A survey of randomized algorithms for training neural networks
As a powerful tool for data regression and classification, neural networks have received considerable attention from researchers in fields such as machine learning, statistics, computer vision and so on. There exists a large body of research work on network training, among which most of them tune th...
Saved in:
| Published in: | Information sciences Vol. 364-365; pp. 146 - 155 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
10.10.2016
|
| Subjects: | |
| ISSN: | 0020-0255, 1872-6291 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | As a powerful tool for data regression and classification, neural networks have received considerable attention from researchers in fields such as machine learning, statistics, computer vision and so on. There exists a large body of research work on network training, among which most of them tune the parameters iteratively. Such methods often suffer from local minima and slow convergence. It has been shown that randomization based training methods can significantly boost the performance or efficiency of neural networks. Among these methods, most approaches use randomization either to change the data distributions, and/or to fix a part of the parameters or network configurations. This article presents a comprehensive survey of the earliest work and recent advances as well as some suggestions for future research. |
|---|---|
| AbstractList | As a powerful tool for data regression and classification, neural networks have received considerable attention from researchers in fields such as machine learning, statistics, computer vision and so on. There exists a large body of research work on network training, among which most of them tune the parameters iteratively. Such methods often suffer from local minima and slow convergence. It has been shown that randomization based training methods can significantly boost the performance or efficiency of neural networks. Among these methods, most approaches use randomization either to change the data distributions, and/or to fix a part of the parameters or network configurations. This article presents a comprehensive survey of the earliest work and recent advances as well as some suggestions for future research. As a powerful tool for data regression and classification, neural networks have received considerable attention from researchers in fields such as machine learning, statistics, computer vision and so on. There exists a large body of research work on network training, among which most of them tune the parameters iteratively. Such methods often suffer from local minima and slow convergence. It has been shown that randomization based training methods can significantly boost the performance or efficiency of neural networks. Among these methods, most approaches use randomization either to change the data distributions, and/or to fix a part of the parameters or network configurations. This article presents a comprehensive survey of the earliest work and recent advances as well as some suggestions for future research. |
| Author | Suganthan, P.N. Zhang, Le |
| Author_xml | – sequence: 1 givenname: Le surname: Zhang fullname: Zhang, Le – sequence: 2 givenname: P.N. orcidid: 0000-0003-0901-5105 surname: Suganthan fullname: Suganthan, P.N. email: epnsugan@ntu.edu.sg |
| BookMark | eNp9kD1PwzAQhi1UJNrCD2DLyJJwthPHERJSVfElVWKB2XKTS3FJ7GInReXXk6hMDJ3uhve50_POyMQ6i4RcU0goUHG7TYwNCRvWBGgCvDgjUypzFgtW0AmZAjCIgWXZBZmFsAWANBdiSu4XUej9Hg-RqyOvbeVa84NVpJuN86b7aENUOx91Xhtr7Cay2HvdDKP7dv4zXJLzWjcBr_7mnLw_Prwtn-PV69PLcrGKS16ILkYUEtMKSgE1gGayquuiALZOudTIMGVS5OuCZkJnomaMDwKcMVHla-Q8Z3xObo53d9599Rg61ZpQYtNoi64PispBjVEp-RDNj9HSuxA81qo0ne6Ms6NEoyiosTG1VUNjamxMAVXjwzmh_8idN632h5PM3ZHBwX5v0KtQGrQlVsZj2anKmRP0LzPUhVU |
| CitedBy_id | crossref_primary_10_1007_s12145_024_01532_y crossref_primary_10_1109_JAS_2021_1004284 crossref_primary_10_1002_ima_22537 crossref_primary_10_1016_j_ins_2016_09_016 crossref_primary_10_3390_app7090868 crossref_primary_10_1007_s00521_019_04290_x crossref_primary_10_1016_j_asoc_2017_09_020 crossref_primary_10_1016_j_asoc_2018_07_013 crossref_primary_10_1155_2024_5648897 crossref_primary_10_1007_s10489_020_02006_6 crossref_primary_10_1109_TCSS_2022_3146974 crossref_primary_10_1016_j_bspc_2018_07_014 crossref_primary_10_1155_2022_5832043 crossref_primary_10_1016_j_knosys_2025_113879 crossref_primary_10_1002_ima_22400 crossref_primary_10_1007_s00500_020_05080_7 crossref_primary_10_1007_s12530_022_09429_1 crossref_primary_10_1016_j_jhydrol_2019_05_073 crossref_primary_10_1109_MCI_2017_2742867 crossref_primary_10_1016_j_ins_2017_08_051 crossref_primary_10_1016_j_neucom_2017_11_070 crossref_primary_10_1109_TSMC_2022_3158276 crossref_primary_10_1109_LGRS_2021_3132020 crossref_primary_10_3390_s17020414 crossref_primary_10_1016_j_neunet_2018_01_007 crossref_primary_10_1016_j_neunet_2019_03_013 crossref_primary_10_1016_j_ins_2019_08_059 crossref_primary_10_7717_peerj_cs_2590 crossref_primary_10_1287_ijoc_2021_1107 crossref_primary_10_1016_j_engappai_2018_12_005 crossref_primary_10_1016_j_engappai_2022_105535 crossref_primary_10_1016_j_jpdc_2017_06_001 crossref_primary_10_1007_s00521_017_3218_y crossref_primary_10_1016_j_ins_2025_122162 crossref_primary_10_1016_j_eswa_2022_116867 crossref_primary_10_1016_j_asoc_2018_03_013 crossref_primary_10_1007_s00521_022_07824_y crossref_primary_10_1007_s11265_023_01895_3 crossref_primary_10_1007_s13198_016_0526_z crossref_primary_10_1016_j_engappai_2023_106237 crossref_primary_10_1038_s41598_024_66676_9 crossref_primary_10_1016_j_asoc_2022_108526 crossref_primary_10_1109_TSMC_2022_3213628 crossref_primary_10_1016_j_asoc_2017_08_007 crossref_primary_10_1016_j_asoc_2017_08_006 crossref_primary_10_3390_computation5030040 crossref_primary_10_1109_ACCESS_2020_3005247 crossref_primary_10_1016_j_swevo_2017_03_005 crossref_primary_10_1007_s12559_019_09710_7 crossref_primary_10_1016_j_energy_2018_05_146 crossref_primary_10_1016_j_jiec_2016_09_017 crossref_primary_10_1109_TFUZZ_2024_3400898 crossref_primary_10_1007_s11630_021_1497_1 crossref_primary_10_1149_1945_7111_ad69c5 crossref_primary_10_1016_j_asoc_2017_10_010 crossref_primary_10_1007_s10921_025_01179_9 crossref_primary_10_1109_TCYB_2018_2863020 crossref_primary_10_1016_j_asoc_2017_08_016 crossref_primary_10_1155_2018_6381610 crossref_primary_10_1016_j_eswa_2022_118502 crossref_primary_10_3390_s19081864 crossref_primary_10_1016_j_neucom_2020_07_127 crossref_primary_10_1007_s00521_021_06359_y crossref_primary_10_1109_TCYB_2021_3079906 crossref_primary_10_1109_TCYB_2021_3126711 crossref_primary_10_1109_TCBB_2022_3202707 crossref_primary_10_1016_j_engappai_2022_105509 crossref_primary_10_1515_med_2020_0131 crossref_primary_10_1109_JPHOT_2018_2817843 crossref_primary_10_1016_j_saa_2022_121348 crossref_primary_10_3390_mca30040067 crossref_primary_10_1038_s41598_024_61552_y crossref_primary_10_1155_2020_5604246 crossref_primary_10_1016_j_jhydrol_2022_129034 crossref_primary_10_1016_j_ins_2017_02_003 crossref_primary_10_1016_j_neucom_2017_10_063 crossref_primary_10_1016_j_engappai_2020_103633 crossref_primary_10_3390_genes10020087 crossref_primary_10_1109_TIM_2023_3348909 crossref_primary_10_3390_electronics10091062 crossref_primary_10_1016_j_neucom_2023_126618 crossref_primary_10_1016_j_asoc_2023_110377 crossref_primary_10_1016_j_neucom_2017_08_040 crossref_primary_10_47164_ijngc_v13i3_820 crossref_primary_10_1016_j_cnsns_2017_09_004 crossref_primary_10_1515_med_2020_0006 crossref_primary_10_1002_cpe_5945 crossref_primary_10_1007_s10723_022_09609_y crossref_primary_10_1016_j_asoc_2019_105854 crossref_primary_10_1016_j_neucom_2018_09_012 crossref_primary_10_3390_math8050766 crossref_primary_10_1007_s12553_019_00315_6 crossref_primary_10_1016_j_engappai_2023_106676 crossref_primary_10_1371_journal_pone_0194889 crossref_primary_10_1088_1361_665X_ad67bc crossref_primary_10_1109_TIM_2022_3216409 crossref_primary_10_3390_bdcc3040051 crossref_primary_10_1016_j_renene_2025_123878 crossref_primary_10_1016_j_compbiomed_2017_07_018 crossref_primary_10_1007_s00500_020_05390_w crossref_primary_10_1016_j_scs_2020_102275 crossref_primary_10_1016_j_asoc_2017_08_053 crossref_primary_10_1109_ACCESS_2019_2944682 crossref_primary_10_1016_j_neunet_2025_108032 crossref_primary_10_1016_j_asoc_2017_08_055 crossref_primary_10_1049_iet_gtd_2016_2010 crossref_primary_10_3390_mca29030040 crossref_primary_10_1007_s43069_022_00179_z crossref_primary_10_1016_j_asoc_2018_09_023 crossref_primary_10_1016_j_compag_2024_109414 crossref_primary_10_1016_j_asoc_2021_107797 crossref_primary_10_1109_TIM_2021_3132053 crossref_primary_10_3390_su10010219 crossref_primary_10_1016_j_asoc_2021_107438 crossref_primary_10_1002_ima_22484 crossref_primary_10_1080_10589759_2024_2375575 crossref_primary_10_1088_1757_899X_450_5_052007 crossref_primary_10_1007_s00521_020_04994_5 crossref_primary_10_1109_TCYB_2016_2588526 crossref_primary_10_1016_j_asoc_2024_111759 crossref_primary_10_1016_j_asoc_2017_07_027 crossref_primary_10_1007_s13042_021_01331_7 crossref_primary_10_1049_iet_ipr_2018_5371 crossref_primary_10_1515_tnsci_2019_0021 crossref_primary_10_1016_j_neucom_2019_08_058 crossref_primary_10_1007_s11063_019_10012_0 crossref_primary_10_1016_j_neunet_2019_09_039 crossref_primary_10_1016_j_neucom_2018_07_080 crossref_primary_10_1007_s11063_017_9752_x crossref_primary_10_1109_TNNLS_2022_3190043 crossref_primary_10_1016_j_apenergy_2019_04_126 crossref_primary_10_1016_j_applthermaleng_2018_12_092 crossref_primary_10_1122_8_0000831 crossref_primary_10_1016_j_asoc_2019_105534 crossref_primary_10_1109_TNNLS_2024_3512492 crossref_primary_10_1109_JBHI_2024_3491593 crossref_primary_10_1007_s12530_021_09409_x crossref_primary_10_1016_j_eswa_2022_119164 crossref_primary_10_1016_j_ins_2018_07_015 crossref_primary_10_1002_ima_22468 crossref_primary_10_1016_j_eswa_2022_117784 crossref_primary_10_1016_j_energy_2019_116589 crossref_primary_10_1016_j_neunet_2023_06_042 crossref_primary_10_1016_j_ins_2017_10_044 crossref_primary_10_1063_1_5136269 crossref_primary_10_1016_j_neucom_2025_131515 crossref_primary_10_1109_TPEL_2024_3494858 crossref_primary_10_1016_j_neunet_2019_01_007 crossref_primary_10_1016_j_apenergy_2022_119277 crossref_primary_10_1016_j_engappai_2022_105353 crossref_primary_10_1109_TNNLS_2018_2846646 crossref_primary_10_1016_j_nxener_2025_100256 crossref_primary_10_1007_s00500_019_04647_3 crossref_primary_10_1007_s10489_023_04765_4 crossref_primary_10_1016_j_applthermaleng_2017_11_061 crossref_primary_10_1007_s00170_019_04729_4 crossref_primary_10_1007_s00521_021_06851_5 crossref_primary_10_1109_TCDS_2018_2796940 crossref_primary_10_1016_j_neucom_2018_10_090 crossref_primary_10_1007_s13369_017_2907_2 crossref_primary_10_1016_j_asoc_2021_107239 crossref_primary_10_1016_j_neucom_2018_10_098 crossref_primary_10_1007_s40846_018_0411_0 crossref_primary_10_1016_j_compbiolchem_2021_107566 crossref_primary_10_1016_j_asoc_2017_07_061 crossref_primary_10_1109_ACCESS_2024_3515481 crossref_primary_10_3390_app7020164 crossref_primary_10_1016_j_eswa_2019_112912 crossref_primary_10_1109_TCOMM_2022_3184158 crossref_primary_10_1155_2016_9742483 crossref_primary_10_1002_widm_1200 crossref_primary_10_1108_DTA_08_2023_0437 crossref_primary_10_1016_j_eswa_2023_120279 crossref_primary_10_1016_j_ins_2019_10_069 crossref_primary_10_1016_j_neucom_2020_07_074 crossref_primary_10_7717_peerj_2684 crossref_primary_10_1109_TIM_2021_3063200 crossref_primary_10_1007_s00500_019_04499_x crossref_primary_10_1016_j_engappai_2023_106700 crossref_primary_10_1016_j_ins_2025_121947 crossref_primary_10_3390_app11093867 crossref_primary_10_1016_j_asoc_2020_106756 crossref_primary_10_1016_j_ins_2020_11_028 crossref_primary_10_3390_sym12081272 crossref_primary_10_3390_s20164493 crossref_primary_10_1016_j_compeleceng_2024_109499 crossref_primary_10_1109_MDAT_2020_3031857 crossref_primary_10_1088_1402_4896_acf004 crossref_primary_10_1016_j_asoc_2021_107455 crossref_primary_10_1016_j_imu_2018_07_002 crossref_primary_10_3390_s20041070 crossref_primary_10_1007_s00521_021_06793_y crossref_primary_10_1177_0734242X211017974 crossref_primary_10_1016_j_asoc_2025_113063 crossref_primary_10_1109_TII_2017_2760915 crossref_primary_10_1186_s13677_020_00167_w crossref_primary_10_1016_j_knosys_2025_113622 crossref_primary_10_1016_j_heliyon_2024_e32572 |
| Cites_doi | 10.1109/72.125861 10.1016/0893-6080(88)90003-2 10.1016/0925-2312(95)00066-F 10.1162/089976602760407955 10.1109/5.58326 10.1016/0925-2312(94)90053-1 10.1016/j.neucom.2006.10.111 10.1142/S1469026801000238 10.1109/TNN.2010.2066286 10.1109/MSP.2007.4286571 10.1103/RevModPhys.34.123 10.1109/MCI.2015.2405352 10.1109/72.471375 10.7551/mitpress/7496.003.0016 10.1016/j.peva.2010.07.006 10.1109/5.726791 10.1016/0893-6080(91)90009-T 10.1109/72.536316 10.1109/2.144401 10.1037/h0042519 10.1109/3477.740166 10.1162/neco.1989.1.4.502 10.1162/neco.2010.08-09-1081 10.1109/TSMC.2014.2332305 10.1109/TIT.2006.885507 10.1109/34.107014 10.1016/S0893-6080(97)00089-0 10.1177/105971230601400204 10.1016/j.ins.2013.12.016 10.1126/science.1127647 10.1109/TIT.2005.858979 10.1371/journal.pcbi.1000579 10.1016/S0377-2217(99)00481-6 10.1093/comjnl/bxp032 10.1016/S0925-2312(99)00115-0 10.1016/j.neucom.2008.07.002 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Inc. |
| Copyright_xml | – notice: 2016 Elsevier Inc. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.ins.2016.01.039 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science Statistics |
| EISSN | 1872-6291 |
| EndPage | 155 |
| ExternalDocumentID | 10_1016_j_ins_2016_01_039 S002002551600058X |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABUCO ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ WH7 XPP ZMT ~02 ~G- 1OL 29I 77I 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ H~9 R2- SBC SDS SEW UHS WUQ YYP ZY4 ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c396t-ee68e4d0c60f00a28dff9902b438ae2e42867b9156a56f2230393226d7be33723 |
| ISICitedReferencesCount | 281 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000378969400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Sun Nov 09 14:31:13 EST 2025 Sat Nov 29 06:24:59 EST 2025 Tue Nov 18 22:25:52 EST 2025 Fri Feb 23 02:33:55 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Recurrent neural networks Randomized neural networks Convolutional neural networks |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c396t-ee68e4d0c60f00a28dff9902b438ae2e42867b9156a56f2230393226d7be33723 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-0901-5105 |
| PQID | 1825521883 |
| PQPubID | 23500 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_1825521883 crossref_citationtrail_10_1016_j_ins_2016_01_039 crossref_primary_10_1016_j_ins_2016_01_039 elsevier_sciencedirect_doi_10_1016_j_ins_2016_01_039 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-10-10 |
| PublicationDateYYYYMMDD | 2016-10-10 |
| PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-10 day: 10 |
| PublicationDecade | 2010 |
| PublicationTitle | Information sciences |
| PublicationYear | 2016 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Huang, Ramesh, Berg, Learned-Miller (bib0035) 2007 Fan, Xu, Wu, Gong (bib0025) 2010; 21 Moody, Darken (bib0052) 1988 Alhamdoosh, Wang (bib0002) 2014; 264 Bengio, LeCun (bib0007) 2007; 34 Chiam, Tan, Al Mamun (bib0018) 2007 Zhang (bib0079) 2014 Li, Wang, Chai (bib0046) 2015; 45 Albers (bib0001) 1996 Boese, Kahng (bib0011) 1993 Wang, Courant (bib0075) 2002 T.P. Lillicrap, D. Cownden, D.B. Tweed, C.J. Akerman, Random feedback weights support learning in deep neural networks, arXiv preprint arXiv:1411.0247(2014). Candes, Tao (bib0013) 2005; 51 Rahimi, Recht (bib0062) 2009 Vincent, Larochelle, Lajoie, Bengio, Manzagol (bib0073) 2010; 11 Pao (bib0053) 1989 Luenberger (bib0049) 1973; 28 Jaeger (bib0039) 2002 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib0070) 2014; 15 Broomhead, Lowe (bib0012) 1988 Timotheou (bib0072) 2010; 53 Hu (bib0033) 2009; 72 Hu, Tseng (bib0034) 2007; 70 Principe, Chen (bib0060) 2015; 10 Block (bib0010) 1962; 34 Bakırcıoğlu, Koçak (bib0003) 2000; 126 Kennedy (bib0041) 2010 Zhang, Suganthan (bib0078) 2015 Pao, Takefuji (bib0056) 1992; 25 Barlett, Downs (bib0005) 1992; 3 Mendes, Cortez, Rocha, Neves (bib0051) 2002; 6 Coates, Ng (bib0019) 2011 Berry, Quoy (bib0009) 2006; 14 Chen, Cao, Wen, Sun (bib0017) 2013 Le Roux, Bengio (bib0042) 2010; 22 Pao, Park, Sobajic (bib0054) 1994; 6 Rahimi, Recht (bib0061) 2007 Lu, Dhillon, Foster, Ungar (bib0048) 2013 Saxe, Koh, Chen, Bhand, Suresh, Ng (bib0068) 2011 de Castro, Von Zuben (bib0021) 2001; 1 Poggio, Girosi (bib0059) 1990; 78 Jacobs (bib0038) 1988; 1 Fernández-Delgado, Cernadas, Barro, Amorim (bib0026) 2014; 15 Pao, Phillips (bib0055) 1995; 9 Pinto, Doukhan, DiCarlo, Cox (bib0057) 2009; 5 Dai, Xie, He, Liang, Raj, Balcan, Song (bib0020) 2014 Engel (bib0024) 1988; 2 Gori, Tesi (bib0029) 1992; 14 Maass, Natschläger, Markram (bib0050) 2002; 14 Hornik (bib0032) 1991; 4 Chen (bib0015) 1996; 7 Haykin, Network (bib0030) 2004; 2 Poggio, Girosi (bib0058) 1989 Li, Hastie, Church (bib0045) 2006 Wan, Zeiler, Zhang, Cun, Fergus (bib0074) 2013 LeCun, Bottou, Bengio, Haffner (bib0043) 1998; 86 Hinton, Salakhutdinov (bib0031) 2006; 313 Gelenbe (bib0027) 1989; 1 Jarrett, Kavukcuoglu, Ranzato, LeCun (bib0040) 2009 Rosenblatt (bib0066) 1961 Zeiler, Fergus (bib0077) 2013 Li, Chen, Huang (bib0044) 2010 Ren, Zhang, Suganthan (bib0064) 2015 Baraniuk (bib0004) 2007; 24 Georgiopoulos, Li, Kocak (bib0028) 2011; 68 Rosenblatt (bib0065) 1958; 65 Tang, Salakhutdinov (bib0071) 2013 Chen, Wan (bib0016) 1999; 29 Husmeier, Taylor (bib0036) 1998; 11 Deng, Dong, Socher, Li, Li, Fei-Fei (bib0022) 2009 Ren, Suganthan, Srikanth, Amaratungac (bib0063) 2015 Bergstra, Bengio (bib0008) 2012; 13 Schmidt, Kraaijveld, Duin (bib0069) 1992 Elisseeff, Paugam-Moisy (bib0023) 1999; 29 Igelnik, Pao (bib0037) 1995; 6 Yusiong, Naval Jr (bib0076) 2006 Candes, Tao (bib0014) 2006; 52 Saunders, Gammerman, Vovk (bib0067) 1998 Bartlett, Mendelson (bib0006) 2003; 3 Chiam (10.1016/j.ins.2016.01.039_bib0018) 2007 Lu (10.1016/j.ins.2016.01.039_bib0048) 2013 Zhang (10.1016/j.ins.2016.01.039_bib0079) 2014 Jaeger (10.1016/j.ins.2016.01.039_bib0039) 2002 Gori (10.1016/j.ins.2016.01.039_bib0029) 1992; 14 Principe (10.1016/j.ins.2016.01.039_bib0060) 2015; 10 Mendes (10.1016/j.ins.2016.01.039_bib0051) 2002; 6 Gelenbe (10.1016/j.ins.2016.01.039_bib0027) 1989; 1 Poggio (10.1016/j.ins.2016.01.039_bib0058) 1989 Pao (10.1016/j.ins.2016.01.039_bib0053) 1989 Saunders (10.1016/j.ins.2016.01.039_bib0067) 1998 Luenberger (10.1016/j.ins.2016.01.039_bib0049) 1973; 28 Srivastava (10.1016/j.ins.2016.01.039_bib0070) 2014; 15 Li (10.1016/j.ins.2016.01.039_bib0046) 2015; 45 Haykin (10.1016/j.ins.2016.01.039_bib0030) 2004; 2 Saxe (10.1016/j.ins.2016.01.039_bib0068) 2011 Rosenblatt (10.1016/j.ins.2016.01.039_bib0066) 1961 Engel (10.1016/j.ins.2016.01.039_bib0024) 1988; 2 Bengio (10.1016/j.ins.2016.01.039_bib0007) 2007; 34 Huang (10.1016/j.ins.2016.01.039_bib0035) 2007 Igelnik (10.1016/j.ins.2016.01.039_bib0037) 1995; 6 Bartlett (10.1016/j.ins.2016.01.039_bib0006) 2003; 3 Zhang (10.1016/j.ins.2016.01.039_bib0078) 2015 Rahimi (10.1016/j.ins.2016.01.039_bib0061) 2007 Alhamdoosh (10.1016/j.ins.2016.01.039_bib0002) 2014; 264 Pao (10.1016/j.ins.2016.01.039_bib0054) 1994; 6 10.1016/j.ins.2016.01.039_bib0047 Barlett (10.1016/j.ins.2016.01.039_bib0005) 1992; 3 Poggio (10.1016/j.ins.2016.01.039_bib0059) 1990; 78 Fan (10.1016/j.ins.2016.01.039_bib0025) 2010; 21 Maass (10.1016/j.ins.2016.01.039_bib0050) 2002; 14 Ren (10.1016/j.ins.2016.01.039_bib0063) 2015 Schmidt (10.1016/j.ins.2016.01.039_bib0069) 1992 Hu (10.1016/j.ins.2016.01.039_bib0034) 2007; 70 Moody (10.1016/j.ins.2016.01.039_bib0052) 1988 Hinton (10.1016/j.ins.2016.01.039_bib0031) 2006; 313 Georgiopoulos (10.1016/j.ins.2016.01.039_bib0028) 2011; 68 Hu (10.1016/j.ins.2016.01.039_bib0033) 2009; 72 Chen (10.1016/j.ins.2016.01.039_bib0016) 1999; 29 Pinto (10.1016/j.ins.2016.01.039_bib0057) 2009; 5 Yusiong (10.1016/j.ins.2016.01.039_bib0076) 2006 Rahimi (10.1016/j.ins.2016.01.039_bib0062) 2009 Chen (10.1016/j.ins.2016.01.039_bib0015) 1996; 7 Timotheou (10.1016/j.ins.2016.01.039_bib0072) 2010; 53 Jacobs (10.1016/j.ins.2016.01.039_bib0038) 1988; 1 Zeiler (10.1016/j.ins.2016.01.039_bib0077) 2013 Pao (10.1016/j.ins.2016.01.039_bib0056) 1992; 25 de Castro (10.1016/j.ins.2016.01.039_bib0021) 2001; 1 Vincent (10.1016/j.ins.2016.01.039_bib0073) 2010; 11 Kennedy (10.1016/j.ins.2016.01.039_bib0041) 2010 Hornik (10.1016/j.ins.2016.01.039_bib0032) 1991; 4 Ren (10.1016/j.ins.2016.01.039_bib0064) 2015 Candes (10.1016/j.ins.2016.01.039_bib0014) 2006; 52 Chen (10.1016/j.ins.2016.01.039_bib0017) 2013 LeCun (10.1016/j.ins.2016.01.039_bib0043) 1998; 86 Li (10.1016/j.ins.2016.01.039_bib0044) 2010 Rosenblatt (10.1016/j.ins.2016.01.039_bib0065) 1958; 65 Tang (10.1016/j.ins.2016.01.039_bib0071) 2013 Pao (10.1016/j.ins.2016.01.039_bib0055) 1995; 9 Baraniuk (10.1016/j.ins.2016.01.039_bib0004) 2007; 24 Broomhead (10.1016/j.ins.2016.01.039_bib0012) 1988 Dai (10.1016/j.ins.2016.01.039_bib0020) 2014 Jarrett (10.1016/j.ins.2016.01.039_bib0040) 2009 Le Roux (10.1016/j.ins.2016.01.039_bib0042) 2010; 22 Candes (10.1016/j.ins.2016.01.039_bib0013) 2005; 51 Fernández-Delgado (10.1016/j.ins.2016.01.039_bib0026) 2014; 15 Boese (10.1016/j.ins.2016.01.039_bib0011) 1993 Albers (10.1016/j.ins.2016.01.039_bib0001) 1996 Wan (10.1016/j.ins.2016.01.039_bib0074) 2013 Li (10.1016/j.ins.2016.01.039_bib0045) 2006 Berry (10.1016/j.ins.2016.01.039_bib0009) 2006; 14 Wang (10.1016/j.ins.2016.01.039_bib0075) 2002 Coates (10.1016/j.ins.2016.01.039_bib0019) 2011 Block (10.1016/j.ins.2016.01.039_bib0010) 1962; 34 Elisseeff (10.1016/j.ins.2016.01.039_bib0023) 1999; 29 Bergstra (10.1016/j.ins.2016.01.039_bib0008) 2012; 13 Bakırcıoğlu (10.1016/j.ins.2016.01.039_bib0003) 2000; 126 Deng (10.1016/j.ins.2016.01.039_bib0022) 2009 Husmeier (10.1016/j.ins.2016.01.039_bib0036) 1998; 11 |
| References_xml | – volume: 2 start-page: 641 year: 1988 end-page: 648 ident: bib0024 article-title: Teaching feed-forward neural networks by simulated annealing publication-title: Complex Syst. – start-page: 346 year: 2007 end-page: 360 ident: bib0018 article-title: Multiobjective evolutionary neural networks for time series forecasting publication-title: Evolutionary Multi-Criterion Optimization – volume: 13 start-page: 281 year: 2012 end-page: 305 ident: bib0008 article-title: Random search for hyper-parameter optimization publication-title: J. Mach. Learn. Res. – start-page: 1 year: 1992 end-page: 4 ident: bib0069 article-title: Feedforward neural networks with random weights publication-title: Proceedings of the 11th IAPR International Conference on Pattern Recognition, – volume: 78 start-page: 1481 year: 1990 end-page: 1497 ident: bib0059 article-title: Networks for approximation and learning publication-title: Proc. IEEE – start-page: 2528 year: 2011 end-page: 2536 ident: bib0019 article-title: Selecting receptive fields in deep networks publication-title: Proceedings of the Advances in Neural Information Processing Systems – volume: 24 year: 2007 ident: bib0004 article-title: Compressive sensing publication-title: IEEE Signal Process. Mag. – volume: 72 start-page: 1808 year: 2009 end-page: 1816 ident: bib0033 article-title: Functional-link nets with genetic-algorithm-based learning for robust nonlinear interval regression analysis publication-title: Neurocomputing – volume: 22 start-page: 2192 year: 2010 end-page: 2207 ident: bib0042 article-title: Deep belief networks are compact universal approximators publication-title: Neural Comput. – volume: 34 year: 2007 ident: bib0007 article-title: Scaling learning algorithms towards AI publication-title: Large-Scale Kernel Mach. – volume: 14 start-page: 76 year: 1992 end-page: 86 ident: bib0029 article-title: On the problem of local minima in backpropagation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 1058 year: 2013 end-page: 1066 ident: bib0074 article-title: Regularization of neural networks using dropconnect publication-title: Proceedings of the 30th International Conference on Machine Learning (ICML-13) – volume: 11 start-page: 89 year: 1998 end-page: 116 ident: bib0036 article-title: Neural networks for predicting conditional probability densities: Improved training scheme combining EM and RVFL publication-title: Neural Netw. – volume: 1 start-page: 295 year: 1988 end-page: 307 ident: bib0038 article-title: Increased rates of convergence through learning rate adaptation publication-title: Neural Netw. – volume: 14 start-page: 2531 year: 2002 end-page: 2560 ident: bib0050 article-title: Real-time computing without stable states: A new framework for neural computation based on perturbations publication-title: Neural Comput. – year: 2015 ident: bib0064 article-title: Ensemble classification and regression – recent developments, applications and future directions publication-title: IEEE Comput. Intell. Mag. – volume: 3 start-page: 202 year: 1992 end-page: 210 ident: bib0005 article-title: Using random weights to train multilayer networks of hard-limiting units publication-title: IEEE Trans. Neural Netw. – volume: 29 start-page: 3 year: 1999 end-page: 24 ident: bib0023 article-title: JNN, a randomized algorithm for training multilayer networks in polynomial time publication-title: Neurocomputing – volume: 9 start-page: 149 year: 1995 end-page: 164 ident: bib0055 article-title: The functional link net and learning optimal control publication-title: Neurocomputing – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: bib0031 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 52 start-page: 5406 year: 2006 end-page: 5425 ident: bib0014 article-title: Near-optimal signal recovery from random projections: Universal encoding strategies? publication-title: IEEE Trans. Inf. Theory – volume: 6 start-page: 1320 year: 1995 end-page: 1329 ident: bib0037 article-title: Stochastic choice of basis functions in adaptive function approximation and the functional-link net publication-title: IEEE Trans. Neural Netw. – volume: 65 start-page: 386 year: 1958 ident: bib0065 article-title: The perceptron: a probabilistic model for information storage and organization in the brain. publication-title: Psychol. Rev. – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: bib0043 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE – year: 2015 ident: bib0078 article-title: A comprehensive evaluation of random vector functional link networks publication-title: Inf. Sci. – volume: 29 start-page: 62 year: 1999 end-page: 72 ident: bib0016 article-title: A rapid learning and dynamic stepwise updating algorithm for flat neural networks and the application to time-series prediction publication-title: IEEE Trans. Syst., Man, Cybern., Part B: Cybern. – year: 1961 ident: bib0066 article-title: Principles of neurodynamics. perceptrons and the theory of brain mechanisms publication-title: Technical Report – volume: 5 start-page: e1000579 year: 2009 ident: bib0057 article-title: A high-throughput screening approach to discovering good forms of biologically inspired visual representation publication-title: PLoS Comput Biol – volume: 21 start-page: 1610 year: 2010 end-page: 1623 ident: bib0025 article-title: Human tracking using convolutional neural networks publication-title: IEEE Trans. Neural Netw. – volume: 68 start-page: 361 year: 2011 end-page: 384 ident: bib0028 article-title: Learning in the feed-forward random neural network: A critical review publication-title: Perform. Eval. – volume: 10 start-page: 68 year: 2015 end-page: 77 ident: bib0060 article-title: Universal approximation with convex optimization: Gimmick or reality?[discussion forum] publication-title: IEEE Comput. Intell. Mag. – start-page: 1089 year: 2011 end-page: 1096 ident: bib0068 article-title: On random weights and unsupervised feature learning publication-title: Proceedings of the 28th International Conference on Machine Learning (ICML-11) – volume: 14 start-page: 129 year: 2006 end-page: 137 ident: bib0009 article-title: Structure and dynamics of random recurrent neural networks publication-title: Adapt. Behav. – volume: 4 start-page: 251 year: 1991 end-page: 257 ident: bib0032 article-title: Approximation capabilities of multilayer feedforward networks publication-title: Neural Netw. – start-page: 760 year: 2010 end-page: 766 ident: bib0041 article-title: Particle swarm optimization publication-title: Encyclopedia of Machine Learning – volume: 126 start-page: 319 year: 2000 end-page: 330 ident: bib0003 article-title: Survey of random neural network applications publication-title: Eur. J. Oper. Res. – start-page: 1177 year: 2007 end-page: 1184 ident: bib0061 article-title: Random features for large-scale kernel machines publication-title: Proceedings of the Advances in Neural Information Processing Systems – year: 1989 ident: bib0053 publication-title: Adaptive Pattern Recognition and Neural Networks – volume: 25 start-page: 76 year: 1992 end-page: 79 ident: bib0056 article-title: Functional-link net computing publication-title: IEEE Comput. – volume: 2 year: 2004 ident: bib0030 article-title: Neural Networks: A comprehensive foundation publication-title: Neural Netw. – volume: 70 start-page: 2959 year: 2007 end-page: 2968 ident: bib0034 article-title: Functional-link net with fuzzy integral for bankruptcy prediction publication-title: Neurocomputing – volume: 45 start-page: 303 year: 2015 end-page: 314 ident: bib0046 article-title: Multisource data ensemble modeling for clinker free lime content estimate in rotary kiln sintering processes publication-title: IEEE Trans. Syst., Man, Cybern.: Syst. – year: 2010 ident: bib0044 publication-title: Fuzzy Neural Intelligent Systems: Mathematical Foundation and the Applications in Engineering – start-page: 369 year: 2013 end-page: 377 ident: bib0048 article-title: Faster ridge regression via the subsampled randomized hadamard transform publication-title: Proceedings of the Advances in Neural Information Processing Systems – start-page: 879 year: 2006 end-page: 888 ident: bib0076 article-title: Training neural networks using multiobjective particle swarm optimization publication-title: Advances in Natural Computation – volume: 1 start-page: 502 year: 1989 end-page: 510 ident: bib0027 article-title: Random neural networks with negative and positive signals and product form solution publication-title: Neural Comput. – year: 2013 ident: bib0077 article-title: Stochastic pooling for regularization of deep convolutional neural networks publication-title: Proceedings of the International Conference on Learning Representations – year: 1989 ident: bib0058 article-title: A theory of networks for approximation and learning publication-title: Technical Report – volume: 51 start-page: 4203 year: 2005 end-page: 4215 ident: bib0013 article-title: Decoding by linear programming publication-title: IEEE Trans. Inf. Theory – year: 2007 ident: bib0035 article-title: Labeled faces in the wild: A database for studying face recognition in unconstrained environments publication-title: Technical Report 07-49 – start-page: 593 year: 2002 end-page: 600 ident: bib0039 article-title: Adaptive nonlinear system identification with echo state networks publication-title: Proceedings of the Advances in Neural Information Processing Systems – start-page: 287 year: 2006 end-page: 296 ident: bib0045 article-title: Very sparse random projections publication-title: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 34 start-page: 123 year: 1962 end-page: 135 ident: bib0010 article-title: The perceptron: A model for brain functioning. i publication-title: Rev. Mod. Phys. – start-page: 147 year: 2002 end-page: 153 ident: bib0075 article-title: A novel neural network based on immunity. publication-title: Proceedings of the IC-AI – volume: 264 start-page: 104 year: 2014 end-page: 117 ident: bib0002 article-title: Fast decorrelated neural network ensembles with random weights publication-title: Inf. Sci. – start-page: 248 year: 2009 end-page: 255 ident: bib0022 article-title: Imagenet: A large-scale hierarchical image database publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’09) – start-page: 17 year: 1996 end-page: 22 ident: bib0001 article-title: Dynamical behavior of artificial neural networks with random weights publication-title: Intelligent Engineering Systems Through Artificial NeuralNetworks – year: 1988 ident: bib0012 article-title: Radial basis functions, multi-variable functional interpolation and adaptive networks publication-title: Technical Report – volume: 53 start-page: 251 year: 2010 end-page: 267 ident: bib0072 article-title: The random neural network: a survey publication-title: Comput. J. – volume: 11 start-page: 3371 year: 2010 end-page: 3408 ident: bib0073 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – volume: 1 start-page: 239 year: 2001 end-page: 257 ident: bib0021 article-title: Immune and neural network models: theoretical and empirical comparisons publication-title: Int. J. Comput. Intell. Appl. – reference: T.P. Lillicrap, D. Cownden, D.B. Tweed, C.J. Akerman, Random feedback weights support learning in deep neural networks, arXiv preprint arXiv:1411.0247(2014). – start-page: 1313 year: 2009 end-page: 1320 ident: bib0062 article-title: Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning publication-title: Proceedings of the Advances in Neural Information Processing Systems – start-page: 530 year: 2013 end-page: 538 ident: bib0071 article-title: Learning stochastic feedforward neural networks publication-title: Proceedings of the Advances in Neural Information Processing Systems – start-page: 3025 year: 2013 end-page: 3032 ident: bib0017 article-title: Blessing of dimensionality: High-dimensional feature and its efficient compression for face verification publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 515 year: 1998 end-page: 521 ident: bib0067 article-title: Ridge regression learning algorithm in dual variables publication-title: Proceedings of the 15th International Conference on Machine Learning – volume: 15 start-page: 3133 year: 2014 end-page: 3181 ident: bib0026 article-title: Do we need hundreds of classifiers to solve real world classification problems? publication-title: J. Mach. Learn. Res. – volume: 7 start-page: 1220 year: 1996 end-page: 1230 ident: bib0015 article-title: A rapid supervised learning neural network for function interpolation and approximation publication-title: IEEE Trans. Neural Netw. – volume: 6 start-page: 163 year: 1994 end-page: 180 ident: bib0054 article-title: Learning and generalization characteristics of the random vector functional-link net publication-title: Neurocomputing – start-page: 2572 year: 1993 end-page: 2575 ident: bib0011 article-title: Simulated annealing of neural networks: the cooling’strategy reconsidered publication-title: Proceedings of the IEEE International Symposium on Circuits and Systems – volume: 28 year: 1973 ident: bib0049 publication-title: Introduction to Linear and Nonlinear Programming – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: bib0070 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – year: 2014 ident: bib0079 article-title: Nonlinear dimensionality reduction of data by deep distributed random samplings publication-title: Proceedings of the Sixth Asian Conference on Machine Learning – start-page: 3041 year: 2014 end-page: 3049 ident: bib0020 article-title: Scalable kernel methods via doubly stochastic gradients publication-title: Proceedings of the Advances in Neural Information Processing Systems – year: 2015 ident: bib0063 article-title: Random vector functional link network for short-term electricity load demand forecasting publication-title: Inf. Sci. – year: 1988 ident: bib0052 publication-title: Learning with Localized Receptive Fields – volume: 3 start-page: 463 year: 2003 end-page: 482 ident: bib0006 article-title: Rademacher and gaussian complexities: Risk bounds and structural results publication-title: J. Mach. Learn. Res. – start-page: 2146 year: 2009 end-page: 2153 ident: bib0040 article-title: What is the best multi-stage architecture for object recognition? publication-title: Proceedings of IEEE 12th International Conference on Computer Vision – volume: 6 year: 2002 ident: bib0051 article-title: Particle swarms for feedforward neural network training publication-title: Learning – start-page: 2146 year: 2009 ident: 10.1016/j.ins.2016.01.039_bib0040 article-title: What is the best multi-stage architecture for object recognition? – year: 2013 ident: 10.1016/j.ins.2016.01.039_bib0077 article-title: Stochastic pooling for regularization of deep convolutional neural networks – volume: 3 start-page: 202 issue: 2 year: 1992 ident: 10.1016/j.ins.2016.01.039_bib0005 article-title: Using random weights to train multilayer networks of hard-limiting units publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.125861 – start-page: 760 year: 2010 ident: 10.1016/j.ins.2016.01.039_bib0041 article-title: Particle swarm optimization – volume: 1 start-page: 295 issue: 4 year: 1988 ident: 10.1016/j.ins.2016.01.039_bib0038 article-title: Increased rates of convergence through learning rate adaptation publication-title: Neural Netw. doi: 10.1016/0893-6080(88)90003-2 – year: 2015 ident: 10.1016/j.ins.2016.01.039_bib0078 article-title: A comprehensive evaluation of random vector functional link networks publication-title: Inf. Sci. – volume: 2 issue: 2004 year: 2004 ident: 10.1016/j.ins.2016.01.039_bib0030 article-title: Neural Networks: A comprehensive foundation publication-title: Neural Netw. – volume: 9 start-page: 149 issue: 2 year: 1995 ident: 10.1016/j.ins.2016.01.039_bib0055 article-title: The functional link net and learning optimal control publication-title: Neurocomputing doi: 10.1016/0925-2312(95)00066-F – volume: 14 start-page: 2531 issue: 11 year: 2002 ident: 10.1016/j.ins.2016.01.039_bib0050 article-title: Real-time computing without stable states: A new framework for neural computation based on perturbations publication-title: Neural Comput. doi: 10.1162/089976602760407955 – start-page: 1058 year: 2013 ident: 10.1016/j.ins.2016.01.039_bib0074 article-title: Regularization of neural networks using dropconnect – volume: 78 start-page: 1481 issue: 9 year: 1990 ident: 10.1016/j.ins.2016.01.039_bib0059 article-title: Networks for approximation and learning publication-title: Proc. IEEE doi: 10.1109/5.58326 – volume: 6 start-page: 163 issue: 2 year: 1994 ident: 10.1016/j.ins.2016.01.039_bib0054 article-title: Learning and generalization characteristics of the random vector functional-link net publication-title: Neurocomputing doi: 10.1016/0925-2312(94)90053-1 – volume: 70 start-page: 2959 issue: 16 year: 2007 ident: 10.1016/j.ins.2016.01.039_bib0034 article-title: Functional-link net with fuzzy integral for bankruptcy prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2006.10.111 – start-page: 1 year: 1992 ident: 10.1016/j.ins.2016.01.039_bib0069 article-title: Feedforward neural networks with random weights – volume: 3 start-page: 463 year: 2003 ident: 10.1016/j.ins.2016.01.039_bib0006 article-title: Rademacher and gaussian complexities: Risk bounds and structural results publication-title: J. Mach. Learn. Res. – start-page: 530 year: 2013 ident: 10.1016/j.ins.2016.01.039_bib0071 article-title: Learning stochastic feedforward neural networks – start-page: 147 year: 2002 ident: 10.1016/j.ins.2016.01.039_bib0075 article-title: A novel neural network based on immunity. – volume: 1 start-page: 239 issue: 03 year: 2001 ident: 10.1016/j.ins.2016.01.039_bib0021 article-title: Immune and neural network models: theoretical and empirical comparisons publication-title: Int. J. Comput. Intell. Appl. doi: 10.1142/S1469026801000238 – start-page: 593 year: 2002 ident: 10.1016/j.ins.2016.01.039_bib0039 article-title: Adaptive nonlinear system identification with echo state networks – volume: 21 start-page: 1610 issue: 10 year: 2010 ident: 10.1016/j.ins.2016.01.039_bib0025 article-title: Human tracking using convolutional neural networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2010.2066286 – volume: 24 issue: 4 year: 2007 ident: 10.1016/j.ins.2016.01.039_bib0004 article-title: Compressive sensing publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2007.4286571 – start-page: 2572 year: 1993 ident: 10.1016/j.ins.2016.01.039_bib0011 article-title: Simulated annealing of neural networks: the cooling’strategy reconsidered – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 10.1016/j.ins.2016.01.039_bib0070 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – start-page: 879 year: 2006 ident: 10.1016/j.ins.2016.01.039_bib0076 article-title: Training neural networks using multiobjective particle swarm optimization – start-page: 346 year: 2007 ident: 10.1016/j.ins.2016.01.039_bib0018 article-title: Multiobjective evolutionary neural networks for time series forecasting – year: 1989 ident: 10.1016/j.ins.2016.01.039_bib0058 article-title: A theory of networks for approximation and learning – volume: 34 start-page: 123 year: 1962 ident: 10.1016/j.ins.2016.01.039_bib0010 article-title: The perceptron: A model for brain functioning. i publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.34.123 – volume: 13 start-page: 281 issue: 1 year: 2012 ident: 10.1016/j.ins.2016.01.039_bib0008 article-title: Random search for hyper-parameter optimization publication-title: J. Mach. Learn. Res. – start-page: 2528 year: 2011 ident: 10.1016/j.ins.2016.01.039_bib0019 article-title: Selecting receptive fields in deep networks – volume: 10 start-page: 68 issue: 2 year: 2015 ident: 10.1016/j.ins.2016.01.039_bib0060 article-title: Universal approximation with convex optimization: Gimmick or reality?[discussion forum] publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2015.2405352 – volume: 6 start-page: 1320 issue: 6 year: 1995 ident: 10.1016/j.ins.2016.01.039_bib0037 article-title: Stochastic choice of basis functions in adaptive function approximation and the functional-link net publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.471375 – volume: 34 issue: 5 year: 2007 ident: 10.1016/j.ins.2016.01.039_bib0007 article-title: Scaling learning algorithms towards AI publication-title: Large-Scale Kernel Mach. doi: 10.7551/mitpress/7496.003.0016 – volume: 68 start-page: 361 issue: 4 year: 2011 ident: 10.1016/j.ins.2016.01.039_bib0028 article-title: Learning in the feed-forward random neural network: A critical review publication-title: Perform. Eval. doi: 10.1016/j.peva.2010.07.006 – ident: 10.1016/j.ins.2016.01.039_bib0047 – start-page: 515 year: 1998 ident: 10.1016/j.ins.2016.01.039_bib0067 article-title: Ridge regression learning algorithm in dual variables – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10.1016/j.ins.2016.01.039_bib0043 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – start-page: 1089 year: 2011 ident: 10.1016/j.ins.2016.01.039_bib0068 article-title: On random weights and unsupervised feature learning – volume: 4 start-page: 251 issue: 2 year: 1991 ident: 10.1016/j.ins.2016.01.039_bib0032 article-title: Approximation capabilities of multilayer feedforward networks publication-title: Neural Netw. doi: 10.1016/0893-6080(91)90009-T – start-page: 287 year: 2006 ident: 10.1016/j.ins.2016.01.039_bib0045 article-title: Very sparse random projections – volume: 7 start-page: 1220 issue: 5 year: 1996 ident: 10.1016/j.ins.2016.01.039_bib0015 article-title: A rapid supervised learning neural network for function interpolation and approximation publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.536316 – volume: 25 start-page: 76 issue: 5 year: 1992 ident: 10.1016/j.ins.2016.01.039_bib0056 article-title: Functional-link net computing publication-title: IEEE Comput. doi: 10.1109/2.144401 – volume: 65 start-page: 386 issue: 6 year: 1958 ident: 10.1016/j.ins.2016.01.039_bib0065 article-title: The perceptron: a probabilistic model for information storage and organization in the brain. publication-title: Psychol. Rev. doi: 10.1037/h0042519 – volume: 29 start-page: 62 issue: 1 year: 1999 ident: 10.1016/j.ins.2016.01.039_bib0016 article-title: A rapid learning and dynamic stepwise updating algorithm for flat neural networks and the application to time-series prediction publication-title: IEEE Trans. Syst., Man, Cybern., Part B: Cybern. doi: 10.1109/3477.740166 – volume: 1 start-page: 502 issue: 4 year: 1989 ident: 10.1016/j.ins.2016.01.039_bib0027 article-title: Random neural networks with negative and positive signals and product form solution publication-title: Neural Comput. doi: 10.1162/neco.1989.1.4.502 – volume: 15 start-page: 3133 issue: 1 year: 2014 ident: 10.1016/j.ins.2016.01.039_bib0026 article-title: Do we need hundreds of classifiers to solve real world classification problems? publication-title: J. Mach. Learn. Res. – year: 2015 ident: 10.1016/j.ins.2016.01.039_bib0063 article-title: Random vector functional link network for short-term electricity load demand forecasting publication-title: Inf. Sci. – start-page: 1177 year: 2007 ident: 10.1016/j.ins.2016.01.039_bib0061 article-title: Random features for large-scale kernel machines – volume: 22 start-page: 2192 issue: 8 year: 2010 ident: 10.1016/j.ins.2016.01.039_bib0042 article-title: Deep belief networks are compact universal approximators publication-title: Neural Comput. doi: 10.1162/neco.2010.08-09-1081 – year: 2007 ident: 10.1016/j.ins.2016.01.039_bib0035 article-title: Labeled faces in the wild: A database for studying face recognition in unconstrained environments – volume: 45 start-page: 303 issue: 2 year: 2015 ident: 10.1016/j.ins.2016.01.039_bib0046 article-title: Multisource data ensemble modeling for clinker free lime content estimate in rotary kiln sintering processes publication-title: IEEE Trans. Syst., Man, Cybern.: Syst. doi: 10.1109/TSMC.2014.2332305 – start-page: 369 year: 2013 ident: 10.1016/j.ins.2016.01.039_bib0048 article-title: Faster ridge regression via the subsampled randomized hadamard transform – year: 1989 ident: 10.1016/j.ins.2016.01.039_bib0053 – year: 1988 ident: 10.1016/j.ins.2016.01.039_bib0052 – volume: 11 start-page: 3371 year: 2010 ident: 10.1016/j.ins.2016.01.039_bib0073 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – start-page: 17 year: 1996 ident: 10.1016/j.ins.2016.01.039_bib0001 article-title: Dynamical behavior of artificial neural networks with random weights – volume: 52 start-page: 5406 issue: 12 year: 2006 ident: 10.1016/j.ins.2016.01.039_bib0014 article-title: Near-optimal signal recovery from random projections: Universal encoding strategies? publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2006.885507 – start-page: 3025 year: 2013 ident: 10.1016/j.ins.2016.01.039_bib0017 article-title: Blessing of dimensionality: High-dimensional feature and its efficient compression for face verification – volume: 14 start-page: 76 issue: 1 year: 1992 ident: 10.1016/j.ins.2016.01.039_bib0029 article-title: On the problem of local minima in backpropagation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.107014 – start-page: 1313 year: 2009 ident: 10.1016/j.ins.2016.01.039_bib0062 article-title: Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning – volume: 11 start-page: 89 issue: 1 year: 1998 ident: 10.1016/j.ins.2016.01.039_bib0036 article-title: Neural networks for predicting conditional probability densities: Improved training scheme combining EM and RVFL publication-title: Neural Netw. doi: 10.1016/S0893-6080(97)00089-0 – volume: 14 start-page: 129 issue: 2 year: 2006 ident: 10.1016/j.ins.2016.01.039_bib0009 article-title: Structure and dynamics of random recurrent neural networks publication-title: Adapt. Behav. doi: 10.1177/105971230601400204 – start-page: 248 year: 2009 ident: 10.1016/j.ins.2016.01.039_bib0022 article-title: Imagenet: A large-scale hierarchical image database – volume: 264 start-page: 104 year: 2014 ident: 10.1016/j.ins.2016.01.039_bib0002 article-title: Fast decorrelated neural network ensembles with random weights publication-title: Inf. Sci. doi: 10.1016/j.ins.2013.12.016 – start-page: 3041 year: 2014 ident: 10.1016/j.ins.2016.01.039_bib0020 article-title: Scalable kernel methods via doubly stochastic gradients – year: 1961 ident: 10.1016/j.ins.2016.01.039_bib0066 article-title: Principles of neurodynamics. perceptrons and the theory of brain mechanisms – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 10.1016/j.ins.2016.01.039_bib0031 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 28 year: 1973 ident: 10.1016/j.ins.2016.01.039_bib0049 – volume: 2 start-page: 641 issue: 6 year: 1988 ident: 10.1016/j.ins.2016.01.039_bib0024 article-title: Teaching feed-forward neural networks by simulated annealing publication-title: Complex Syst. – volume: 6 issue: 1 year: 2002 ident: 10.1016/j.ins.2016.01.039_bib0051 article-title: Particle swarms for feedforward neural network training publication-title: Learning – year: 1988 ident: 10.1016/j.ins.2016.01.039_bib0012 article-title: Radial basis functions, multi-variable functional interpolation and adaptive networks – volume: 51 start-page: 4203 issue: 12 year: 2005 ident: 10.1016/j.ins.2016.01.039_bib0013 article-title: Decoding by linear programming publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2005.858979 – year: 2010 ident: 10.1016/j.ins.2016.01.039_bib0044 – volume: 5 start-page: e1000579 issue: 11 year: 2009 ident: 10.1016/j.ins.2016.01.039_bib0057 article-title: A high-throughput screening approach to discovering good forms of biologically inspired visual representation publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1000579 – volume: 126 start-page: 319 issue: 2 year: 2000 ident: 10.1016/j.ins.2016.01.039_bib0003 article-title: Survey of random neural network applications publication-title: Eur. J. Oper. Res. doi: 10.1016/S0377-2217(99)00481-6 – volume: 53 start-page: 251 issue: 3 year: 2010 ident: 10.1016/j.ins.2016.01.039_bib0072 article-title: The random neural network: a survey publication-title: Comput. J. doi: 10.1093/comjnl/bxp032 – volume: 29 start-page: 3 issue: 1 year: 1999 ident: 10.1016/j.ins.2016.01.039_bib0023 article-title: JNN, a randomized algorithm for training multilayer networks in polynomial time publication-title: Neurocomputing doi: 10.1016/S0925-2312(99)00115-0 – year: 2015 ident: 10.1016/j.ins.2016.01.039_bib0064 article-title: Ensemble classification and regression – recent developments, applications and future directions publication-title: IEEE Comput. Intell. Mag. – volume: 72 start-page: 1808 issue: 7 year: 2009 ident: 10.1016/j.ins.2016.01.039_bib0033 article-title: Functional-link nets with genetic-algorithm-based learning for robust nonlinear interval regression analysis publication-title: Neurocomputing doi: 10.1016/j.neucom.2008.07.002 – year: 2014 ident: 10.1016/j.ins.2016.01.039_bib0079 article-title: Nonlinear dimensionality reduction of data by deep distributed random samplings |
| SSID | ssj0004766 |
| Score | 2.6195045 |
| Snippet | As a powerful tool for data regression and classification, neural networks have received considerable attention from researchers in fields such as machine... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 146 |
| SubjectTerms | Classification Convergence Convolutional neural networks Deep learning Networks Neural networks Randomization Randomized neural networks Recurrent neural networks Regression Statistics Training |
| Title | A survey of randomized algorithms for training neural networks |
| URI | https://dx.doi.org/10.1016/j.ins.2016.01.039 https://www.proquest.com/docview/1825521883 |
| Volume | 364-365 |
| WOSCitedRecordID | wos000378969400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9QwFA4668P6IDoqrroSQfbBJdA2mVxehEFmURnGBWdh3kKmTffC2o5zWRZ_vSdN0qkrLuuDL6WU9EK-9ORcv4PQu4FKbCkGGUlZZgjLuSQmFYZYRR3fmKHMFwqPxWQiZzN1HLrwrZp2AqKq5PW1WvxXqOEagO1KZ_8B7vahcAHOAXQ4AuxwvBPww8PVZnllm8g5bERF_f38J2iV5vK0Xp6vzzwBQ9sa4tARWgJMlU8HX3WV1VCq1KyQsFO2GnjraB63K-Pb5hRgOvMe1eMQ4wkOhZQ7SRxSS2OCf0KcqdEVkpSzjpiLbkO_Y6Z-6B_C2PsFLsCCcLzoKW_4UT110e_E15Ov-uhkPNbT0Wx6sPhBXE8wFzsPDVLuo51MgOHTQzvDz6PZl23dq_Cx6PjBMWrd5O_deOvf9I4bO3CjVkwfo0fBHsBDj-MTdM9WffSwwxLZR_uhtgQf4A4iOEjlPtp1BoPn236KPgyxhx_XJd7Cj7fwY3gEjvBjDz-O8D9DJ0ej6cdPJPTIIDlVfE2s5dKyIsl5UiaJyWRRlqBgZHNGpbGZBeuSi7kCK90MeAm6oKvFBpW7EHNLqcjoc9Sr6sq-QHiumLCKS2aLlImCG5PaUvISTIqiyJXZQ0mcQZ0HAnn3tZc6ZgpeaJh07SZdJ6mGN-2h9-0tC8-ecttgFmHRYVF7tU7DgrrttrcRQg2i0cW7TGXrzUqD6TwA7VRK-vIOY16h3e3f8Br11suN3UcP8itAcPkmLL1f692E4A |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+survey+of+randomized+algorithms+for+training+neural+networks&rft.jtitle=Information+sciences&rft.au=Zhang%2C+Le&rft.au=Suganthan%2C+P+N&rft.date=2016-10-10&rft.issn=0020-0255&rft.volume=364&rft.spage=146&rft.epage=155&rft_id=info:doi/10.1016%2Fj.ins.2016.01.039&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |