidden random field model, in: Proceedings of the 14th International IEEE Conference ITSC, October 2011, pp. 1555–1559.
Z. Sun, G. Bebis, R. Miller, Improving the performance of on-road vehicle detection by combining Gabor and wavelet features, in: The IEEE 5th International Conference on Intelligent Transportation Systems, 2002, pp. 130–135.
Miller, Sun, Bebis (b0125) 2006; 15
D. Withopf, B. Jahne, Learning algorithm for real-time vehicle tracking, in: Proceedings of the IEEE ITSC, September 2006, pp. 516–521.
10.1016/j.ins.2014.10.040_b0015
Papageorgiou (10.1016/j.ins.2014.10.040_b0135) 2000; 38
10.1016/j.ins.2014.10.040_b0235
Kato (10.1016/j.ins.2014.10.040_b0065) 2002; 3
10.1016/j.ins.2014.10.040_b0215
10.1016/j.ins.2014.10.040_b0115
Han (10.1016/j.ins.2014.10.040_b0040) 2013; 22
Miller (10.1016/j.ins.2014.10.040_b0125) 2006; 15
Sivaraman (10.1016/j.ins.2014.10.040_b0175) 2013; 14
10.1016/j.ins.2014.10.040_b0190
Lin (10.1016/j.ins.2014.10.040_b0090) 2012; 13
10.1016/j.ins.2014.10.040_b0070
Shao (10.1016/j.ins.2014.10.040_b0170) 2014; 44
Cheon (10.1016/j.ins.2014.10.040_b0020) 2012; 13
10.1016/j.ins.2014.10.040_b0075
10.1016/j.ins.2014.10.040_b0195
10.1016/j.ins.2014.10.040_b0110
Liu (10.1016/j.ins.2014.10.040_b0095) 2013; 46
10.1016/j.ins.2014.10.040_b0230
10.1016/j.ins.2014.10.040_b0155
10.1016/j.ins.2014.10.040_b0210
10.1016/j.ins.2014.10.040_b0025
10.1016/j.ins.2014.10.040_b0105
10.1016/j.ins.2014.10.040_b0005
10.1016/j.ins.2014.10.040_b0225
10.1016/j.ins.2014.10.040_b0205
Han (10.1016/j.ins.2014.10.040_b0050) 2014; 89
Matthews (10.1016/j.ins.2014.10.040_b0120) 1996; 4
Prioletti (10.1016/j.ins.2014.10.040_b0150) 2013; 14
Mohammed (10.1016/j.ins.2014.10.040_b0130) 2011; 44
Sung (10.1016/j.ins.2014.10.040_b0200) 1998; 20
Han (10.1016/j.ins.2014.10.040_b0045) 2006; 16
Shao (10.1016/j.ins.2014.10.040_b0165) 2007; 177
Bay (10.1016/j.ins.2014.10.040_b0010) 2008; 110
Jones (10.1016/j.ins.2014.10.040_b0055) 2013; 236
Han (10.1016/j.ins.2014.10.040_b0035) 2014; 144
10.1016/j.ins.2014.10.040_b0080
Phung (10.1016/j.ins.2014.10.040_b0145) 2001; 7
Wu (10.1016/j.ins.2014.10.040_b0220) 2008; 30
10.1016/j.ins.2014.10.040_b0060
Zhen (10.1016/j.ins.2014.10.040_b0240) 2014; 281
Han (10.1016/j.ins.2014.10.040_b0030) 2013; 23
10.1016/j.ins.2014.10.040_b0180
10.1016/j.ins.2014.10.040_b0160
10.1016/j.ins.2014.10.040_b0185
10.1016/j.ins.2014.10.040_b0085
10.1016/j.ins.2014.10.040_b0140
10.1016/j.ins.2014.10.040_b0100
References_xml – volume: 89
  start-page: 37
  year: 2014
  end-page: 48
  ident: b0050
  article-title: Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding
  publication-title: ISPRS J. Photogram. Rem. Sens.
– reference: T. Liu, N. Zheng, L. Zhao, H. Cheng, Learning based symmetric features selection for vehicle detection, in: Proceedings of the IEEE Intelligence and Vehicular Symposium, June 2005, pp. 124–129.
– volume: 46
  start-page: 1810
  year: 2013
  end-page: 1818
  ident: b0095
  article-title: Boosted key-frame selection and correlated pyramidal motion-feature representation for human action recognition
  publication-title: Patt. Recog.
– reference: X. Zhang, N. Zheng, Y. He, F. Wang, Vehicle detection using an extended hidden random field model, in: Proceedings of the 14th International IEEE Conference ITSC, October 2011, pp. 1555–1559.
– volume: 15
  start-page: 2019
  year: 2006
  end-page: 2034
  ident: b0125
  article-title: Monocular precrash vehicle detection: features and classifiers
  publication-title: IEEE Trans. Image Process.
– volume: 281
  start-page: 295
  year: 2014
  end-page: 309
  ident: b0240
  article-title: Action recognition by spatio-temporal oriented energies
  publication-title: Inform. Sci.
– volume: 22
  start-page: 2723
  year: 2013
  end-page: 2736
  ident: b0040
  article-title: Representing and retrieving video shots in human-centric brain imaging space
  publication-title: IEEE Trans. Image Process.
– volume: 16
  start-page: 141
  year: 2006
  end-page: 145
  ident: b0045
  article-title: Unsupervised extraction of visual attention objects in color images
  publication-title: IEEE Trans. Circ. Syst. Video Technol.
– volume: 20
  start-page: 39
  year: 1998
  end-page: 51
  ident: b0200
  article-title: Example-based learning for view-based human face detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 44
  start-page: 2588
  year: 2011
  end-page: 2597
  ident: b0130
  article-title: Human face recognition based on multidimensional PCA and extreme learning machine
  publication-title: Pattern Recog.
– reference: Z. Sun, G. Bebis, R. Miller, Improving the performance of on-road vehicle detection by combining Gabor and wavelet features, in: The IEEE 5th International Conference on Intelligent Transportation Systems, 2002, pp. 130–135.
– volume: 110
  start-page: 346
  year: 2008
  end-page: 359
  ident: b0010
  article-title: SURF: speeded up robust features
  publication-title: Comput. Vis. Image Understand.
– reference: Z. Kim, Realtime obstacle detection and tracking based on constrained Delaunay triangulation, in: Proceedings of the IEEE ITSC, September 2006, pp. 548–553.
– reference: O. Ludwig, U. Nunes, Improving the generalization properties of neural networks: an application to vehicle detection, in: Proceedings of the 11th International IEEE Conference on ITSC, October 2008, pp. 310–315.
– volume: 7
  start-page: 132
  year: 2001
  end-page: 138
  ident: b0145
  article-title: A distribution-based face/non-face classification technique
  publication-title: Aust. J. Intell. Inf. Process. Syst.
– volume: 236
  start-page: 56
  year: 2013
  end-page: 65
  ident: b0055
  article-title: Content-based retrieval of human actions from realistic video databases
  publication-title: Inform. Sci.
– reference: A.J. Patel, J.S. Patel, Ensemble systems and incremental learning, in: 2013 International Conference on Intelligent Systems and Signal Processing (ISSP), 2013, pp. 365–368.
– reference: D. Acunzo, Y. Zhu, B. Xie, G. Baratoff, Context-adaptive approach for vehicle detection under varying lighting conditions, in: Proceedings of the IEEE ITSC, 2007, pp. 654–660.
– reference: D. Lowe, Object recognition from local scale-invariant features, in: Proceedigns of the International Conference on Computer Vision, 1999, pp. 1150–1157.
– volume: 14
  start-page: 1773
  year: 2013
  end-page: 1795
  ident: b0175
  article-title: Looking at vehicles on the road: a survey of vision-based vehicle detection, tracking, and behavior analysis
  publication-title: IEEE Trans. Intell. Transport. Syst.
– reference: X. Wen, H. Zhao, et al., A rear-vehicle detection system for static images based on monocular vision, in: 9th International Conference on Control, Automation, Robotics and Vision, Singapore, March 2006, pp. 2421–2424.
– reference: X. Wen, Y. Zheng, An improved algorithm based on AdaBoost for vehicle recognition, in: The 2nd International Conference on Information Science and Engineering (ICISE2010), Hangzhou, China, 2010, pp. 4–7.
– reference: R. Lienhart, J. Maydt, An extended set of Haar – like features for rapid object detection, in: The IEEE International Conference on Image Processing, January 2002, pp. 900–903.
– volume: 4
  start-page: 473
  year: 1996
  end-page: 479
  ident: b0120
  article-title: Vehicle detection and recognition in greyscale imagery
  publication-title: Control Eng. Pract.
– volume: 30
  start-page: 369
  year: 2008
  end-page: 382
  ident: b0220
  article-title: Fast asymmetric learning for cascade face detection
  publication-title: IEEE Trans. Patt. Anal. Mach. Intell. (PAMI)
– volume: 14
  start-page: 1346
  year: 2013
  end-page: 1359
  ident: b0150
  article-title: Part-based pedestrian detection and feature-based tracking for driver assistance: real-time, robust algorithms, and evaluation
  publication-title: IEEE Trans. Intell. Transport. Syst.
– reference: Z. Sun, G. Bebis, R. Miller, On-road vehicle detection using Gabor filters and support vector machines, in: International Conference on Digital Signal Processing, 2002, pp. 1019–1022.
– reference: Y. Zhang, S. Kiselewich, W. Bauson, Legendre and Gabor moments for vehicle recognition in forward collision warning, in: Proceedings of the IEEE ITSC, September 2006, pp. 1185–1190.
– volume: 38
  start-page: 15
  year: 2000
  end-page: 33
  ident: b0135
  article-title: A trainable system for object detection
  publication-title: Int. J. Comp. Vis.
– reference: R. Lienhart, A. Kuranov, V. Pisarevsky, Empirical analysis of detection cascades of boosted classifiers for rapid object detection, in: Proceedings of the 25th German Pattern Recognition Symposium, 2003, pp. 297–304.
– reference: D. Withopf, B. Jahne, Learning algorithm for real-time vehicle tracking, in: Proceedings of the IEEE ITSC, September 2006, pp. 516–521.
– reference: N. Blanc, B. Steux, and T. Hinz, LaRASideCam: A fast and robust vision-based blindspot detection system, in: Proceedings of the IEEE Intelligence and Vehicular Symposium, June 2007, pp. 480–485.
– volume: 13
  start-page: 737
  year: 2012
  end-page: 747
  ident: b0090
  article-title: Integrating appearance and edge features for sedan vehicle detection in the blind-spot area
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple features, in: IEEE Conference on Computer Vision and Pattern Recognition, January 2001, pp. 511–518.
– reference: I. Kallenbach, R. Schweiger, G. Palm, and O. Lohlein, Multi-class object detection in vision systems using a hierarchy of cascaded classifiers, in: Proceedings of the IEEE Intelligence and Vehicular Symposium, 2006, pp. 383–387.
– volume: 13
  start-page: 1243
  year: 2012
  end-page: 1252
  ident: b0020
  article-title: Vision-based vehicle detection system with consideration of the detecting location
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: J. Cui, F. Liu, Z. Li, and Z. Jia, Vehicle localization using a single camera, in: Proceedings of the IEEE IV, June 2010, pp. 871–876.
– reference: T. Son, S. Mita, Car detection using multi-feature selection for varying poses, in: Proceedings of the IEEE Intelligent Vehicular Symposium, June 2009, pp. 507–512.
– volume: 23
  start-page: 2009
  year: 2013
  end-page: 2021
  ident: b0030
  article-title: An object-oriented visual saliency detection framework based on sparse coding representations
  publication-title: IEEE Trans. Circ. Syst. Video Technol.
– reference: A.N. Rajagopalan, P. Burlina, R. Chellapa, Higher order statistical learning for vehicle detection in images, in: Proceedings of the IEEE International Conference on Computer Vision, vol. 2, 1999, pp. 1204–1209.
– reference: Z. Sun, G. Bebis, R. Miller, Quantized wavelet features and support vector machines for on-road vehicle detection, in: 7th International Conference on Control, Automation, Robotics and Vision, 2002, pp. 1641–1646.
– volume: 144
  start-page: 128
  year: 2014
  end-page: 137
  ident: b0035
  article-title: Clustering and retrieval of video shots based on natural stimulus FMRI
  publication-title: Neurocomputing
– volume: 44
  start-page: 817
  year: 2014
  end-page: 827
  ident: b0170
  article-title: Spatio-temporal laplacian pyramid coding for action recognition
  publication-title: IEEE Trans. Cybernet.
– volume: 3
  start-page: 252
  year: 2002
  end-page: 260
  ident: b0065
  article-title: Preceding vehicle recognition based on learning from sample images
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: A. Khammari, F. Nashashibi, Y. Abramson, and C. Laurgeau, Vehicle detection combining gradient analysis and AdaBoost classification, in: Proceedings of the IEEE Intelligence Transportation Systems, September 2005, pp. 66–71.
– reference: W. Liu, X.Z. Wen, B.B. Duan, et al., Rear vehicle detection and tracking for lane change assist, in: Proceedings of the IEEE Intelligent Vehicles Symposium, Istanbul, Turkey, 2007, pp. 252–257.
– volume: 177
  start-page: 1088
  year: 2007
  end-page: 1122
  ident: b0165
  article-title: Geometric and photometric invariant distinctive regions detection
  publication-title: Inform. Sci.
– reference: J. Wu, X. Zhang, A PCA classifier and its application in vehicle detection, in: Proceedings of the IEEE International Joint Conference on Neural Networks, vol. 1, 2001, pp. 600–604.
– volume: 15
  start-page: 2019
  issue: 7
  year: 2006
  ident: 10.1016/j.ins.2014.10.040_b0125
  article-title: Monocular precrash vehicle detection: features and classifiers
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.877062
– volume: 22
  start-page: 2723
  issue: 7
  year: 2013
  ident: 10.1016/j.ins.2014.10.040_b0040
  article-title: Representing and retrieving video shots in human-centric brain imaging space
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2256919
– ident: 10.1016/j.ins.2014.10.040_b0105
  doi: 10.1109/IVS.2007.4290123
– volume: 16
  start-page: 141
  issue: 1
  year: 2006
  ident: 10.1016/j.ins.2014.10.040_b0045
  article-title: Unsupervised extraction of visual attention objects in color images
  publication-title: IEEE Trans. Circ. Syst. Video Technol.
  doi: 10.1109/TCSVT.2005.859028
– ident: 10.1016/j.ins.2014.10.040_b0115
  doi: 10.1109/ITSC.2008.4732681
– volume: 14
  start-page: 1773
  issue: 4
  year: 2013
  ident: 10.1016/j.ins.2014.10.040_b0175
  article-title: Looking at vehicles on the road: a survey of vision-based vehicle detection, tracking, and behavior analysis
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2013.2266661
– ident: 10.1016/j.ins.2014.10.040_b0230
  doi: 10.1109/ITSC.2006.1707383
– ident: 10.1016/j.ins.2014.10.040_b0005
  doi: 10.1109/ITSC.2007.4357724
– volume: 13
  start-page: 1243
  issue: 3
  year: 2012
  ident: 10.1016/j.ins.2014.10.040_b0020
  article-title: Vision-based vehicle detection system with consideration of the detecting location
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2012.2188630
– ident: 10.1016/j.ins.2014.10.040_b0215
  doi: 10.1109/ITSC.2006.1706793
– volume: 236
  start-page: 56
  year: 2013
  ident: 10.1016/j.ins.2014.10.040_b0055
  article-title: Content-based retrieval of human actions from realistic video databases
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2013.02.018
– ident: 10.1016/j.ins.2014.10.040_b0110
  doi: 10.1109/ICCV.1999.790410
– volume: 3
  start-page: 252
  issue: 4
  year: 2002
  ident: 10.1016/j.ins.2014.10.040_b0065
  article-title: Preceding vehicle recognition based on learning from sample images
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2002.804752
– ident: 10.1016/j.ins.2014.10.040_b0140
  doi: 10.1109/ISSP.2013.6526936
– ident: 10.1016/j.ins.2014.10.040_b0185
– volume: 20
  start-page: 39
  issue: 1
  year: 1998
  ident: 10.1016/j.ins.2014.10.040_b0200
  article-title: Example-based learning for view-based human face detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.655648
– ident: 10.1016/j.ins.2014.10.040_b0075
  doi: 10.1109/ITSC.2006.1706798
– ident: 10.1016/j.ins.2014.10.040_b0190
– ident: 10.1016/j.ins.2014.10.040_b0210
  doi: 10.1109/ICISE.2010.5690648
– volume: 144
  start-page: 128
  year: 2014
  ident: 10.1016/j.ins.2014.10.040_b0035
  article-title: Clustering and retrieval of video shots based on natural stimulus FMRI
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.11.052
– ident: 10.1016/j.ins.2014.10.040_b0160
  doi: 10.1109/CVPR.2001.990517
– ident: 10.1016/j.ins.2014.10.040_b0070
– volume: 110
  start-page: 346
  issue: 3
  year: 2008
  ident: 10.1016/j.ins.2014.10.040_b0010
  article-title: SURF: speeded up robust features
  publication-title: Comput. Vis. Image Understand.
  doi: 10.1016/j.cviu.2007.09.014
– volume: 4
  start-page: 473
  issue: 4
  year: 1996
  ident: 10.1016/j.ins.2014.10.040_b0120
  article-title: Vehicle detection and recognition in greyscale imagery
  publication-title: Control Eng. Pract.
  doi: 10.1016/0967-0661(96)00028-7
– volume: 23
  start-page: 2009
  issue: 12
  year: 2013
  ident: 10.1016/j.ins.2014.10.040_b0030
  article-title: An object-oriented visual saliency detection framework based on sparse coding representations
  publication-title: IEEE Trans. Circ. Syst. Video Technol.
  doi: 10.1109/TCSVT.2013.2242594
– volume: 38
  start-page: 15
  issue: 1
  year: 2000
  ident: 10.1016/j.ins.2014.10.040_b0135
  article-title: A trainable system for object detection
  publication-title: Int. J. Comp. Vis.
  doi: 10.1023/A:1008162616689
– volume: 14
  start-page: 1346
  issue: 3
  year: 2013
  ident: 10.1016/j.ins.2014.10.040_b0150
  article-title: Part-based pedestrian detection and feature-based tracking for driver assistance: real-time, robust algorithms, and evaluation
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2013.2262045
– ident: 10.1016/j.ins.2014.10.040_b0100
  doi: 10.1109/IVS.2005.1505089
– volume: 7
  start-page: 132
  issue: 3/4
  year: 2001
  ident: 10.1016/j.ins.2014.10.040_b0145
  article-title: A distribution-based face/non-face classification technique
  publication-title: Aust. J. Intell. Inf. Process. Syst.
– ident: 10.1016/j.ins.2014.10.040_b0025
  doi: 10.1109/IVS.2010.5548101
– ident: 10.1016/j.ins.2014.10.040_b0195
– volume: 44
  start-page: 817
  issue: 6
  year: 2014
  ident: 10.1016/j.ins.2014.10.040_b0170
  article-title: Spatio-temporal laplacian pyramid coding for action recognition
  publication-title: IEEE Trans. Cybernet.
  doi: 10.1109/TCYB.2013.2273174
– ident: 10.1016/j.ins.2014.10.040_b0015
  doi: 10.1109/IVS.2007.4290161
– ident: 10.1016/j.ins.2014.10.040_b0060
  doi: 10.1109/IVS.2006.1689658
– ident: 10.1016/j.ins.2014.10.040_b0205
  doi: 10.1109/ICARCV.2006.345157
– ident: 10.1016/j.ins.2014.10.040_b0225
  doi: 10.1109/IJCNN.2001.939090
– ident: 10.1016/j.ins.2014.10.040_b0235
  doi: 10.1109/ITSC.2011.6083135
– volume: 30
  start-page: 369
  issue: 3
  year: 2008
  ident: 10.1016/j.ins.2014.10.040_b0220
  article-title: Fast asymmetric learning for cascade face detection
  publication-title: IEEE Trans. Patt. Anal. Mach. Intell. (PAMI)
  doi: 10.1109/TPAMI.2007.1181
– ident: 10.1016/j.ins.2014.10.040_b0080
  doi: 10.1109/ICIP.2002.1038171
– volume: 46
  start-page: 1810
  issue: 7
  year: 2013
  ident: 10.1016/j.ins.2014.10.040_b0095
  article-title: Boosted key-frame selection and correlated pyramidal motion-feature representation for human action recognition
  publication-title: Patt. Recog.
  doi: 10.1016/j.patcog.2012.10.004
– volume: 177
  start-page: 1088
  issue: 4
  year: 2007
  ident: 10.1016/j.ins.2014.10.040_b0165
  article-title: Geometric and photometric invariant distinctive regions detection
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2006.09.003
– volume: 44
  start-page: 2588
  year: 2011
  ident: 10.1016/j.ins.2014.10.040_b0130
  article-title: Human face recognition based on multidimensional PCA and extreme learning machine
  publication-title: Pattern Recog.
  doi: 10.1016/j.patcog.2011.03.013
– ident: 10.1016/j.ins.2014.10.040_b0155
  doi: 10.1109/ICCV.1999.790417
– volume: 281
  start-page: 295
  year: 2014
  ident: 10.1016/j.ins.2014.10.040_b0240
  article-title: Action recognition by spatio-temporal oriented energies
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2014.05.021
– volume: 89
  start-page: 37
  year: 2014
  ident: 10.1016/j.ins.2014.10.040_b0050
  article-title: Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding
  publication-title: ISPRS J. Photogram. Rem. Sens.
  doi: 10.1016/j.isprsjprs.2013.12.011
– ident: 10.1016/j.ins.2014.10.040_b0085
  doi: 10.1007/978-3-540-45243-0_39
– volume: 13
  start-page: 737
  issue: 2
  year: 2012
  ident: 10.1016/j.ins.2014.10.040_b0090
  article-title: Integrating appearance and edge features for sedan vehicle detection in the blind-spot area
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2011.2182649
– ident: 10.1016/j.ins.2014.10.040_b0180
  doi: 10.1109/IVS.2009.5164330
SSID ssj0004766
Score 2.618208
Snippet •A fast learning algorithm is introduced for real-time vehicle classification.•A fast feature selection method for AdaBoost is presented by combining a...
AdaBoost is a popular method for vehicle detection, but the training process is quite time-consuming. In this paper, a rapid learning algorithm is proposed to...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 395
SubjectTerms AdaBoost
Algorithms
Classification
Haar-like features
Incremental learning
Learning
Machine learning
Real time
State of the art
Training
Vehicle classification
Vehicles
Weak classifier
Title A rapid learning algorithm for vehicle classification
URI https://dx.doi.org/10.1016/j.ins.2014.10.040
https://www.proquest.com/docview/1660082308
Volume 295
WOSCitedRecordID wos000346543000023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004766
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9NAFB6064M-iK6Kq66MID5YIk0mmctjkRUVWXxY2b6FSTJpU9a09LIs_nrPmUuarbio4EtIpzNJme_0XObcCHkNGojRteCRKTLrZmRRwTiHO5SW8F1W2zqzX8TpqZxM1Fffq31t2wmItpVXV2r5X6GGMQAbU2f_Au7uoTAA9wA6XAF2uP4R8OPhSi-bKvSDmA71xXSxajaz7zak8NLMcMWwRLUZ44R20MxDVHuX0Tj0ArJTvM8dl5pszY9Z053OzPTC2_fTMAYzLHffdgTiD6bPTdM_aYhd5vZod_wVUmCuRWiivhmhYdJnqYnKekyR-U9Ovqa2wsCvrNudIszB3sAq6nH6DoPuXCmnvYrY6GC2thAah6hz3CYHiciUHJCD8aeTyeddYqxwzurwG4Nb2wb47b3od4rJnoi2esfZA3LfGwx07IB-SG6Z9pDc65WRPCTHPvmEvqE97Khn249INqaWJGggCdqRBIXp1JMEvU4Sj8m3Dydn7z9Gvl1GVDLFN1GdxLVIMiNMIow0NUuN0plWtWEatF4sq8TrMhkxgz19ihILwMoRlxpETMVUyZ6QQbtozVNCeVaBoZCosuA6lVUsK1aXShid1KCTF_KIjMJe5aWvJY8tTS7yEDQ4z2F7c9xeHILtPSJvuyVLV0jlpslpACD3hO40vByo5aZlrwJYOXBJdH3p1iy26zzm3PmU5bN_e_Rzcnf3l3hBBpvV1hyTO-XlplmvXnq6-wnXLoqb
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+rapid+learning+algorithm+for+vehicle+classification&rft.jtitle=Information+sciences&rft.au=Wen%2C+Xuezhi&rft.au=Shao%2C+Ling&rft.au=Xue%2C+Yu&rft.au=Fang%2C+Wei&rft.date=2015-02-20&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.volume=295&rft.spage=395&rft.epage=406&rft_id=info:doi/10.1016%2Fj.ins.2014.10.040&rft.externalDocID=S0020025514010238
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon