A rapid learning algorithm for vehicle classification
•A fast learning algorithm is introduced for real-time vehicle classification.•A fast feature selection method for AdaBoost is presented by combining a sample’s feature value with its class label.•A rapid incremental learning algorithm of AdaBoost is designed. AdaBoost is a popular method for vehicl...
Uloženo v:
| Vydáno v: | Information sciences Ročník 295; s. 395 - 406 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
20.02.2015
|
| Témata: | |
| ISSN: | 0020-0255 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A fast learning algorithm is introduced for real-time vehicle classification.•A fast feature selection method for AdaBoost is presented by combining a sample’s feature value with its class label.•A rapid incremental learning algorithm of AdaBoost is designed.
AdaBoost is a popular method for vehicle detection, but the training process is quite time-consuming. In this paper, a rapid learning algorithm is proposed to tackle this weakness of AdaBoost for vehicle classification. Firstly, an algorithm for computing the Haar-like feature pool on a 32×32 grayscale image patch by using all simple and rotated Haar-like prototypes is introduced to represent a vehicle’s appearance. Then, a fast training approach for the weak classifier is presented by combining a sample’s feature value with its class label. Finally, a rapid incremental learning algorithm of AdaBoost is designed to significantly improve the performance of AdaBoost. Experimental results demonstrate that the proposed approaches not only speed up the training and incremental learning processes of AdaBoost, but also yield better or competitive vehicle classification accuracies compared with several state-of-the-art methods, showing their potential for real-time applications. |
|---|---|
| AbstractList | AdaBoost is a popular method for vehicle detection, but the training process is quite time-consuming. In this paper, a rapid learning algorithm is proposed to tackle this weakness of AdaBoost for vehicle classification. Firstly, an algorithm for computing the Haar-like feature pool on a 3232 grayscale image patch by using all simple and rotated Haar-like prototypes is introduced to represent a vehicle's appearance. Then, a fast training approach for the weak classifier is presented by combining a sample's feature value with its class label. Finally, a rapid incremental learning algorithm of AdaBoost is designed to significantly improve the performance of AdaBoost. Experimental results demonstrate that the proposed approaches not only speed up the training and incremental learning processes of AdaBoost, but also yield better or competitive vehicle classification accuracies compared with several state-of-the-art methods, showing their potential for real-time applications. •A fast learning algorithm is introduced for real-time vehicle classification.•A fast feature selection method for AdaBoost is presented by combining a sample’s feature value with its class label.•A rapid incremental learning algorithm of AdaBoost is designed. AdaBoost is a popular method for vehicle detection, but the training process is quite time-consuming. In this paper, a rapid learning algorithm is proposed to tackle this weakness of AdaBoost for vehicle classification. Firstly, an algorithm for computing the Haar-like feature pool on a 32×32 grayscale image patch by using all simple and rotated Haar-like prototypes is introduced to represent a vehicle’s appearance. Then, a fast training approach for the weak classifier is presented by combining a sample’s feature value with its class label. Finally, a rapid incremental learning algorithm of AdaBoost is designed to significantly improve the performance of AdaBoost. Experimental results demonstrate that the proposed approaches not only speed up the training and incremental learning processes of AdaBoost, but also yield better or competitive vehicle classification accuracies compared with several state-of-the-art methods, showing their potential for real-time applications. |
| Author | Shao, Ling Wen, Xuezhi Xue, Yu Fang, Wei |
| Author_xml | – sequence: 1 givenname: Xuezhi surname: Wen fullname: Wen, Xuezhi organization: Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information Science and Technology, Nanjing 210044, China – sequence: 2 givenname: Ling surname: Shao fullname: Shao, Ling email: ling.shao@ieee.org organization: Department of Computer Science and Digital Technologies, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK – sequence: 3 givenname: Yu surname: Xue fullname: Xue, Yu organization: Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information Science and Technology, Nanjing 210044, China – sequence: 4 givenname: Wei surname: Fang fullname: Fang, Wei organization: Jiangsu Engineering Center of Network Monitoring, Nanjing University of Information Science and Technology, Nanjing 210044, China |
| BookMark | eNp9kD1PwzAQhj0UiRb4AWwZWRLOduIkYqoqvqRKLDBbxjm3V6V2sdNK_HtSysTQ6XSn9znpfWZs4oNHxm45FBy4ut8U5FMhgJfjXkAJEzYFEJCDqKpLNktpAwBlrdSUVfMsmh11WY8mevKrzPSrEGlYbzMXYnbANdkeM9ublMiRNQMFf80unOkT3vzNK_bx9Pi-eMmXb8-vi_kyt7JVQ-4Ed7WosEZRY4NOltiayrQOpVFlKTmvlLMCJFZcyk9bNqJuQDWmVrKTrZVX7O70dxfD1x7ToLeULPa98Rj2SXOlABohoRmj_BS1MaQU0eldpK2J35qDPmrRGz1q0Uctx9OoZWTqf4yl4bfgEA31Z8mHE4lj-wNh1MkSeosdRbSD7gKdoX8A31d_xg |
| CitedBy_id | crossref_primary_10_1016_j_asoc_2016_08_056 crossref_primary_10_1016_j_knosys_2017_12_016 crossref_primary_10_1002_dac_3317 crossref_primary_10_1007_s00500_016_2163_5 crossref_primary_10_1109_TMC_2016_2591524 crossref_primary_10_32604_cmc_2021_015504 crossref_primary_10_1016_j_jvcir_2016_08_013 crossref_primary_10_1038_s41598_017_06201_3 crossref_primary_10_21595_jve_2016_16859 crossref_primary_10_1155_2016_4397061 crossref_primary_10_1007_s00500_016_2393_6 crossref_primary_10_1016_j_datak_2017_07_008 crossref_primary_10_1016_j_ins_2017_12_029 crossref_primary_10_1007_s11042_017_4830_7 crossref_primary_10_3390_e19010014 crossref_primary_10_1007_s00500_017_2759_4 crossref_primary_10_1007_s11704_016_5113_6 crossref_primary_10_1049_iet_cvi_2016_0426 crossref_primary_10_1155_2016_4374603 crossref_primary_10_1109_ACCESS_2025_3542507 crossref_primary_10_1007_s13042_016_0611_2 crossref_primary_10_1038_srep38367 crossref_primary_10_3390_met13050939 crossref_primary_10_1007_s12652_018_1096_5 crossref_primary_10_21595_jve_2016_17838 crossref_primary_10_1007_s11042_019_7444_4 crossref_primary_10_1007_s00500_016_2389_2 crossref_primary_10_1007_s00500_017_2531_9 crossref_primary_10_1007_s00521_017_2870_6 crossref_primary_10_1007_s13131_024_2363_2 crossref_primary_10_1016_j_adhoc_2016_11_001 crossref_primary_10_1371_journal_pone_0165496 crossref_primary_10_1007_s11042_024_18445_z crossref_primary_10_1016_j_resconrec_2016_05_011 crossref_primary_10_1080_02331934_2017_1372438 crossref_primary_10_1016_j_neucom_2016_11_018 crossref_primary_10_1007_s00521_020_05392_7 crossref_primary_10_1007_s10462_017_9595_x crossref_primary_10_1007_s12524_018_0875_y crossref_primary_10_1109_TCBB_2017_2760832 crossref_primary_10_1016_j_ins_2017_11_001 crossref_primary_10_1007_s11042_016_4238_9 crossref_primary_10_1109_TNSE_2022_3184975 crossref_primary_10_1007_s00138_017_0846_2 crossref_primary_10_1016_j_vlsi_2016_01_004 crossref_primary_10_1016_j_jpdc_2017_06_006 crossref_primary_10_1007_s00521_017_2878_y crossref_primary_10_1016_j_ins_2016_09_032 crossref_primary_10_1109_TMM_2017_2696825 crossref_primary_10_1109_TITS_2018_2838117 crossref_primary_10_1111_exsy_12340 crossref_primary_10_1007_s00500_017_2872_4 crossref_primary_10_1016_j_matpr_2022_03_691 crossref_primary_10_1049_iet_ipr_2016_0391 crossref_primary_10_1007_s00500_016_2372_y crossref_primary_10_3233_JIFS_169017 crossref_primary_10_1007_s00500_016_2296_6 crossref_primary_10_1016_j_cose_2016_11_009 crossref_primary_10_1177_0016986219867483 crossref_primary_10_1109_ACCESS_2019_2894906 crossref_primary_10_1155_2021_6644861 crossref_primary_10_1007_s11042_017_5193_9 crossref_primary_10_1080_00207721_2018_1424964 crossref_primary_10_1007_s12293_016_0216_z crossref_primary_10_1016_j_artmed_2016_09_002 crossref_primary_10_1016_j_electacta_2016_08_143 crossref_primary_10_1186_s13638_017_0815_5 crossref_primary_10_1109_JSEN_2022_3229030 crossref_primary_10_1007_s11042_016_4243_z crossref_primary_10_1111_exsy_12233 crossref_primary_10_3390_s21227545 crossref_primary_10_1155_2017_4826206 crossref_primary_10_1016_j_ins_2016_10_025 crossref_primary_10_1007_s00500_017_2604_9 crossref_primary_10_1007_s11042_016_4289_y crossref_primary_10_1007_s00521_016_2620_1 crossref_primary_10_1016_j_ins_2016_01_004 crossref_primary_10_1061_JTEPBS_TEENG_8751 crossref_primary_10_1109_ACCESS_2019_2928365 crossref_primary_10_1007_s00232_016_9935_9 crossref_primary_10_1038_s41598_017_15235_6 crossref_primary_10_1080_19427867_2016_1258972 crossref_primary_10_1007_s00500_017_2703_7 crossref_primary_10_1007_s12648_019_01551_2 crossref_primary_10_1049_itr2_12139 crossref_primary_10_1016_j_ins_2017_03_020 crossref_primary_10_1007_s10586_017_0796_5 crossref_primary_10_1007_s00500_016_2104_3 crossref_primary_10_3233_AIC_170739 crossref_primary_10_1016_j_aei_2024_102433 crossref_primary_10_1109_ACCESS_2018_2879328 crossref_primary_10_1016_j_future_2017_07_043 crossref_primary_10_1109_JSEN_2024_3498910 crossref_primary_10_1007_s00500_016_2334_4 crossref_primary_10_1007_s00500_017_2775_4 crossref_primary_10_3390_s17030642 crossref_primary_10_1002_sec_1393 crossref_primary_10_1016_j_sigpro_2016_11_013 crossref_primary_10_1016_j_neucom_2017_09_078 crossref_primary_10_1109_ACCESS_2016_2607841 crossref_primary_10_1109_TCBB_2016_2602872 crossref_primary_10_3390_s16071090 crossref_primary_10_1016_j_dsp_2017_02_009 crossref_primary_10_1155_2016_5182106 crossref_primary_10_1186_s10033_019_0325_y crossref_primary_10_1186_s13634_016_0413_4 crossref_primary_10_1016_j_neucom_2015_11_033 crossref_primary_10_1109_TNSM_2023_3257993 crossref_primary_10_1155_2019_7482138 crossref_primary_10_1177_1550147716684842 crossref_primary_10_1109_TIP_2017_2651396 crossref_primary_10_1016_j_neucom_2016_02_070 crossref_primary_10_1016_j_neucom_2016_12_019 crossref_primary_10_1155_2017_5385708 crossref_primary_10_1016_j_future_2016_11_011 crossref_primary_10_1002_for_2856 crossref_primary_10_1007_s12559_016_9446_0 crossref_primary_10_1007_s11042_017_5262_0 crossref_primary_10_1007_s00500_016_2071_8 crossref_primary_10_1007_s12559_017_9449_5 crossref_primary_10_1080_19427867_2016_1252876 crossref_primary_10_1016_j_patrec_2017_07_001 crossref_primary_10_1007_s00521_016_2489_z crossref_primary_10_1007_s11390_017_1751_x crossref_primary_10_1002_ett_4427 crossref_primary_10_3233_JIFS_169107 crossref_primary_10_1002_cpe_3975 crossref_primary_10_1109_TMM_2016_2614187 crossref_primary_10_1016_j_neucom_2017_09_065 crossref_primary_10_3233_JIFS_169104 crossref_primary_10_1002_rnc_3734 crossref_primary_10_1007_s13042_017_0666_8 crossref_primary_10_1371_journal_pone_0138898 crossref_primary_10_1007_s00500_017_2513_y crossref_primary_10_3390_s21134564 crossref_primary_10_5772_62157 crossref_primary_10_1007_s00500_017_2704_6 crossref_primary_10_1155_2017_7962828 crossref_primary_10_3390_s23177596 crossref_primary_10_1109_JIOT_2019_2915793 crossref_primary_10_1007_s00500_016_2116_z crossref_primary_10_1007_s11280_016_0425_x crossref_primary_10_1007_s00500_017_2813_2 crossref_primary_10_1155_2016_5483485 crossref_primary_10_1049_iet_bmt_2016_0097 crossref_primary_10_1016_j_neucom_2015_10_135 crossref_primary_10_1016_j_jbi_2017_02_007 crossref_primary_10_1002_asjc_1456 crossref_primary_10_1007_s12293_017_0224_7 crossref_primary_10_1007_s00500_016_2407_4 crossref_primary_10_1016_j_ins_2016_12_048 crossref_primary_10_1016_j_apsusc_2016_09_152 crossref_primary_10_3390_sym9100212 crossref_primary_10_3390_s16081314 crossref_primary_10_1080_01969722_2025_2545842 crossref_primary_10_1007_s00779_017_1055_8 crossref_primary_10_3390_a12110238 crossref_primary_10_21595_jve_2017_17654 crossref_primary_10_1080_01605682_2021_1952117 crossref_primary_10_1371_journal_pone_0162830 crossref_primary_10_1007_s11042_018_6622_0 crossref_primary_10_1016_j_ins_2017_02_017 crossref_primary_10_1371_journal_pone_0173297 crossref_primary_10_1007_s10462_021_10089_x crossref_primary_10_1145_3379504 crossref_primary_10_3390_math7090767 crossref_primary_10_1109_TCDS_2016_2614675 crossref_primary_10_2478_pomr_2018_0016 crossref_primary_10_1007_s10586_017_1060_8 crossref_primary_10_1109_TBDATA_2017_2710347 crossref_primary_10_1177_0954406219845406 crossref_primary_10_1016_j_eswa_2016_09_003 crossref_primary_10_1007_s00500_016_2130_1 crossref_primary_10_1016_j_enconman_2016_08_052 crossref_primary_10_1080_19427867_2017_1386871 crossref_primary_10_1109_ACCESS_2017_2680437 crossref_primary_10_1016_j_ins_2016_08_049 crossref_primary_10_1109_JSAC_2017_2680998 crossref_primary_10_1109_MCOM_2016_1600621CM crossref_primary_10_1007_s11042_016_3857_5 crossref_primary_10_1016_j_cogsys_2018_01_003 crossref_primary_10_1109_ACCESS_2019_2893320 crossref_primary_10_1109_TSMC_2016_2629509 crossref_primary_10_1007_s11042_016_4258_5 crossref_primary_10_21595_jve_2017_18052 crossref_primary_10_1155_2017_6310827 crossref_primary_10_1016_j_ins_2016_12_024 crossref_primary_10_1109_ACCESS_2016_2624558 crossref_primary_10_3390_info8030093 crossref_primary_10_1093_comjnl_bxx070 crossref_primary_10_1007_s13042_016_0627_7 crossref_primary_10_1016_j_rinam_2024_100531 crossref_primary_10_21595_jve_2017_17879 crossref_primary_10_1016_j_asoc_2017_08_050 crossref_primary_10_1007_s11704_017_6538_2 crossref_primary_10_1016_j_patcog_2017_02_010 crossref_primary_10_1093_comjnl_bxx077 crossref_primary_10_1109_JSYST_2016_2563519 crossref_primary_10_1155_2016_1358142 crossref_primary_10_1016_j_knosys_2017_06_035 crossref_primary_10_1007_s00500_018_3261_3 crossref_primary_10_1016_j_jcct_2018_04_010 crossref_primary_10_1109_JIOT_2017_2665339 crossref_primary_10_3390_su14010264 crossref_primary_10_1016_j_asoc_2018_02_022 crossref_primary_10_1007_s00138_022_01274_1 crossref_primary_10_1038_srep33870 crossref_primary_10_3390_s22134740 crossref_primary_10_1155_2017_5418978 crossref_primary_10_1016_j_ijleo_2019_163730 crossref_primary_10_1155_2017_5159690 crossref_primary_10_1177_1550147717743696 crossref_primary_10_1016_j_patcog_2016_04_013 crossref_primary_10_1016_j_im_2016_04_005 crossref_primary_10_1016_j_jenvman_2024_124001 crossref_primary_10_1109_TITS_2019_2906821 crossref_primary_10_1177_14759217221140645 crossref_primary_10_1007_s11042_017_4347_0 crossref_primary_10_1007_s11042_017_4639_4 crossref_primary_10_1016_j_ins_2017_02_043 crossref_primary_10_1016_j_neucom_2016_08_006 crossref_primary_10_1109_LGRS_2017_2683495 crossref_primary_10_1007_s12351_016_0251_z crossref_primary_10_1109_JSEN_2023_3289230 crossref_primary_10_1016_j_image_2017_07_001 crossref_primary_10_1109_ACCESS_2016_2572206 crossref_primary_10_3390_s17030509 crossref_primary_10_1016_j_jvcir_2016_06_023 crossref_primary_10_1016_j_neucom_2016_09_019 crossref_primary_10_3233_JIFS_169094 crossref_primary_10_1007_s12652_018_0682_x crossref_primary_10_1016_j_image_2016_06_002 crossref_primary_10_1007_s11042_023_14868_2 crossref_primary_10_1109_ACCESS_2016_2602304 crossref_primary_10_1007_s11042_017_4566_4 crossref_primary_10_1016_j_asoc_2016_09_005 crossref_primary_10_1007_s00500_017_2563_1 crossref_primary_10_1109_TITS_2016_2579162 crossref_primary_10_1057_s41274_017_0182_y crossref_primary_10_1007_s12083_017_0593_1 crossref_primary_10_1007_s00500_017_2487_9 crossref_primary_10_1007_s00521_016_2599_7 crossref_primary_10_1016_j_eswa_2017_03_020 crossref_primary_10_1007_s11047_016_9606_x crossref_primary_10_1021_acs_energyfuels_5c01119 crossref_primary_10_1007_s00500_016_2314_8 crossref_primary_10_1109_ACCESS_2018_2825229 crossref_primary_10_1016_j_ijleo_2016_07_046 crossref_primary_10_1007_s00521_016_2675_z crossref_primary_10_1007_s12652_017_0669_z crossref_primary_10_1515_ttj_2017_0027 crossref_primary_10_1016_j_jvcir_2018_11_002 crossref_primary_10_1049_iet_cvi_2016_0243 crossref_primary_10_1007_s11042_018_6394_6 crossref_primary_10_1007_s00500_017_2608_5 crossref_primary_10_1177_1550147717692586 crossref_primary_10_1155_2018_3138278 crossref_primary_10_1002_cpe_4248 crossref_primary_10_1109_TIFS_2017_2668602 crossref_primary_10_1007_s12652_017_0554_9 crossref_primary_10_1109_TKDE_2022_3196936 crossref_primary_10_1007_s13349_021_00544_2 crossref_primary_10_1016_j_swevo_2017_07_005 crossref_primary_10_1109_MMUL_2017_1 crossref_primary_10_1371_journal_pone_0168449 crossref_primary_10_1007_s00500_016_2161_7 crossref_primary_10_1109_TMM_2017_2726900 crossref_primary_10_1177_1550147716686979 crossref_primary_10_1109_TC_2015_2451643 crossref_primary_10_1007_s13042_016_0621_0 crossref_primary_10_1007_s10669_020_09769_w crossref_primary_10_1007_s10586_017_0849_9 crossref_primary_10_1007_s11042_016_3977_y crossref_primary_10_1155_2017_6328438 crossref_primary_10_1088_1742_6596_1802_3_032075 crossref_primary_10_12677_SEA_2022_116149 crossref_primary_10_1016_j_neunet_2017_09_014 crossref_primary_10_1007_s11276_018_1803_3 crossref_primary_10_1109_TKDE_2017_2659740 crossref_primary_10_1016_j_knosys_2017_01_008 crossref_primary_10_1007_s11042_016_4105_8 crossref_primary_10_1038_s41598_017_00416_0 crossref_primary_10_1016_j_ins_2017_11_016 crossref_primary_10_1007_s11760_016_0936_z crossref_primary_10_1016_j_patrec_2015_06_012 crossref_primary_10_3390_geosciences9050216 crossref_primary_10_1007_s00500_016_2424_3 crossref_primary_10_1016_j_neucom_2016_08_138 crossref_primary_10_1109_ACCESS_2018_2869869 crossref_primary_10_1007_s10773_016_3152_2 crossref_primary_10_1016_j_engfailanal_2022_106884 crossref_primary_10_1109_TNNLS_2016_2615085 crossref_primary_10_1007_s11042_017_4643_8 crossref_primary_10_1016_j_cogsys_2018_12_003 crossref_primary_10_1007_s13042_017_0652_1 crossref_primary_10_1016_j_cose_2016_11_013 crossref_primary_10_1155_2016_5767569 crossref_primary_10_1016_j_neucom_2017_01_021 crossref_primary_10_1007_s11063_017_9746_8 crossref_primary_10_1007_s00500_017_2537_3 crossref_primary_10_1109_TNET_2018_2809583 crossref_primary_10_1155_2019_6375176 crossref_primary_10_1016_j_displa_2016_06_002 crossref_primary_10_1007_s10462_016_9491_9 crossref_primary_10_1007_s00500_016_2282_z crossref_primary_10_1007_s00521_016_2589_9 crossref_primary_10_1007_s11042_017_4803_x crossref_primary_10_1016_j_jocs_2017_03_016 crossref_primary_10_1109_TNET_2016_2533612 crossref_primary_10_1007_s00500_016_2281_0 crossref_primary_10_1109_ACCESS_2021_3050548 crossref_primary_10_1016_j_neucom_2017_01_054 crossref_primary_10_1109_ACCESS_2016_2633281 crossref_primary_10_1109_TNET_2016_2533613 crossref_primary_10_1016_j_knosys_2016_08_011 crossref_primary_10_1177_1550147716688696 crossref_primary_10_1007_s00500_018_3171_4 crossref_primary_10_1109_TMC_2016_2635643 crossref_primary_10_1371_journal_pone_0159945 crossref_primary_10_1007_s00500_016_2062_9 crossref_primary_10_1007_s13042_017_0648_x crossref_primary_10_1016_j_ymssp_2017_06_008 crossref_primary_10_1109_TMECH_2016_2572720 crossref_primary_10_1109_TCSVT_2017_2684759 crossref_primary_10_1016_j_asoc_2017_01_037 crossref_primary_10_1016_j_jhydrol_2023_129502 crossref_primary_10_1016_j_knosys_2020_105791 crossref_primary_10_1109_TNNLS_2016_2609437 crossref_primary_10_1007_s13042_017_0636_1 crossref_primary_10_21595_jve_2016_17263 crossref_primary_10_3390_s18093108 crossref_primary_10_1007_s00500_017_2867_1 crossref_primary_10_1109_TAFFC_2016_2622690 crossref_primary_10_1016_j_patcog_2016_12_021 crossref_primary_10_1016_j_ins_2016_07_015 crossref_primary_10_1080_03081079_2019_1609954 crossref_primary_10_1007_s00500_019_03852_4 crossref_primary_10_1016_j_neucom_2017_02_073 crossref_primary_10_1007_s11036_017_0959_x crossref_primary_10_1016_j_neucom_2015_12_139 crossref_primary_10_1038_srep36054 crossref_primary_10_1007_s11042_016_4032_8 crossref_primary_10_1016_j_jfranklin_2019_09_001 crossref_primary_10_1109_TMM_2017_2652065 crossref_primary_10_1007_s00500_016_2320_x crossref_primary_10_1016_j_engappai_2023_107497 crossref_primary_10_1109_TNET_2016_2533605 crossref_primary_10_3233_JIFS_169162 crossref_primary_10_1007_s11042_023_14852_w crossref_primary_10_3390_e19070330 crossref_primary_10_1016_j_ins_2016_08_053 crossref_primary_10_1002_cpe_3914 crossref_primary_10_1049_iet_ipr_2017_0059 |
| Cites_doi | 10.1109/TIP.2006.877062 10.1109/TIP.2013.2256919 10.1109/IVS.2007.4290123 10.1109/TCSVT.2005.859028 10.1109/ITSC.2008.4732681 10.1109/TITS.2013.2266661 10.1109/ITSC.2006.1707383 10.1109/ITSC.2007.4357724 10.1109/TITS.2012.2188630 10.1109/ITSC.2006.1706793 10.1016/j.ins.2013.02.018 10.1109/ICCV.1999.790410 10.1109/TITS.2002.804752 10.1109/ISSP.2013.6526936 10.1109/34.655648 10.1109/ITSC.2006.1706798 10.1109/ICISE.2010.5690648 10.1016/j.neucom.2013.11.052 10.1109/CVPR.2001.990517 10.1016/j.cviu.2007.09.014 10.1016/0967-0661(96)00028-7 10.1109/TCSVT.2013.2242594 10.1023/A:1008162616689 10.1109/TITS.2013.2262045 10.1109/IVS.2005.1505089 10.1109/IVS.2010.5548101 10.1109/TCYB.2013.2273174 10.1109/IVS.2007.4290161 10.1109/IVS.2006.1689658 10.1109/ICARCV.2006.345157 10.1109/IJCNN.2001.939090 10.1109/ITSC.2011.6083135 10.1109/TPAMI.2007.1181 10.1109/ICIP.2002.1038171 10.1016/j.patcog.2012.10.004 10.1016/j.ins.2006.09.003 10.1016/j.patcog.2011.03.013 10.1109/ICCV.1999.790417 10.1016/j.ins.2014.05.021 10.1016/j.isprsjprs.2013.12.011 10.1007/978-3-540-45243-0_39 10.1109/TITS.2011.2182649 10.1109/IVS.2009.5164330 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Inc. |
| Copyright_xml | – notice: 2014 Elsevier Inc. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.ins.2014.10.040 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| EndPage | 406 |
| ExternalDocumentID | 10_1016_j_ins_2014_10_040 S0020025514010238 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATTM AAXKI AAXUO AAYFN AAYWO ABAOU ABBOA ABFNM ABJNI ABMAC ABUCO ACDAQ ACGFS ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE ADGUI ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFPUW AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSB SSD SSH SST SSV SSW SSZ T5K TN5 TWZ WH7 XPP ZMT ~02 ~G- 1OL 29I 77I 9DU AAAKG AAQXK AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ADJOM ADMUD ADNMO ADVLN AFFNX AFJKZ AGQPQ AIGII APXCP ASPBG AVWKF AZFZN CITATION EFLBG FEDTE FGOYB HLZ HVGLF HZ~ H~9 R2- SBC SDS SEW UHS WUQ YYP ZY4 ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c396t-f21f725e7e27e8ef34e9a5a9fe3a64431156fc203e5133bc48278068a763d39c3 |
| ISICitedReferencesCount | 451 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000346543000023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Sun Nov 09 14:42:58 EST 2025 Sat Nov 29 07:59:04 EST 2025 Tue Nov 18 21:19:01 EST 2025 Fri Jul 18 18:51:56 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Haar-like features AdaBoost Incremental learning Vehicle classification Weak classifier |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c396t-f21f725e7e27e8ef34e9a5a9fe3a64431156fc203e5133bc48278068a763d39c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1660082308 |
| PQPubID | 23500 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_1660082308 crossref_primary_10_1016_j_ins_2014_10_040 crossref_citationtrail_10_1016_j_ins_2014_10_040 elsevier_sciencedirect_doi_10_1016_j_ins_2014_10_040 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-02-20 |
| PublicationDateYYYYMMDD | 2015-02-20 |
| PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-20 day: 20 |
| PublicationDecade | 2010 |
| PublicationTitle | Information sciences |
| PublicationYear | 2015 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Matthews, An, Charnley, Harris (b0120) 1996; 4 Papageorgiou, Poggio (b0135) 2000; 38 Han, Zhou, Zhang, Cheng, Guo, Liu, Bu, Wu (b0050) 2014; 89 X. Wen, Y. Zheng, An improved algorithm based on AdaBoost for vehicle recognition, in: The 2nd International Conference on Information Science and Engineering (ICISE2010), Hangzhou, China, 2010, pp. 4–7. Wu, Brubaker, Mullin, Rehg (b0220) 2008; 30 I. Kallenbach, R. Schweiger, G. Palm, and O. Lohlein, Multi-class object detection in vision systems using a hierarchy of cascaded classifiers, in: Proceedings of the IEEE Intelligence and Vehicular Symposium, 2006, pp. 383–387. Z. Sun, G. Bebis, R. Miller, Quantized wavelet features and support vector machines for on-road vehicle detection, in: 7th International Conference on Control, Automation, Robotics and Vision, 2002, pp. 1641–1646. X. Wen, H. Zhao, et al., A rear-vehicle detection system for static images based on monocular vision, in: 9th International Conference on Control, Automation, Robotics and Vision, Singapore, March 2006, pp. 2421–2424. Sivaraman, Trivedi (b0175) 2013; 14 J. Cui, F. Liu, Z. Li, and Z. Jia, Vehicle localization using a single camera, in: Proceedings of the IEEE IV, June 2010, pp. 871–876. Han, Ji, Hu, Zhu, Li, Jiang, Cui, Guo, Liu (b0040) 2013; 22 Prioletti, Mogelmose, Grisleri, Trivedi, Broggi, Moeslund (b0150) 2013; 14 Lin, Chan, Fu, Hsiao, Chuang, Huang, Lo (b0090) 2012; 13 Z. Sun, G. Bebis, R. Miller, On-road vehicle detection using Gabor filters and support vector machines, in: International Conference on Digital Signal Processing, 2002, pp. 1019–1022. Zhen, Shao, Li (b0240) 2014; 281 T. Liu, N. Zheng, L. Zhao, H. Cheng, Learning based symmetric features selection for vehicle detection, in: Proceedings of the IEEE Intelligence and Vehicular Symposium, June 2005, pp. 124–129. Phung, Chai, Bouzerdoum (b0145) 2001; 7 Shao, Kadir, Brady (b0165) 2007; 177 Liu, Shao, Rockett (b0095) 2013; 46 W. Liu, X.Z. Wen, B.B. Duan, et al., Rear vehicle detection and tracking for lane change assist, in: Proceedings of the IEEE Intelligent Vehicles Symposium, Istanbul, Turkey, 2007, pp. 252–257. P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple features, in: IEEE Conference on Computer Vision and Pattern Recognition, January 2001, pp. 511–518. Shao, Zhen, Tao, Li (b0170) 2014; 44 A. Khammari, F. Nashashibi, Y. Abramson, and C. Laurgeau, Vehicle detection combining gradient analysis and AdaBoost classification, in: Proceedings of the IEEE Intelligence Transportation Systems, September 2005, pp. 66–71. A.J. Patel, J.S. Patel, Ensemble systems and incremental learning, in: 2013 International Conference on Intelligent Systems and Signal Processing (ISSP), 2013, pp. 365–368. Cheon, Lee, Yoon, Park (b0020) 2012; 13 Han, Ngan, Li, Zhang (b0045) 2006; 16 Sung, Poggio (b0200) 1998; 20 Han, Ji, Hu, Han, Liu (b0035) 2014; 144 Bay, Ess, Tuytelaars, Gool (b0010) 2008; 110 Z. Kim, Realtime obstacle detection and tracking based on constrained Delaunay triangulation, in: Proceedings of the IEEE ITSC, September 2006, pp. 548–553. Y. Zhang, S. Kiselewich, W. Bauson, Legendre and Gabor moments for vehicle recognition in forward collision warning, in: Proceedings of the IEEE ITSC, September 2006, pp. 1185–1190. R. Lienhart, J. Maydt, An extended set of Haar – like features for rapid object detection, in: The IEEE International Conference on Image Processing, January 2002, pp. 900–903. N. Blanc, B. Steux, and T. Hinz, LaRASideCam: A fast and robust vision-based blindspot detection system, in: Proceedings of the IEEE Intelligence and Vehicular Symposium, June 2007, pp. 480–485. O. Ludwig, U. Nunes, Improving the generalization properties of neural networks: an application to vehicle detection, in: Proceedings of the 11th International IEEE Conference on ITSC, October 2008, pp. 310–315. Kato, Ninomiya, Masaki (b0065) 2002; 3 R. Lienhart, A. Kuranov, V. Pisarevsky, Empirical analysis of detection cascades of boosted classifiers for rapid object detection, in: Proceedings of the 25th German Pattern Recognition Symposium, 2003, pp. 297–304. Mohammed, Minhas, Wu, Sid-Ahmed (b0130) 2011; 44 J. Wu, X. Zhang, A PCA classifier and its application in vehicle detection, in: Proceedings of the IEEE International Joint Conference on Neural Networks, vol. 1, 2001, pp. 600–604. D. Acunzo, Y. Zhu, B. Xie, G. Baratoff, Context-adaptive approach for vehicle detection under varying lighting conditions, in: Proceedings of the IEEE ITSC, 2007, pp. 654–660. Jones, Shao (b0055) 2013; 236 T. Son, S. Mita, Car detection using multi-feature selection for varying poses, in: Proceedings of the IEEE Intelligent Vehicular Symposium, June 2009, pp. 507–512. Han, He, Qian, Wang, Guo, Liu (b0030) 2013; 23 D. Lowe, Object recognition from local scale-invariant features, in: Proceedigns of the International Conference on Computer Vision, 1999, pp. 1150–1157. A.N. Rajagopalan, P. Burlina, R. Chellapa, Higher order statistical learning for vehicle detection in images, in: Proceedings of the IEEE International Conference on Computer Vision, vol. 2, 1999, pp. 1204–1209. X. Zhang, N. Zheng, Y. He, F. Wang, Vehicle detection using an extended hidden random field model, in: Proceedings of the 14th International IEEE Conference ITSC, October 2011, pp. 1555–1559. Z. Sun, G. Bebis, R. Miller, Improving the performance of on-road vehicle detection by combining Gabor and wavelet features, in: The IEEE 5th International Conference on Intelligent Transportation Systems, 2002, pp. 130–135. Miller, Sun, Bebis (b0125) 2006; 15 D. Withopf, B. Jahne, Learning algorithm for real-time vehicle tracking, in: Proceedings of the IEEE ITSC, September 2006, pp. 516–521. 10.1016/j.ins.2014.10.040_b0015 Papageorgiou (10.1016/j.ins.2014.10.040_b0135) 2000; 38 10.1016/j.ins.2014.10.040_b0235 Kato (10.1016/j.ins.2014.10.040_b0065) 2002; 3 10.1016/j.ins.2014.10.040_b0215 10.1016/j.ins.2014.10.040_b0115 Han (10.1016/j.ins.2014.10.040_b0040) 2013; 22 Miller (10.1016/j.ins.2014.10.040_b0125) 2006; 15 Sivaraman (10.1016/j.ins.2014.10.040_b0175) 2013; 14 10.1016/j.ins.2014.10.040_b0190 Lin (10.1016/j.ins.2014.10.040_b0090) 2012; 13 10.1016/j.ins.2014.10.040_b0070 Shao (10.1016/j.ins.2014.10.040_b0170) 2014; 44 Cheon (10.1016/j.ins.2014.10.040_b0020) 2012; 13 10.1016/j.ins.2014.10.040_b0075 10.1016/j.ins.2014.10.040_b0195 10.1016/j.ins.2014.10.040_b0110 Liu (10.1016/j.ins.2014.10.040_b0095) 2013; 46 10.1016/j.ins.2014.10.040_b0230 10.1016/j.ins.2014.10.040_b0155 10.1016/j.ins.2014.10.040_b0210 10.1016/j.ins.2014.10.040_b0025 10.1016/j.ins.2014.10.040_b0105 10.1016/j.ins.2014.10.040_b0005 10.1016/j.ins.2014.10.040_b0225 10.1016/j.ins.2014.10.040_b0205 Han (10.1016/j.ins.2014.10.040_b0050) 2014; 89 Matthews (10.1016/j.ins.2014.10.040_b0120) 1996; 4 Prioletti (10.1016/j.ins.2014.10.040_b0150) 2013; 14 Mohammed (10.1016/j.ins.2014.10.040_b0130) 2011; 44 Sung (10.1016/j.ins.2014.10.040_b0200) 1998; 20 Han (10.1016/j.ins.2014.10.040_b0045) 2006; 16 Shao (10.1016/j.ins.2014.10.040_b0165) 2007; 177 Bay (10.1016/j.ins.2014.10.040_b0010) 2008; 110 Jones (10.1016/j.ins.2014.10.040_b0055) 2013; 236 Han (10.1016/j.ins.2014.10.040_b0035) 2014; 144 10.1016/j.ins.2014.10.040_b0080 Phung (10.1016/j.ins.2014.10.040_b0145) 2001; 7 Wu (10.1016/j.ins.2014.10.040_b0220) 2008; 30 10.1016/j.ins.2014.10.040_b0060 Zhen (10.1016/j.ins.2014.10.040_b0240) 2014; 281 Han (10.1016/j.ins.2014.10.040_b0030) 2013; 23 10.1016/j.ins.2014.10.040_b0180 10.1016/j.ins.2014.10.040_b0160 10.1016/j.ins.2014.10.040_b0185 10.1016/j.ins.2014.10.040_b0085 10.1016/j.ins.2014.10.040_b0140 10.1016/j.ins.2014.10.040_b0100 |
| References_xml | – volume: 89 start-page: 37 year: 2014 end-page: 48 ident: b0050 article-title: Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding publication-title: ISPRS J. Photogram. Rem. Sens. – reference: T. Liu, N. Zheng, L. Zhao, H. Cheng, Learning based symmetric features selection for vehicle detection, in: Proceedings of the IEEE Intelligence and Vehicular Symposium, June 2005, pp. 124–129. – volume: 46 start-page: 1810 year: 2013 end-page: 1818 ident: b0095 article-title: Boosted key-frame selection and correlated pyramidal motion-feature representation for human action recognition publication-title: Patt. Recog. – reference: X. Zhang, N. Zheng, Y. He, F. Wang, Vehicle detection using an extended hidden random field model, in: Proceedings of the 14th International IEEE Conference ITSC, October 2011, pp. 1555–1559. – volume: 15 start-page: 2019 year: 2006 end-page: 2034 ident: b0125 article-title: Monocular precrash vehicle detection: features and classifiers publication-title: IEEE Trans. Image Process. – volume: 281 start-page: 295 year: 2014 end-page: 309 ident: b0240 article-title: Action recognition by spatio-temporal oriented energies publication-title: Inform. Sci. – volume: 22 start-page: 2723 year: 2013 end-page: 2736 ident: b0040 article-title: Representing and retrieving video shots in human-centric brain imaging space publication-title: IEEE Trans. Image Process. – volume: 16 start-page: 141 year: 2006 end-page: 145 ident: b0045 article-title: Unsupervised extraction of visual attention objects in color images publication-title: IEEE Trans. Circ. Syst. Video Technol. – volume: 20 start-page: 39 year: 1998 end-page: 51 ident: b0200 article-title: Example-based learning for view-based human face detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 44 start-page: 2588 year: 2011 end-page: 2597 ident: b0130 article-title: Human face recognition based on multidimensional PCA and extreme learning machine publication-title: Pattern Recog. – reference: Z. Sun, G. Bebis, R. Miller, Improving the performance of on-road vehicle detection by combining Gabor and wavelet features, in: The IEEE 5th International Conference on Intelligent Transportation Systems, 2002, pp. 130–135. – volume: 110 start-page: 346 year: 2008 end-page: 359 ident: b0010 article-title: SURF: speeded up robust features publication-title: Comput. Vis. Image Understand. – reference: Z. Kim, Realtime obstacle detection and tracking based on constrained Delaunay triangulation, in: Proceedings of the IEEE ITSC, September 2006, pp. 548–553. – reference: O. Ludwig, U. Nunes, Improving the generalization properties of neural networks: an application to vehicle detection, in: Proceedings of the 11th International IEEE Conference on ITSC, October 2008, pp. 310–315. – volume: 7 start-page: 132 year: 2001 end-page: 138 ident: b0145 article-title: A distribution-based face/non-face classification technique publication-title: Aust. J. Intell. Inf. Process. Syst. – volume: 236 start-page: 56 year: 2013 end-page: 65 ident: b0055 article-title: Content-based retrieval of human actions from realistic video databases publication-title: Inform. Sci. – reference: A.J. Patel, J.S. Patel, Ensemble systems and incremental learning, in: 2013 International Conference on Intelligent Systems and Signal Processing (ISSP), 2013, pp. 365–368. – reference: D. Acunzo, Y. Zhu, B. Xie, G. Baratoff, Context-adaptive approach for vehicle detection under varying lighting conditions, in: Proceedings of the IEEE ITSC, 2007, pp. 654–660. – reference: D. Lowe, Object recognition from local scale-invariant features, in: Proceedigns of the International Conference on Computer Vision, 1999, pp. 1150–1157. – volume: 14 start-page: 1773 year: 2013 end-page: 1795 ident: b0175 article-title: Looking at vehicles on the road: a survey of vision-based vehicle detection, tracking, and behavior analysis publication-title: IEEE Trans. Intell. Transport. Syst. – reference: X. Wen, H. Zhao, et al., A rear-vehicle detection system for static images based on monocular vision, in: 9th International Conference on Control, Automation, Robotics and Vision, Singapore, March 2006, pp. 2421–2424. – reference: X. Wen, Y. Zheng, An improved algorithm based on AdaBoost for vehicle recognition, in: The 2nd International Conference on Information Science and Engineering (ICISE2010), Hangzhou, China, 2010, pp. 4–7. – reference: R. Lienhart, J. Maydt, An extended set of Haar – like features for rapid object detection, in: The IEEE International Conference on Image Processing, January 2002, pp. 900–903. – volume: 4 start-page: 473 year: 1996 end-page: 479 ident: b0120 article-title: Vehicle detection and recognition in greyscale imagery publication-title: Control Eng. Pract. – volume: 30 start-page: 369 year: 2008 end-page: 382 ident: b0220 article-title: Fast asymmetric learning for cascade face detection publication-title: IEEE Trans. Patt. Anal. Mach. Intell. (PAMI) – volume: 14 start-page: 1346 year: 2013 end-page: 1359 ident: b0150 article-title: Part-based pedestrian detection and feature-based tracking for driver assistance: real-time, robust algorithms, and evaluation publication-title: IEEE Trans. Intell. Transport. Syst. – reference: Z. Sun, G. Bebis, R. Miller, On-road vehicle detection using Gabor filters and support vector machines, in: International Conference on Digital Signal Processing, 2002, pp. 1019–1022. – reference: Y. Zhang, S. Kiselewich, W. Bauson, Legendre and Gabor moments for vehicle recognition in forward collision warning, in: Proceedings of the IEEE ITSC, September 2006, pp. 1185–1190. – volume: 38 start-page: 15 year: 2000 end-page: 33 ident: b0135 article-title: A trainable system for object detection publication-title: Int. J. Comp. Vis. – reference: R. Lienhart, A. Kuranov, V. Pisarevsky, Empirical analysis of detection cascades of boosted classifiers for rapid object detection, in: Proceedings of the 25th German Pattern Recognition Symposium, 2003, pp. 297–304. – reference: D. Withopf, B. Jahne, Learning algorithm for real-time vehicle tracking, in: Proceedings of the IEEE ITSC, September 2006, pp. 516–521. – reference: N. Blanc, B. Steux, and T. Hinz, LaRASideCam: A fast and robust vision-based blindspot detection system, in: Proceedings of the IEEE Intelligence and Vehicular Symposium, June 2007, pp. 480–485. – volume: 13 start-page: 737 year: 2012 end-page: 747 ident: b0090 article-title: Integrating appearance and edge features for sedan vehicle detection in the blind-spot area publication-title: IEEE Trans. Intell. Transp. Syst. – reference: P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple features, in: IEEE Conference on Computer Vision and Pattern Recognition, January 2001, pp. 511–518. – reference: I. Kallenbach, R. Schweiger, G. Palm, and O. Lohlein, Multi-class object detection in vision systems using a hierarchy of cascaded classifiers, in: Proceedings of the IEEE Intelligence and Vehicular Symposium, 2006, pp. 383–387. – volume: 13 start-page: 1243 year: 2012 end-page: 1252 ident: b0020 article-title: Vision-based vehicle detection system with consideration of the detecting location publication-title: IEEE Trans. Intell. Transp. Syst. – reference: J. Cui, F. Liu, Z. Li, and Z. Jia, Vehicle localization using a single camera, in: Proceedings of the IEEE IV, June 2010, pp. 871–876. – reference: T. Son, S. Mita, Car detection using multi-feature selection for varying poses, in: Proceedings of the IEEE Intelligent Vehicular Symposium, June 2009, pp. 507–512. – volume: 23 start-page: 2009 year: 2013 end-page: 2021 ident: b0030 article-title: An object-oriented visual saliency detection framework based on sparse coding representations publication-title: IEEE Trans. Circ. Syst. Video Technol. – reference: A.N. Rajagopalan, P. Burlina, R. Chellapa, Higher order statistical learning for vehicle detection in images, in: Proceedings of the IEEE International Conference on Computer Vision, vol. 2, 1999, pp. 1204–1209. – reference: Z. Sun, G. Bebis, R. Miller, Quantized wavelet features and support vector machines for on-road vehicle detection, in: 7th International Conference on Control, Automation, Robotics and Vision, 2002, pp. 1641–1646. – volume: 144 start-page: 128 year: 2014 end-page: 137 ident: b0035 article-title: Clustering and retrieval of video shots based on natural stimulus FMRI publication-title: Neurocomputing – volume: 44 start-page: 817 year: 2014 end-page: 827 ident: b0170 article-title: Spatio-temporal laplacian pyramid coding for action recognition publication-title: IEEE Trans. Cybernet. – volume: 3 start-page: 252 year: 2002 end-page: 260 ident: b0065 article-title: Preceding vehicle recognition based on learning from sample images publication-title: IEEE Trans. Intell. Transp. Syst. – reference: A. Khammari, F. Nashashibi, Y. Abramson, and C. Laurgeau, Vehicle detection combining gradient analysis and AdaBoost classification, in: Proceedings of the IEEE Intelligence Transportation Systems, September 2005, pp. 66–71. – reference: W. Liu, X.Z. Wen, B.B. Duan, et al., Rear vehicle detection and tracking for lane change assist, in: Proceedings of the IEEE Intelligent Vehicles Symposium, Istanbul, Turkey, 2007, pp. 252–257. – volume: 177 start-page: 1088 year: 2007 end-page: 1122 ident: b0165 article-title: Geometric and photometric invariant distinctive regions detection publication-title: Inform. Sci. – reference: J. Wu, X. Zhang, A PCA classifier and its application in vehicle detection, in: Proceedings of the IEEE International Joint Conference on Neural Networks, vol. 1, 2001, pp. 600–604. – volume: 15 start-page: 2019 issue: 7 year: 2006 ident: 10.1016/j.ins.2014.10.040_b0125 article-title: Monocular precrash vehicle detection: features and classifiers publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2006.877062 – volume: 22 start-page: 2723 issue: 7 year: 2013 ident: 10.1016/j.ins.2014.10.040_b0040 article-title: Representing and retrieving video shots in human-centric brain imaging space publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2013.2256919 – ident: 10.1016/j.ins.2014.10.040_b0105 doi: 10.1109/IVS.2007.4290123 – volume: 16 start-page: 141 issue: 1 year: 2006 ident: 10.1016/j.ins.2014.10.040_b0045 article-title: Unsupervised extraction of visual attention objects in color images publication-title: IEEE Trans. Circ. Syst. Video Technol. doi: 10.1109/TCSVT.2005.859028 – ident: 10.1016/j.ins.2014.10.040_b0115 doi: 10.1109/ITSC.2008.4732681 – volume: 14 start-page: 1773 issue: 4 year: 2013 ident: 10.1016/j.ins.2014.10.040_b0175 article-title: Looking at vehicles on the road: a survey of vision-based vehicle detection, tracking, and behavior analysis publication-title: IEEE Trans. Intell. Transport. Syst. doi: 10.1109/TITS.2013.2266661 – ident: 10.1016/j.ins.2014.10.040_b0230 doi: 10.1109/ITSC.2006.1707383 – ident: 10.1016/j.ins.2014.10.040_b0005 doi: 10.1109/ITSC.2007.4357724 – volume: 13 start-page: 1243 issue: 3 year: 2012 ident: 10.1016/j.ins.2014.10.040_b0020 article-title: Vision-based vehicle detection system with consideration of the detecting location publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2012.2188630 – ident: 10.1016/j.ins.2014.10.040_b0215 doi: 10.1109/ITSC.2006.1706793 – volume: 236 start-page: 56 year: 2013 ident: 10.1016/j.ins.2014.10.040_b0055 article-title: Content-based retrieval of human actions from realistic video databases publication-title: Inform. Sci. doi: 10.1016/j.ins.2013.02.018 – ident: 10.1016/j.ins.2014.10.040_b0110 doi: 10.1109/ICCV.1999.790410 – volume: 3 start-page: 252 issue: 4 year: 2002 ident: 10.1016/j.ins.2014.10.040_b0065 article-title: Preceding vehicle recognition based on learning from sample images publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2002.804752 – ident: 10.1016/j.ins.2014.10.040_b0140 doi: 10.1109/ISSP.2013.6526936 – ident: 10.1016/j.ins.2014.10.040_b0185 – volume: 20 start-page: 39 issue: 1 year: 1998 ident: 10.1016/j.ins.2014.10.040_b0200 article-title: Example-based learning for view-based human face detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.655648 – ident: 10.1016/j.ins.2014.10.040_b0075 doi: 10.1109/ITSC.2006.1706798 – ident: 10.1016/j.ins.2014.10.040_b0190 – ident: 10.1016/j.ins.2014.10.040_b0210 doi: 10.1109/ICISE.2010.5690648 – volume: 144 start-page: 128 year: 2014 ident: 10.1016/j.ins.2014.10.040_b0035 article-title: Clustering and retrieval of video shots based on natural stimulus FMRI publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.11.052 – ident: 10.1016/j.ins.2014.10.040_b0160 doi: 10.1109/CVPR.2001.990517 – ident: 10.1016/j.ins.2014.10.040_b0070 – volume: 110 start-page: 346 issue: 3 year: 2008 ident: 10.1016/j.ins.2014.10.040_b0010 article-title: SURF: speeded up robust features publication-title: Comput. Vis. Image Understand. doi: 10.1016/j.cviu.2007.09.014 – volume: 4 start-page: 473 issue: 4 year: 1996 ident: 10.1016/j.ins.2014.10.040_b0120 article-title: Vehicle detection and recognition in greyscale imagery publication-title: Control Eng. Pract. doi: 10.1016/0967-0661(96)00028-7 – volume: 23 start-page: 2009 issue: 12 year: 2013 ident: 10.1016/j.ins.2014.10.040_b0030 article-title: An object-oriented visual saliency detection framework based on sparse coding representations publication-title: IEEE Trans. Circ. Syst. Video Technol. doi: 10.1109/TCSVT.2013.2242594 – volume: 38 start-page: 15 issue: 1 year: 2000 ident: 10.1016/j.ins.2014.10.040_b0135 article-title: A trainable system for object detection publication-title: Int. J. Comp. Vis. doi: 10.1023/A:1008162616689 – volume: 14 start-page: 1346 issue: 3 year: 2013 ident: 10.1016/j.ins.2014.10.040_b0150 article-title: Part-based pedestrian detection and feature-based tracking for driver assistance: real-time, robust algorithms, and evaluation publication-title: IEEE Trans. Intell. Transport. Syst. doi: 10.1109/TITS.2013.2262045 – ident: 10.1016/j.ins.2014.10.040_b0100 doi: 10.1109/IVS.2005.1505089 – volume: 7 start-page: 132 issue: 3/4 year: 2001 ident: 10.1016/j.ins.2014.10.040_b0145 article-title: A distribution-based face/non-face classification technique publication-title: Aust. J. Intell. Inf. Process. Syst. – ident: 10.1016/j.ins.2014.10.040_b0025 doi: 10.1109/IVS.2010.5548101 – ident: 10.1016/j.ins.2014.10.040_b0195 – volume: 44 start-page: 817 issue: 6 year: 2014 ident: 10.1016/j.ins.2014.10.040_b0170 article-title: Spatio-temporal laplacian pyramid coding for action recognition publication-title: IEEE Trans. Cybernet. doi: 10.1109/TCYB.2013.2273174 – ident: 10.1016/j.ins.2014.10.040_b0015 doi: 10.1109/IVS.2007.4290161 – ident: 10.1016/j.ins.2014.10.040_b0060 doi: 10.1109/IVS.2006.1689658 – ident: 10.1016/j.ins.2014.10.040_b0205 doi: 10.1109/ICARCV.2006.345157 – ident: 10.1016/j.ins.2014.10.040_b0225 doi: 10.1109/IJCNN.2001.939090 – ident: 10.1016/j.ins.2014.10.040_b0235 doi: 10.1109/ITSC.2011.6083135 – volume: 30 start-page: 369 issue: 3 year: 2008 ident: 10.1016/j.ins.2014.10.040_b0220 article-title: Fast asymmetric learning for cascade face detection publication-title: IEEE Trans. Patt. Anal. Mach. Intell. (PAMI) doi: 10.1109/TPAMI.2007.1181 – ident: 10.1016/j.ins.2014.10.040_b0080 doi: 10.1109/ICIP.2002.1038171 – volume: 46 start-page: 1810 issue: 7 year: 2013 ident: 10.1016/j.ins.2014.10.040_b0095 article-title: Boosted key-frame selection and correlated pyramidal motion-feature representation for human action recognition publication-title: Patt. Recog. doi: 10.1016/j.patcog.2012.10.004 – volume: 177 start-page: 1088 issue: 4 year: 2007 ident: 10.1016/j.ins.2014.10.040_b0165 article-title: Geometric and photometric invariant distinctive regions detection publication-title: Inform. Sci. doi: 10.1016/j.ins.2006.09.003 – volume: 44 start-page: 2588 year: 2011 ident: 10.1016/j.ins.2014.10.040_b0130 article-title: Human face recognition based on multidimensional PCA and extreme learning machine publication-title: Pattern Recog. doi: 10.1016/j.patcog.2011.03.013 – ident: 10.1016/j.ins.2014.10.040_b0155 doi: 10.1109/ICCV.1999.790417 – volume: 281 start-page: 295 year: 2014 ident: 10.1016/j.ins.2014.10.040_b0240 article-title: Action recognition by spatio-temporal oriented energies publication-title: Inform. Sci. doi: 10.1016/j.ins.2014.05.021 – volume: 89 start-page: 37 year: 2014 ident: 10.1016/j.ins.2014.10.040_b0050 article-title: Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding publication-title: ISPRS J. Photogram. Rem. Sens. doi: 10.1016/j.isprsjprs.2013.12.011 – ident: 10.1016/j.ins.2014.10.040_b0085 doi: 10.1007/978-3-540-45243-0_39 – volume: 13 start-page: 737 issue: 2 year: 2012 ident: 10.1016/j.ins.2014.10.040_b0090 article-title: Integrating appearance and edge features for sedan vehicle detection in the blind-spot area publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2011.2182649 – ident: 10.1016/j.ins.2014.10.040_b0180 doi: 10.1109/IVS.2009.5164330 |
| SSID | ssj0004766 |
| Score | 2.618208 |
| Snippet | •A fast learning algorithm is introduced for real-time vehicle classification.•A fast feature selection method for AdaBoost is presented by combining a... AdaBoost is a popular method for vehicle detection, but the training process is quite time-consuming. In this paper, a rapid learning algorithm is proposed to... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 395 |
| SubjectTerms | AdaBoost Algorithms Classification Haar-like features Incremental learning Learning Machine learning Real time State of the art Training Vehicle classification Vehicles Weak classifier |
| Title | A rapid learning algorithm for vehicle classification |
| URI | https://dx.doi.org/10.1016/j.ins.2014.10.040 https://www.proquest.com/docview/1660082308 |
| Volume | 295 |
| WOSCitedRecordID | wos000346543000023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0004766 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeg4wAHBAPEgCEjIQ5UQUnsxPaxQkPAYeIwtN4i13lpU4206sc08dfzHNtpVrSJHbhEiWVbTn4v78N-H4S8F6XiumQQGaF1xLlR0UTyJJKoPWtAhbbSui02IU5P5XisfvhinOu2nIBoGnl1pZb_FWpsQ7Bt6Owd4O4mxQa8R9DxirDj9Z-AHw1XelmXoR7EdKgvpotVvZn9al0KL2FmRwyNVZutn9AOmnnwau8iGodeQHaK97njUuMt_J7V3e7MTC-8fT8Nbdij5e7bjkD8xvQ51P2dhsRFbsd97ommprVB-twzVVmP_zH_5EQpb5MJ_M2l3YbBHE0LmzA94Z-sf53L2nQ9I_aepOr8B4Nr2rzAKQo7BT4XOMV9cpCKTMkBORh9Oxl_34XICndsHV4hHHC3rn5767hJRdkT1q0GcvaEPPamAx05yJ-Se9Ackke9hJKH5NiHodAPtIci9Qz8GclGtCUOGoiDdsRBsTv1xEGvE8dz8vPLydnnr5EvnBEZpvJNVKVJJdIMBKQCJFSMg9KZVhUwjfqvTbCUVyaNGdjqPhNjU8HKOJcahU3JlGEvyKBZNPCSUK6ZSZkqmYgnPJcC_19USIGbBHJsyo5IHL5VYXxWeVvc5KK4EaMj8rEbsnQpVW7rzAMAhSd5p-sVSEy3DXsXwCqQX9pDMN3AYrsukjx3p8vy1V3W8Zo83P0Sb8hgs9rCMXlgLjf1evXWU9sfvfyKuA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+rapid+learning+algorithm+for+vehicle+classification&rft.jtitle=Information+sciences&rft.au=Wen%2C+Xuezhi&rft.au=Shao%2C+Ling&rft.au=Xue%2C+Yu&rft.au=Fang%2C+Wei&rft.date=2015-02-20&rft.issn=0020-0255&rft.volume=295&rft.spage=395&rft.epage=406&rft_id=info:doi/10.1016%2Fj.ins.2014.10.040&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2014_10_040 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |