A birth–death model to understand bacterial antimicrobial heteroresistance from time-kill curves

Antimicrobial heteroresistance refers to the presence of different subpopulations with heterogeneous antimicrobial responses within the same bacterial isolate, so they show reduced susceptibility compared with the main population. Though it is widely accepted that heteroresistance can play a crucial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical biosciences Jg. 376; S. 109278
Hauptverfasser: Martínez-López, Nerea, Vilas, Carlos, García, Míriam R.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Inc 01.10.2024
Schlagworte:
ISSN:0025-5564, 1879-3134, 1879-3134
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Antimicrobial heteroresistance refers to the presence of different subpopulations with heterogeneous antimicrobial responses within the same bacterial isolate, so they show reduced susceptibility compared with the main population. Though it is widely accepted that heteroresistance can play a crucial role in the outcome of antimicrobial treatments, predictive Antimicrobial Resistance (AMR) models accounting for bacterial heteroresistance are still scarce and need to be refined as the techniques to measure heteroresistance become standardised and consistent conclusions are drawn from data. In this work, we propose a multivariate Birth-Death (BD) model of bacterial heteroresistance and analyse its properties in detail. Stochasticity in the population dynamics is considered since heteroresistance is often characterised by low initial frequencies of the less susceptible subpopulations, those mediating AMR transmission and potentially leading to treatment failure. We also discuss the utility of the heteroresistance model for practical applications and calibration under realistic conditions, demonstrating that it is possible to infer the model parameters and heteroresistance distribution from time-kill data, i.e., by measuring total cell counts alone and without performing any heteroresistance test. •New stochastic model to understand heteroresistance using birth–death processes.•Model calibration is possible from standard experiments measuring time-kill curves.•Parameters are estimated uniquely (structurally & practically identifiable).•Model shows complex known behaviours, as faster regrowth when raising drug pressure.
AbstractList Antimicrobial heteroresistance refers to the presence of different subpopulations with heterogeneous antimicrobial responses within the same bacterial isolate, so they show reduced susceptibility compared with the main population. Though it is widely accepted that heteroresistance can play a crucial role in the outcome of antimicrobial treatments, predictive Antimicrobial Resistance (AMR) models accounting for bacterial heteroresistance are still scarce and need to be refined as the techniques to measure heteroresistance become standardised and consistent conclusions are drawn from data. In this work, we propose a multivariate Birth-Death (BD) model of bacterial heteroresistance and analyse its properties in detail. Stochasticity in the population dynamics is considered since heteroresistance is often characterised by low initial frequencies of the less susceptible subpopulations, those mediating AMR transmission and potentially leading to treatment failure. We also discuss the utility of the heteroresistance model for practical applications and calibration under realistic conditions, demonstrating that it is possible to infer the model parameters and heteroresistance distribution from time-kill data, i.e., by measuring total cell counts alone and without performing any heteroresistance test.Antimicrobial heteroresistance refers to the presence of different subpopulations with heterogeneous antimicrobial responses within the same bacterial isolate, so they show reduced susceptibility compared with the main population. Though it is widely accepted that heteroresistance can play a crucial role in the outcome of antimicrobial treatments, predictive Antimicrobial Resistance (AMR) models accounting for bacterial heteroresistance are still scarce and need to be refined as the techniques to measure heteroresistance become standardised and consistent conclusions are drawn from data. In this work, we propose a multivariate Birth-Death (BD) model of bacterial heteroresistance and analyse its properties in detail. Stochasticity in the population dynamics is considered since heteroresistance is often characterised by low initial frequencies of the less susceptible subpopulations, those mediating AMR transmission and potentially leading to treatment failure. We also discuss the utility of the heteroresistance model for practical applications and calibration under realistic conditions, demonstrating that it is possible to infer the model parameters and heteroresistance distribution from time-kill data, i.e., by measuring total cell counts alone and without performing any heteroresistance test.
Antimicrobial heteroresistance refers to the presence of different subpopulations with heterogeneous antimicrobial responses within the same bacterial isolate, so they show reduced susceptibility compared with the main population. Though it is widely accepted that heteroresistance can play a crucial role in the outcome of antimicrobial treatments, predictive Antimicrobial Resistance (AMR) models accounting for bacterial heteroresistance are still scarce and need to be refined as the techniques to measure heteroresistance become standardised and consistent conclusions are drawn from data. In this work, we propose a multivariate Birth-Death (BD) model of bacterial heteroresistance and analyse its properties in detail. Stochasticity in the population dynamics is considered since heteroresistance is often characterised by low initial frequencies of the less susceptible subpopulations, those mediating AMR transmission and potentially leading to treatment failure. We also discuss the utility of the heteroresistance model for practical applications and calibration under realistic conditions, demonstrating that it is possible to infer the model parameters and heteroresistance distribution from time-kill data, i.e., by measuring total cell counts alone and without performing any heteroresistance test.
Antimicrobial heteroresistance refers to the presence of different subpopulations with heterogeneous antimicrobial responses within the same bacterial isolate, so they show reduced susceptibility compared with the main population. Though it is widely accepted that heteroresistance can play a crucial role in the outcome of antimicrobial treatments, predictive Antimicrobial Resistance (AMR) models accounting for bacterial heteroresistance are still scarce and need to be refined as the techniques to measure heteroresistance become standardised and consistent conclusions are drawn from data. In this work, we propose a multivariate Birth-Death (BD) model of bacterial heteroresistance and analyse its properties in detail. Stochasticity in the population dynamics is considered since heteroresistance is often characterised by low initial frequencies of the less susceptible subpopulations, those mediating AMR transmission and potentially leading to treatment failure. We also discuss the utility of the heteroresistance model for practical applications and calibration under realistic conditions, demonstrating that it is possible to infer the model parameters and heteroresistance distribution from time-kill data, i.e., by measuring total cell counts alone and without performing any heteroresistance test. •New stochastic model to understand heteroresistance using birth–death processes.•Model calibration is possible from standard experiments measuring time-kill curves.•Parameters are estimated uniquely (structurally & practically identifiable).•Model shows complex known behaviours, as faster regrowth when raising drug pressure.
ArticleNumber 109278
Author Vilas, Carlos
Martínez-López, Nerea
García, Míriam R.
Author_xml – sequence: 1
  givenname: Nerea
  surname: Martínez-López
  fullname: Martínez-López, Nerea
– sequence: 2
  givenname: Carlos
  surname: Vilas
  fullname: Vilas, Carlos
– sequence: 3
  givenname: Míriam R.
  orcidid: 0000-0001-9538-6388
  surname: García
  fullname: García, Míriam R.
  email: miriamr@iim.csic.es
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39182600$$D View this record in MEDLINE/PubMed
BookMark eNp9kbtuFDEUhi0URDaBB6BBLmlm8bHHnrWooohLpEg0UFu-nNF6mRkH2xOJjnfIG_IkeLVJQ5HKOtb3Hen8_wU5W9KChLwFtgUG6sNhO7uy5Yz3bdZ82L0gG9gNuhMg-jOyYYzLTkrVn5OLUg6MwQCgXpFzoWHHFWMb4q6oi7nu__55CGjrns4p4ERrousSMJdql0Cd9RVztBO1S41z9Dm547TH9p0ylnjkPNIxp5k2ArufcZqoX_M9ltfk5Wingm8e30vy4_On79dfu9tvX26ur247L7SqHTLuwLqBWyWUE8i0BKkVV6ic4tKxQQTrXG8hBDfCqJRlyDUw2bOhl724JO9Pe-9y-rViqWaOxeM02QXTWoxgeoBe76Ru6LtHdHUzBnOX42zzb_OUSwOGE9BOLSXjaHystsa01GzjZICZYwPmYFoD5tiAOTXQTPjPfFr-nPPx5GCL5z5iNsVHbIGGmNFXE1J8xv4HLhqfSw
CitedBy_id crossref_primary_10_1007_s12033_024_01295_3
Cites_doi 10.1098/rsif.2020.0652
10.1051/mmnp/2023019
10.1093/jac/dkac377
10.1063/1.1678692
10.3390/math8111876
10.1038/s41598-021-92718-7
10.1093/bioinformatics/btac748
10.1016/S0140-6736(21)02724-0
10.1007/s10156-011-0330-2
10.1093/bib/bbk006
10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2
10.1016/j.jfoodeng.2023.111734
10.1111/evo.12423
10.1093/bioinformatics/btx735
10.1128/CMR.00058-14
10.1038/s41564-018-0342-0
10.1016/j.jconrel.2017.02.005
10.1038/s42003-021-02052-x
10.1038/s41579-019-0218-1
10.1111/nyas.14921
10.1007/s00285-011-0471-z
10.1111/eva.12196
10.1016/j.jtbi.2020.110524
10.1371/journal.pone.0073512
10.3390/antibiotics9100688
10.3934/microbiol.2018.3.482
10.1371/journal.pone.0068874
10.1007/s00285-005-0350-6
10.1016/j.meegid.2014.02.009
10.1038/s41579-021-00649-x
10.1063/1.2799998
10.1146/annurev.physchem.58.032806.104637
10.1371/journal.pone.0027755
10.1038/s41579-019-0196-3
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2024 The Author(s)
– notice: Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.mbs.2024.109278
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Mathematics
EISSN 1879-3134
ExternalDocumentID 39182600
10_1016_j_mbs_2024_109278
S002555642400138X
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.GJ
.~1
0R~
0SF
186
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXKI
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABTAH
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACPRK
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AETEA
AFFNX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMJ
HVGLF
HZ~
H~9
IHE
J1W
KOM
LW9
M26
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SDP
SES
SEW
SME
SPCBC
SSA
SSZ
T5K
TN5
UNMZH
WH7
WUQ
XOL
XSW
YQT
ZCG
ZGI
ZXP
ZY4
~G-
~KM
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
BNPGV
NPM
SSH
7X8
ID FETCH-LOGICAL-c396t-e02b1ab72a636b3e095159626e6b625b073dabb4a1ddbf1f66a0e291054074543
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001304623300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5564
1879-3134
IngestDate Sat Sep 27 17:49:53 EDT 2025
Thu Apr 03 07:03:15 EDT 2025
Tue Nov 18 21:46:21 EST 2025
Sat Nov 29 05:40:54 EST 2025
Sat Sep 14 18:00:29 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Stochastic Simulation Algorithm (SSA)
Maximum Likelihood Estimation (MLE)
Stochastic modelling
AMR fitness cost
Antimicrobial Resistance (AMR)
Model identifiability
Language English
License This is an open access article under the CC BY license.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c396t-e02b1ab72a636b3e095159626e6b625b073dabb4a1ddbf1f66a0e291054074543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9538-6388
OpenAccessLink https://dx.doi.org/10.1016/j.mbs.2024.109278
PMID 39182600
PQID 3097149859
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3097149859
pubmed_primary_39182600
crossref_citationtrail_10_1016_j_mbs_2024_109278
crossref_primary_10_1016_j_mbs_2024_109278
elsevier_sciencedirect_doi_10_1016_j_mbs_2024_109278
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Mathematical biosciences
PublicationTitleAlternate Math Biosci
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Melnyk, Wong, Kassen (b28) 2015; 8
Larsson, Flach (b3) 2022; 20
Yamakawa, Kurosawa, Kaneko, Yamakawa, Aminaka, Hori, Cui, Ito, Jin, Hiramatsu, Okuzumi, Kobayashi, Katayama, Cui, Ito, Hiramatsu, Kondo, Nakamura, Oguri, Oguri, Hiramatsu (b8) 2012; 18
Djidjou-Demasse, Sofonea, Choisy, Alizon (b19) 2023; 18
Chis, Banga, Balsa-Canto (b35) 2011; 6
Pedreira, Martínez-López, Vázquez, García (b27) 2024; 361
Murray, Ikuta, Sharara, Swetschinski, Robles Aguilar, Naghavi (b2) 2022; 399
Browning, Warne, Burrage, Baker, Simpson (b34) 2020; 17
Hernandez-Beltran, Rodríguez-Beltrán, Aguilar-Luviano, Velez-Santiago, Mondragón-Palomino, MacLean, Fuentes-Hernández, San Millán, Peña-Miller (b12) 2022
Panta, Doerrler (b16) 2021; 11
Zhao, Han, He, Hou, Liang, J.-l. Cui, He, Hu, Liu, Yuan (b14) 2022; 78
El-Halfawy, Valvano (b15) 2013; 8
Nicoloff, Hjort, Levin, Andersson (b10) 2019; 4
Birkegård, Halasa, Toft, Folkesson, Græsbøll (b17) 2018; 7
Kumar, Arnipalli, Ziouzenkova (b4) 2020; 9
El-Halfawy, Valvano (b6) 2015; 28
Kao, Lee, Huang, Song, Yang, Sheu, Chang, Sheu, Wu (b9) 2014; 23
Bailey (b20) 1964
Berríos-Caro, Gifford, Galla (b26) 2021; 509
Limpert, Stahel, Abbt (b30) 2001; 51
Feller (b21) 1968; Vol. I
Pereira, Larsson, Hjort, Elf, Andersson (b11) 2021; 4
Crawford, Suchard (b25) 2012; 65
Ligon, Fröhlich, Chiş, Banga, Balsa-Canto, Hasenauer (b36) 2018; 34
Martínez-López, Vilas, García (b1) 2024
Vilas, Arias-Méndez, García, Alonso, Balsa-Canto (b42) 2018; 58
García, Alonso, Balsa-Canto (b43) 2017
Reygaert (b5) 2018; 4
Andersson, Nicoloff, Hjort (b7) 2019; 17
Anderson (b33) 2007; 127
Martínez, Villaverde (b37) 2020; 8
Dengler, McCallum, Kiefer, Christen, Patrignani, Vorholt, Berger-Bächi, Senn (b13) 2013; 8
Balaban, Helaine, Lewis, Ackermann, Aldridge, Andersson, Brynildsen, Bumann, Camilli, Collins (b24) 2019; 17
Walter, Pronzato (b29) 1997
Gillespie (b31) 2007; 58
Díaz-Seoane, Rey Barreiro, Villaverde (b38) 2023; 39
Novozhilov, Karev, Koonin (b22) 2006; 7
Manrique, López, Gnanakaran, Rybenkov, Zgurskaya (b23) 2023; 1519
Anguelova (b39) 2007
Nikolaou, Tam (b18) 2006; 52
Tazzyman, Bonhoeffer (b32) 2014; 68
Zhu, Schneider, Wang, Kempe, Wilson, Velkov, Li, Davis, Whittaker, Haddleton (b41) 2017; 259
Kurtz (b40) 1972; 57
Nicoloff (10.1016/j.mbs.2024.109278_b10) 2019; 4
Larsson (10.1016/j.mbs.2024.109278_b3) 2022; 20
Bailey (10.1016/j.mbs.2024.109278_b20) 1964
Panta (10.1016/j.mbs.2024.109278_b16) 2021; 11
Novozhilov (10.1016/j.mbs.2024.109278_b22) 2006; 7
García (10.1016/j.mbs.2024.109278_b43) 2017
Vilas (10.1016/j.mbs.2024.109278_b42) 2018; 58
Kumar (10.1016/j.mbs.2024.109278_b4) 2020; 9
Feller (10.1016/j.mbs.2024.109278_b21) 1968; Vol. I
Yamakawa (10.1016/j.mbs.2024.109278_b8) 2012; 18
Gillespie (10.1016/j.mbs.2024.109278_b31) 2007; 58
Ligon (10.1016/j.mbs.2024.109278_b36) 2018; 34
Manrique (10.1016/j.mbs.2024.109278_b23) 2023; 1519
Balaban (10.1016/j.mbs.2024.109278_b24) 2019; 17
Limpert (10.1016/j.mbs.2024.109278_b30) 2001; 51
Anguelova (10.1016/j.mbs.2024.109278_b39) 2007
Tazzyman (10.1016/j.mbs.2024.109278_b32) 2014; 68
Pereira (10.1016/j.mbs.2024.109278_b11) 2021; 4
Zhao (10.1016/j.mbs.2024.109278_b14) 2022; 78
Nikolaou (10.1016/j.mbs.2024.109278_b18) 2006; 52
Berríos-Caro (10.1016/j.mbs.2024.109278_b26) 2021; 509
Kao (10.1016/j.mbs.2024.109278_b9) 2014; 23
Dengler (10.1016/j.mbs.2024.109278_b13) 2013; 8
Pedreira (10.1016/j.mbs.2024.109278_b27) 2024; 361
Díaz-Seoane (10.1016/j.mbs.2024.109278_b38) 2023; 39
Crawford (10.1016/j.mbs.2024.109278_b25) 2012; 65
Anderson (10.1016/j.mbs.2024.109278_b33) 2007; 127
Walter (10.1016/j.mbs.2024.109278_b29) 1997
El-Halfawy (10.1016/j.mbs.2024.109278_b6) 2015; 28
Hernandez-Beltran (10.1016/j.mbs.2024.109278_b12) 2022
Martínez (10.1016/j.mbs.2024.109278_b37) 2020; 8
Martínez-López (10.1016/j.mbs.2024.109278_b1) 2024
Kurtz (10.1016/j.mbs.2024.109278_b40) 1972; 57
Zhu (10.1016/j.mbs.2024.109278_b41) 2017; 259
Reygaert (10.1016/j.mbs.2024.109278_b5) 2018; 4
Chis (10.1016/j.mbs.2024.109278_b35) 2011; 6
Browning (10.1016/j.mbs.2024.109278_b34) 2020; 17
Melnyk (10.1016/j.mbs.2024.109278_b28) 2015; 8
Murray (10.1016/j.mbs.2024.109278_b2) 2022; 399
Andersson (10.1016/j.mbs.2024.109278_b7) 2019; 17
El-Halfawy (10.1016/j.mbs.2024.109278_b15) 2013; 8
Birkegård (10.1016/j.mbs.2024.109278_b17) 2018; 7
Djidjou-Demasse (10.1016/j.mbs.2024.109278_b19) 2023; 18
References_xml – start-page: 126
  year: 2017
  end-page: 136
  ident: b43
  article-title: A normalisation strategy to optimally design experiments in computational biology
  publication-title: 11th International Conference on Practical Applications of Computational Biology & Bioinformatics
– volume: 4
  start-page: 521
  year: 2021
  ident: b11
  article-title: The highly dynamic nature of bacterial heteroresistance impairs its clinical detection
  publication-title: Commun. Biol.
– volume: 57
  start-page: 2976
  year: 1972
  end-page: 2978
  ident: b40
  article-title: The relationship between stochastic and deterministic models for chemical reactions
  publication-title: J. Chem. Phys.
– volume: 1519
  start-page: 46
  year: 2023
  end-page: 62
  ident: b23
  article-title: New understanding of multidrug efflux and permeation in antibiotic resistance, persistence, and heteroresistance
  publication-title: Ann. New York Acad. Sci.
– volume: 8
  start-page: 273
  year: 2015
  end-page: 283
  ident: b28
  article-title: The fitness costs of antibiotic resistance mutations
  publication-title: Evol. Appl.
– volume: 20
  start-page: 257
  year: 2022
  end-page: 269
  ident: b3
  article-title: Antibiotic resistance in the environment
  publication-title: Nat. Rev. Microbioly
– volume: 509
  year: 2021
  ident: b26
  article-title: Competition delays multi-drug resistance evolution during combination therapy
  publication-title: J. Theoret. Biol.
– volume: 68
  start-page: 2066
  year: 2014
  end-page: 2078
  ident: b32
  article-title: Plasmids and evolutionary rescue by drug resistance
  publication-title: Evolution
– volume: 7
  start-page: 70
  year: 2006
  end-page: 85
  ident: b22
  article-title: Biological applications of the theory of birth-and-death processes
  publication-title: Brief. Bioinform.
– volume: 17
  year: 2020
  ident: b34
  article-title: Identifiability analysis for stochastic differential equation models in systems biology
  publication-title: J. R. Soc. Interface
– volume: 58
  start-page: 35
  year: 2007
  end-page: 55
  ident: b31
  article-title: Stochastic simulation of chemical kinetics
  publication-title: Ann. Rev. Phys. Chem.
– volume: 28
  start-page: 191
  year: 2015
  end-page: 207
  ident: b6
  article-title: Antimicrobial heteroresistance: an emerging field in need of clarity
  publication-title: Clin. Microbiol. Rev.
– year: 1997
  ident: b29
  article-title: Identification of parametric models from experimental data
  publication-title: Communications and Control Engineering
– year: 2022
  ident: b12
  article-title: Antibiotic heteroresistance generated by multi-copy plasmids
– volume: 8
  start-page: 1876
  year: 2020
  ident: b37
  article-title: Nonlinear observability algorithms with known and unknown inputs: Analysis and implementation
  publication-title: Mathematics
– year: 1964
  ident: b20
  publication-title: The Elements of Stochastic Processes with Applications To the Natural Sciences
– volume: 4
  start-page: 504
  year: 2019
  end-page: 514
  ident: b10
  article-title: The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification
  publication-title: Nat. Microbiol.
– volume: 51
  start-page: 341
  year: 2001
  end-page: 352
  ident: b30
  article-title: Log-normal Distributions across the Sciences: Keys and Clues: On the charms of statistics, and how mechanical models resembling gambling machines offer a link to a handy way to characterize log-normal distributions, which can provide deeper insight into variability and probability—normal or log-normal: That is the question
  publication-title: BioScience
– volume: 7
  year: 2018
  ident: b17
  article-title: Send more data: a systematic review of mathematical models of antimicrobial resistance
  publication-title: Antimicrob. Resist. Infect. Control
– volume: 361
  year: 2024
  ident: b27
  article-title: Modelling the antimicrobial effect of food preservatives in bacteria: Application to escherichia coli and bacillus cereus inhibition with carvacrol
  publication-title: J. Food Eng.
– volume: 399
  start-page: 629
  year: 2022
  end-page: 655
  ident: b2
  article-title: Col., Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis
  publication-title: Lancet
– volume: 4
  start-page: 482
  year: 2018
  end-page: 501
  ident: b5
  article-title: An overview of the antimicrobial resistance mechanisms of bacteria
  publication-title: AIMS Microbiol.
– volume: 23
  start-page: 196
  year: 2014
  end-page: 202
  ident: b9
  article-title: Heteroresistance of
  publication-title: Infect. Genet. Evol.: J. Mol. Epidemiol. Evol. Genet. Infect. Dis.
– volume: 18
  start-page: 24
  year: 2023
  ident: b19
  article-title: Within-host evolutionary dynamics of antimicrobial quantitative resistance
  publication-title: Math. Model. Nat. Phenom.
– volume: 127
  year: 2007
  ident: b33
  article-title: A modified next reaction method for simulating chemical systems with time dependent propensities and delays
  publication-title: J. Chem. Phys.
– volume: 34
  start-page: 1421
  year: 2018
  end-page: 1423
  ident: b36
  article-title: GenSSI 2.0: multi-experiment structural identifiability analysis of SBML models
  publication-title: Bioinformatics
– year: 2007
  ident: b39
  article-title: Observability and identifiability of nonlinear systems with applications in biology
– volume: 52
  start-page: 154
  year: 2006
  end-page: 182
  ident: b18
  article-title: A new modeling approach to the effect of antimicrobial agents on heterogeneous microbial populations
  publication-title: J. Math. Biol.
– year: 2024
  ident: b1
  article-title: A birth-death model to understand bacterial antimicrobial heteroresistance from time-kill curves
  publication-title: Matlab Codes
– volume: 6
  start-page: 1
  year: 2011
  end-page: 16
  ident: b35
  article-title: Structural identifiability of systems biology models: A critical comparison of methods
  publication-title: PLOS ONE
– volume: 17
  start-page: 479
  year: 2019
  end-page: 496
  ident: b7
  article-title: Mechanisms and clinical relevance of bacterial heteroresistance
  publication-title: Nat. Rev. Microbiol.
– volume: 78
  start-page: 216
  year: 2022
  end-page: 224
  ident: b14
  article-title: Decreased cyclic-amp caused by atp contributes to fosfomycin heteroresistance in avian
  publication-title: J. Antimicrob. Chemother.
– volume: 8
  year: 2013
  ident: b15
  article-title: Chemical communication of antibiotic resistance by a highly resistant subpopulation of bacterial cells
  publication-title: PLoS One
– volume: 39
  year: 2023
  ident: b38
  article-title: STRIKE-GOLDD 4.0: user-friendly, efficient analysis of structural identifiability and observability
  publication-title: Bioinformatics
– volume: 17
  start-page: 441
  year: 2019
  end-page: 448
  ident: b24
  article-title: Definitions and guidelines for research on antibiotic persistence
  publication-title: Nat. Rev. Microbiol.
– volume: 9
  year: 2020
  ident: b4
  article-title: Antibiotics in food chain: The consequences for antibiotic resistance
  publication-title: Antibiotics
– volume: Vol. I
  year: 1968
  ident: b21
  publication-title: An Introduction To Probability Theory and Its Applications
– volume: 259
  start-page: 83
  year: 2017
  end-page: 91
  ident: b41
  article-title: A traceless reversible polymeric colistin prodrug to combat multidrug-resistant (mdr) gram-negative bacteria
  publication-title: J. Control. Release
– volume: 8
  start-page: 1
  year: 2013
  end-page: 11
  ident: b13
  article-title: Mutation in the C-Di-AMP cyclase dacA affects fitness and resistance of methicillin resistant
  publication-title: PLOS ONE
– volume: 11
  start-page: 13230
  year: 2021
  ident: b16
  article-title: A link between pH homeostasis and colistin resistance in bacteria
  publication-title: Sci. Rep.
– volume: 65
  start-page: 553
  year: 2012
  end-page: 580
  ident: b25
  article-title: Transition probabilities for general birth–death processes with applications in ecology, genetics, and evolution
  publication-title: J. Math. Biol.
– volume: 18
  start-page: 406
  year: 2012
  end-page: 409
  ident: b8
  article-title: Heterogeneously vancomycin-intermediate
  publication-title: J. Infect. Chemother.
– volume: 58
  start-page: 436
  year: 2018
  end-page: 449
  ident: b42
  article-title: Toward predictive food process models: A protocol for parameter estimation
  publication-title: Crit. Rev. Food Sci. Nutr.
– volume: 17
  issue: 173
  year: 2020
  ident: 10.1016/j.mbs.2024.109278_b34
  article-title: Identifiability analysis for stochastic differential equation models in systems biology
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2020.0652
– volume: 18
  start-page: 24
  year: 2023
  ident: 10.1016/j.mbs.2024.109278_b19
  article-title: Within-host evolutionary dynamics of antimicrobial quantitative resistance
  publication-title: Math. Model. Nat. Phenom.
  doi: 10.1051/mmnp/2023019
– volume: 78
  start-page: 216
  issue: 1
  year: 2022
  ident: 10.1016/j.mbs.2024.109278_b14
  article-title: Decreased cyclic-amp caused by atp contributes to fosfomycin heteroresistance in avian Escherichia coli
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dkac377
– year: 2022
  ident: 10.1016/j.mbs.2024.109278_b12
– volume: 57
  start-page: 2976
  issue: 7
  year: 1972
  ident: 10.1016/j.mbs.2024.109278_b40
  article-title: The relationship between stochastic and deterministic models for chemical reactions
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1678692
– volume: 8
  start-page: 1876
  issue: 11
  year: 2020
  ident: 10.1016/j.mbs.2024.109278_b37
  article-title: Nonlinear observability algorithms with known and unknown inputs: Analysis and implementation
  publication-title: Mathematics
  doi: 10.3390/math8111876
– volume: 11
  start-page: 13230
  year: 2021
  ident: 10.1016/j.mbs.2024.109278_b16
  article-title: A link between pH homeostasis and colistin resistance in bacteria
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-92718-7
– volume: 39
  year: 2023
  ident: 10.1016/j.mbs.2024.109278_b38
  article-title: STRIKE-GOLDD 4.0: user-friendly, efficient analysis of structural identifiability and observability
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btac748
– volume: 399
  start-page: 629
  issue: 10325
  year: 2022
  ident: 10.1016/j.mbs.2024.109278_b2
  article-title: Col., Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis
  publication-title: Lancet
  doi: 10.1016/S0140-6736(21)02724-0
– volume: 18
  start-page: 406
  issue: 3
  year: 2012
  ident: 10.1016/j.mbs.2024.109278_b8
  article-title: Heterogeneously vancomycin-intermediate Staphylococcus aureus (hvisa) emerged before the clinical introduction of vancomycin in Japan: a retrospective study
  publication-title: J. Infect. Chemother.
  doi: 10.1007/s10156-011-0330-2
– volume: 7
  start-page: 70
  year: 2006
  ident: 10.1016/j.mbs.2024.109278_b22
  article-title: Biological applications of the theory of birth-and-death processes
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbk006
– volume: 51
  start-page: 341
  issue: 5
  year: 2001
  ident: 10.1016/j.mbs.2024.109278_b30
  publication-title: BioScience
  doi: 10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2
– volume: 361
  year: 2024
  ident: 10.1016/j.mbs.2024.109278_b27
  article-title: Modelling the antimicrobial effect of food preservatives in bacteria: Application to escherichia coli and bacillus cereus inhibition with carvacrol
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2023.111734
– volume: 68
  start-page: 2066
  issue: 7
  year: 2014
  ident: 10.1016/j.mbs.2024.109278_b32
  article-title: Plasmids and evolutionary rescue by drug resistance
  publication-title: Evolution
  doi: 10.1111/evo.12423
– year: 1964
  ident: 10.1016/j.mbs.2024.109278_b20
– volume: 34
  start-page: 1421
  issue: 8
  year: 2018
  ident: 10.1016/j.mbs.2024.109278_b36
  article-title: GenSSI 2.0: multi-experiment structural identifiability analysis of SBML models
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx735
– volume: 28
  start-page: 191
  issue: 1
  year: 2015
  ident: 10.1016/j.mbs.2024.109278_b6
  article-title: Antimicrobial heteroresistance: an emerging field in need of clarity
  publication-title: Clin. Microbiol. Rev.
  doi: 10.1128/CMR.00058-14
– volume: 4
  start-page: 504
  year: 2019
  ident: 10.1016/j.mbs.2024.109278_b10
  article-title: The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-018-0342-0
– year: 2007
  ident: 10.1016/j.mbs.2024.109278_b39
– volume: 259
  start-page: 83
  year: 2017
  ident: 10.1016/j.mbs.2024.109278_b41
  article-title: A traceless reversible polymeric colistin prodrug to combat multidrug-resistant (mdr) gram-negative bacteria
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2017.02.005
– volume: 4
  start-page: 521
  issue: 1
  year: 2021
  ident: 10.1016/j.mbs.2024.109278_b11
  article-title: The highly dynamic nature of bacterial heteroresistance impairs its clinical detection
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-021-02052-x
– volume: 58
  start-page: 436
  issue: 3
  year: 2018
  ident: 10.1016/j.mbs.2024.109278_b42
  article-title: Toward predictive food process models: A protocol for parameter estimation
  publication-title: Crit. Rev. Food Sci. Nutr.
– volume: 17
  start-page: 479
  year: 2019
  ident: 10.1016/j.mbs.2024.109278_b7
  article-title: Mechanisms and clinical relevance of bacterial heteroresistance
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-019-0218-1
– volume: 1519
  start-page: 46
  issue: 1
  year: 2023
  ident: 10.1016/j.mbs.2024.109278_b23
  article-title: New understanding of multidrug efflux and permeation in antibiotic resistance, persistence, and heteroresistance
  publication-title: Ann. New York Acad. Sci.
  doi: 10.1111/nyas.14921
– start-page: 126
  year: 2017
  ident: 10.1016/j.mbs.2024.109278_b43
  article-title: A normalisation strategy to optimally design experiments in computational biology
– year: 2024
  ident: 10.1016/j.mbs.2024.109278_b1
  article-title: A birth-death model to understand bacterial antimicrobial heteroresistance from time-kill curves
  publication-title: Matlab Codes
– volume: 65
  start-page: 553
  issue: 3
  year: 2012
  ident: 10.1016/j.mbs.2024.109278_b25
  article-title: Transition probabilities for general birth–death processes with applications in ecology, genetics, and evolution
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-011-0471-z
– year: 1997
  ident: 10.1016/j.mbs.2024.109278_b29
  article-title: Identification of parametric models from experimental data
– volume: 8
  start-page: 273
  issue: 3
  year: 2015
  ident: 10.1016/j.mbs.2024.109278_b28
  article-title: The fitness costs of antibiotic resistance mutations
  publication-title: Evol. Appl.
  doi: 10.1111/eva.12196
– volume: 509
  year: 2021
  ident: 10.1016/j.mbs.2024.109278_b26
  article-title: Competition delays multi-drug resistance evolution during combination therapy
  publication-title: J. Theoret. Biol.
  doi: 10.1016/j.jtbi.2020.110524
– volume: 8
  start-page: 1
  issue: 8
  year: 2013
  ident: 10.1016/j.mbs.2024.109278_b13
  article-title: Mutation in the C-Di-AMP cyclase dacA affects fitness and resistance of methicillin resistant Staphylococcus aureus
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0073512
– volume: 9
  issue: 10
  year: 2020
  ident: 10.1016/j.mbs.2024.109278_b4
  article-title: Antibiotics in food chain: The consequences for antibiotic resistance
  publication-title: Antibiotics
  doi: 10.3390/antibiotics9100688
– volume: 4
  start-page: 482
  issue: 3
  year: 2018
  ident: 10.1016/j.mbs.2024.109278_b5
  article-title: An overview of the antimicrobial resistance mechanisms of bacteria
  publication-title: AIMS Microbiol.
  doi: 10.3934/microbiol.2018.3.482
– volume: 8
  issue: 7
  year: 2013
  ident: 10.1016/j.mbs.2024.109278_b15
  article-title: Chemical communication of antibiotic resistance by a highly resistant subpopulation of bacterial cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0068874
– volume: 52
  start-page: 154
  year: 2006
  ident: 10.1016/j.mbs.2024.109278_b18
  article-title: A new modeling approach to the effect of antimicrobial agents on heterogeneous microbial populations
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-005-0350-6
– volume: 23
  start-page: 196
  year: 2014
  ident: 10.1016/j.mbs.2024.109278_b9
  article-title: Heteroresistance of Helicobacter pylori from the same patient prior to antibiotic treatment
  publication-title: Infect. Genet. Evol.: J. Mol. Epidemiol. Evol. Genet. Infect. Dis.
  doi: 10.1016/j.meegid.2014.02.009
– volume: 7
  issue: 117
  year: 2018
  ident: 10.1016/j.mbs.2024.109278_b17
  article-title: Send more data: a systematic review of mathematical models of antimicrobial resistance
  publication-title: Antimicrob. Resist. Infect. Control
– volume: 20
  start-page: 257
  year: 2022
  ident: 10.1016/j.mbs.2024.109278_b3
  article-title: Antibiotic resistance in the environment
  publication-title: Nat. Rev. Microbioly
  doi: 10.1038/s41579-021-00649-x
– volume: 127
  issue: 21
  year: 2007
  ident: 10.1016/j.mbs.2024.109278_b33
  article-title: A modified next reaction method for simulating chemical systems with time dependent propensities and delays
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2799998
– volume: 58
  start-page: 35
  year: 2007
  ident: 10.1016/j.mbs.2024.109278_b31
  article-title: Stochastic simulation of chemical kinetics
  publication-title: Ann. Rev. Phys. Chem.
  doi: 10.1146/annurev.physchem.58.032806.104637
– volume: 6
  start-page: 1
  issue: 11
  year: 2011
  ident: 10.1016/j.mbs.2024.109278_b35
  article-title: Structural identifiability of systems biology models: A critical comparison of methods
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0027755
– volume: 17
  start-page: 441
  year: 2019
  ident: 10.1016/j.mbs.2024.109278_b24
  article-title: Definitions and guidelines for research on antibiotic persistence
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-019-0196-3
– volume: Vol. I
  year: 1968
  ident: 10.1016/j.mbs.2024.109278_b21
SSID ssj0017116
Score 2.4271688
Snippet Antimicrobial heteroresistance refers to the presence of different subpopulations with heterogeneous antimicrobial responses within the same bacterial isolate,...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 109278
SubjectTerms AMR fitness cost
Antimicrobial Resistance (AMR)
Maximum Likelihood Estimation (MLE)
Model identifiability
Stochastic modelling
Stochastic Simulation Algorithm (SSA)
Title A birth–death model to understand bacterial antimicrobial heteroresistance from time-kill curves
URI https://dx.doi.org/10.1016/j.mbs.2024.109278
https://www.ncbi.nlm.nih.gov/pubmed/39182600
https://www.proquest.com/docview/3097149859
Volume 376
WOSCitedRecordID wos001304623300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-3134
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017116
  issn: 0025-5564
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6XZDggGB5lcfKSJyoskps53Usy_ISVAgW1FtkN66UJU2qvrRw4j_wD_klzNiJyxbtCpC4WJYVJ67nsztjz3xDyGOFnFAsibxQstATkmtPJonygnyiJgHIOZe-STYRD4fJaJS-63RmbSzMuoyrKjk9TWf_VdTQBsLG0Nm_ELd7KTRAHYQOJYgdyj8S_KCvCnT7a7wYeI5Kns14g4rmykWz9JVlajZsActiWhhOJhMbCc012OGoW-LCtzEoxVR7n4uy7I9X83XjetjmgnLkr9BdFQ1B5sY9EckKzJX8s0p_9d5g9Smf2cProQa9tX3wU1HaCLNDOS9r1_8FyMj2N7ruW1uHoU_77w9-PbhgwrnANadpbUTNGYdPk143DC2zebtDc5si5rfd3h48nBxMFRKvM4HcWMxmBNoi0f5gbCd4LbrMBjwZ7ZBdFodp0iW7g1dHo9fu5ikOTLpcN472Jtz4BG596Dxd5jxbxegsx9fJtcbYoAMLkhuko6s9ctmmH_2yR65uxLa4SdSAGuD8-PbdQIYayNBlTTeQoQ4y9Axk6DZkKEKGOshQC5lb5OPzo-PDl16TgcMb8zRaetpnKpAqZjLikeIa9XFM1xTpSIHhrOD_IZdKCRnkOSztSRRJXzPQQJHWUYSC3ybdqq70XUID6ecp6IYqF7lgWsuECRmCggzFJA5Ej_jtXGbjhp4es6SUWeuHeJLB9Gc4_Zmd_h554rrMLDfLRQ-LVkBZswis0pgBmi7q9qgVZgYbL96myUrXq0XGkX1NwE9Ke-SOlbIbBU_RbPf9e__20fvkymbBPCDd5XylH5JL4_WyWMz3yU48SvYb3P4Ee2axgg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+birth%E2%80%93death+model+to+understand+bacterial+antimicrobial+heteroresistance+from+time-kill+curves&rft.jtitle=Mathematical+biosciences&rft.au=Mart%C3%ADnez-L%C3%B3pez%2C+Nerea&rft.au=Vilas%2C+Carlos&rft.au=Garc%C3%ADa%2C+M%C3%ADriam+R.&rft.date=2024-10-01&rft.pub=Elsevier+Inc&rft.issn=0025-5564&rft.volume=376&rft_id=info:doi/10.1016%2Fj.mbs.2024.109278&rft.externalDocID=S002555642400138X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5564&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5564&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5564&client=summon