A birth–death model to understand bacterial antimicrobial heteroresistance from time-kill curves
Antimicrobial heteroresistance refers to the presence of different subpopulations with heterogeneous antimicrobial responses within the same bacterial isolate, so they show reduced susceptibility compared with the main population. Though it is widely accepted that heteroresistance can play a crucial...
Gespeichert in:
| Veröffentlicht in: | Mathematical biosciences Jg. 376; S. 109278 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Elsevier Inc
01.10.2024
|
| Schlagworte: | |
| ISSN: | 0025-5564, 1879-3134, 1879-3134 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Antimicrobial heteroresistance refers to the presence of different subpopulations with heterogeneous antimicrobial responses within the same bacterial isolate, so they show reduced susceptibility compared with the main population. Though it is widely accepted that heteroresistance can play a crucial role in the outcome of antimicrobial treatments, predictive Antimicrobial Resistance (AMR) models accounting for bacterial heteroresistance are still scarce and need to be refined as the techniques to measure heteroresistance become standardised and consistent conclusions are drawn from data. In this work, we propose a multivariate Birth-Death (BD) model of bacterial heteroresistance and analyse its properties in detail. Stochasticity in the population dynamics is considered since heteroresistance is often characterised by low initial frequencies of the less susceptible subpopulations, those mediating AMR transmission and potentially leading to treatment failure. We also discuss the utility of the heteroresistance model for practical applications and calibration under realistic conditions, demonstrating that it is possible to infer the model parameters and heteroresistance distribution from time-kill data, i.e., by measuring total cell counts alone and without performing any heteroresistance test.
•New stochastic model to understand heteroresistance using birth–death processes.•Model calibration is possible from standard experiments measuring time-kill curves.•Parameters are estimated uniquely (structurally & practically identifiable).•Model shows complex known behaviours, as faster regrowth when raising drug pressure. |
|---|---|
| AbstractList | Antimicrobial heteroresistance refers to the presence of different subpopulations with heterogeneous antimicrobial responses within the same bacterial isolate, so they show reduced susceptibility compared with the main population. Though it is widely accepted that heteroresistance can play a crucial role in the outcome of antimicrobial treatments, predictive Antimicrobial Resistance (AMR) models accounting for bacterial heteroresistance are still scarce and need to be refined as the techniques to measure heteroresistance become standardised and consistent conclusions are drawn from data. In this work, we propose a multivariate Birth-Death (BD) model of bacterial heteroresistance and analyse its properties in detail. Stochasticity in the population dynamics is considered since heteroresistance is often characterised by low initial frequencies of the less susceptible subpopulations, those mediating AMR transmission and potentially leading to treatment failure. We also discuss the utility of the heteroresistance model for practical applications and calibration under realistic conditions, demonstrating that it is possible to infer the model parameters and heteroresistance distribution from time-kill data, i.e., by measuring total cell counts alone and without performing any heteroresistance test.Antimicrobial heteroresistance refers to the presence of different subpopulations with heterogeneous antimicrobial responses within the same bacterial isolate, so they show reduced susceptibility compared with the main population. Though it is widely accepted that heteroresistance can play a crucial role in the outcome of antimicrobial treatments, predictive Antimicrobial Resistance (AMR) models accounting for bacterial heteroresistance are still scarce and need to be refined as the techniques to measure heteroresistance become standardised and consistent conclusions are drawn from data. In this work, we propose a multivariate Birth-Death (BD) model of bacterial heteroresistance and analyse its properties in detail. Stochasticity in the population dynamics is considered since heteroresistance is often characterised by low initial frequencies of the less susceptible subpopulations, those mediating AMR transmission and potentially leading to treatment failure. We also discuss the utility of the heteroresistance model for practical applications and calibration under realistic conditions, demonstrating that it is possible to infer the model parameters and heteroresistance distribution from time-kill data, i.e., by measuring total cell counts alone and without performing any heteroresistance test. Antimicrobial heteroresistance refers to the presence of different subpopulations with heterogeneous antimicrobial responses within the same bacterial isolate, so they show reduced susceptibility compared with the main population. Though it is widely accepted that heteroresistance can play a crucial role in the outcome of antimicrobial treatments, predictive Antimicrobial Resistance (AMR) models accounting for bacterial heteroresistance are still scarce and need to be refined as the techniques to measure heteroresistance become standardised and consistent conclusions are drawn from data. In this work, we propose a multivariate Birth-Death (BD) model of bacterial heteroresistance and analyse its properties in detail. Stochasticity in the population dynamics is considered since heteroresistance is often characterised by low initial frequencies of the less susceptible subpopulations, those mediating AMR transmission and potentially leading to treatment failure. We also discuss the utility of the heteroresistance model for practical applications and calibration under realistic conditions, demonstrating that it is possible to infer the model parameters and heteroresistance distribution from time-kill data, i.e., by measuring total cell counts alone and without performing any heteroresistance test. Antimicrobial heteroresistance refers to the presence of different subpopulations with heterogeneous antimicrobial responses within the same bacterial isolate, so they show reduced susceptibility compared with the main population. Though it is widely accepted that heteroresistance can play a crucial role in the outcome of antimicrobial treatments, predictive Antimicrobial Resistance (AMR) models accounting for bacterial heteroresistance are still scarce and need to be refined as the techniques to measure heteroresistance become standardised and consistent conclusions are drawn from data. In this work, we propose a multivariate Birth-Death (BD) model of bacterial heteroresistance and analyse its properties in detail. Stochasticity in the population dynamics is considered since heteroresistance is often characterised by low initial frequencies of the less susceptible subpopulations, those mediating AMR transmission and potentially leading to treatment failure. We also discuss the utility of the heteroresistance model for practical applications and calibration under realistic conditions, demonstrating that it is possible to infer the model parameters and heteroresistance distribution from time-kill data, i.e., by measuring total cell counts alone and without performing any heteroresistance test. •New stochastic model to understand heteroresistance using birth–death processes.•Model calibration is possible from standard experiments measuring time-kill curves.•Parameters are estimated uniquely (structurally & practically identifiable).•Model shows complex known behaviours, as faster regrowth when raising drug pressure. |
| ArticleNumber | 109278 |
| Author | Vilas, Carlos Martínez-López, Nerea García, Míriam R. |
| Author_xml | – sequence: 1 givenname: Nerea surname: Martínez-López fullname: Martínez-López, Nerea – sequence: 2 givenname: Carlos surname: Vilas fullname: Vilas, Carlos – sequence: 3 givenname: Míriam R. orcidid: 0000-0001-9538-6388 surname: García fullname: García, Míriam R. email: miriamr@iim.csic.es |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39182600$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kbtuFDEUhi0URDaBB6BBLmlm8bHHnrWooohLpEg0UFu-nNF6mRkH2xOJjnfIG_IkeLVJQ5HKOtb3Hen8_wU5W9KChLwFtgUG6sNhO7uy5Yz3bdZ82L0gG9gNuhMg-jOyYYzLTkrVn5OLUg6MwQCgXpFzoWHHFWMb4q6oi7nu__55CGjrns4p4ERrousSMJdql0Cd9RVztBO1S41z9Dm547TH9p0ylnjkPNIxp5k2ArufcZqoX_M9ltfk5Wingm8e30vy4_On79dfu9tvX26ur247L7SqHTLuwLqBWyWUE8i0BKkVV6ic4tKxQQTrXG8hBDfCqJRlyDUw2bOhl724JO9Pe-9y-rViqWaOxeM02QXTWoxgeoBe76Ru6LtHdHUzBnOX42zzb_OUSwOGE9BOLSXjaHystsa01GzjZICZYwPmYFoD5tiAOTXQTPjPfFr-nPPx5GCL5z5iNsVHbIGGmNFXE1J8xv4HLhqfSw |
| CitedBy_id | crossref_primary_10_1007_s12033_024_01295_3 |
| Cites_doi | 10.1098/rsif.2020.0652 10.1051/mmnp/2023019 10.1093/jac/dkac377 10.1063/1.1678692 10.3390/math8111876 10.1038/s41598-021-92718-7 10.1093/bioinformatics/btac748 10.1016/S0140-6736(21)02724-0 10.1007/s10156-011-0330-2 10.1093/bib/bbk006 10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2 10.1016/j.jfoodeng.2023.111734 10.1111/evo.12423 10.1093/bioinformatics/btx735 10.1128/CMR.00058-14 10.1038/s41564-018-0342-0 10.1016/j.jconrel.2017.02.005 10.1038/s42003-021-02052-x 10.1038/s41579-019-0218-1 10.1111/nyas.14921 10.1007/s00285-011-0471-z 10.1111/eva.12196 10.1016/j.jtbi.2020.110524 10.1371/journal.pone.0073512 10.3390/antibiotics9100688 10.3934/microbiol.2018.3.482 10.1371/journal.pone.0068874 10.1007/s00285-005-0350-6 10.1016/j.meegid.2014.02.009 10.1038/s41579-021-00649-x 10.1063/1.2799998 10.1146/annurev.physchem.58.032806.104637 10.1371/journal.pone.0027755 10.1038/s41579-019-0196-3 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s) Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2024 The Author(s) – notice: Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 |
| DOI | 10.1016/j.mbs.2024.109278 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Mathematics |
| EISSN | 1879-3134 |
| ExternalDocumentID | 39182600 10_1016_j_mbs_2024_109278 S002555642400138X |
| Genre | Journal Article |
| GroupedDBID | --- --K --M --Z -~X .GJ .~1 0R~ 0SF 186 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXKI AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABTAH ABXDB ACDAQ ACGFO ACGFS ACIUM ACIWK ACPRK ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AETEA AFFNX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMJ HVGLF HZ~ H~9 IHE J1W KOM LW9 M26 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SAB SDF SDG SDP SES SEW SME SPCBC SSA SSZ T5K TN5 UNMZH WH7 WUQ XOL XSW YQT ZCG ZGI ZXP ZY4 ~G- ~KM 9DU AATTM AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD BNPGV NPM SSH 7X8 |
| ID | FETCH-LOGICAL-c396t-e02b1ab72a636b3e095159626e6b625b073dabb4a1ddbf1f66a0e291054074543 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001304623300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0025-5564 1879-3134 |
| IngestDate | Sat Sep 27 17:49:53 EDT 2025 Thu Apr 03 07:03:15 EDT 2025 Tue Nov 18 21:46:21 EST 2025 Sat Nov 29 05:40:54 EST 2025 Sat Sep 14 18:00:29 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Stochastic Simulation Algorithm (SSA) Maximum Likelihood Estimation (MLE) Stochastic modelling AMR fitness cost Antimicrobial Resistance (AMR) Model identifiability |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c396t-e02b1ab72a636b3e095159626e6b625b073dabb4a1ddbf1f66a0e291054074543 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-9538-6388 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.mbs.2024.109278 |
| PMID | 39182600 |
| PQID | 3097149859 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3097149859 pubmed_primary_39182600 crossref_citationtrail_10_1016_j_mbs_2024_109278 crossref_primary_10_1016_j_mbs_2024_109278 elsevier_sciencedirect_doi_10_1016_j_mbs_2024_109278 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-01 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Mathematical biosciences |
| PublicationTitleAlternate | Math Biosci |
| PublicationYear | 2024 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Melnyk, Wong, Kassen (b28) 2015; 8 Larsson, Flach (b3) 2022; 20 Yamakawa, Kurosawa, Kaneko, Yamakawa, Aminaka, Hori, Cui, Ito, Jin, Hiramatsu, Okuzumi, Kobayashi, Katayama, Cui, Ito, Hiramatsu, Kondo, Nakamura, Oguri, Oguri, Hiramatsu (b8) 2012; 18 Djidjou-Demasse, Sofonea, Choisy, Alizon (b19) 2023; 18 Chis, Banga, Balsa-Canto (b35) 2011; 6 Pedreira, Martínez-López, Vázquez, García (b27) 2024; 361 Murray, Ikuta, Sharara, Swetschinski, Robles Aguilar, Naghavi (b2) 2022; 399 Browning, Warne, Burrage, Baker, Simpson (b34) 2020; 17 Hernandez-Beltran, Rodríguez-Beltrán, Aguilar-Luviano, Velez-Santiago, Mondragón-Palomino, MacLean, Fuentes-Hernández, San Millán, Peña-Miller (b12) 2022 Panta, Doerrler (b16) 2021; 11 Zhao, Han, He, Hou, Liang, J.-l. Cui, He, Hu, Liu, Yuan (b14) 2022; 78 El-Halfawy, Valvano (b15) 2013; 8 Nicoloff, Hjort, Levin, Andersson (b10) 2019; 4 Birkegård, Halasa, Toft, Folkesson, Græsbøll (b17) 2018; 7 Kumar, Arnipalli, Ziouzenkova (b4) 2020; 9 El-Halfawy, Valvano (b6) 2015; 28 Kao, Lee, Huang, Song, Yang, Sheu, Chang, Sheu, Wu (b9) 2014; 23 Bailey (b20) 1964 Berríos-Caro, Gifford, Galla (b26) 2021; 509 Limpert, Stahel, Abbt (b30) 2001; 51 Feller (b21) 1968; Vol. I Pereira, Larsson, Hjort, Elf, Andersson (b11) 2021; 4 Crawford, Suchard (b25) 2012; 65 Ligon, Fröhlich, Chiş, Banga, Balsa-Canto, Hasenauer (b36) 2018; 34 Martínez-López, Vilas, García (b1) 2024 Vilas, Arias-Méndez, García, Alonso, Balsa-Canto (b42) 2018; 58 García, Alonso, Balsa-Canto (b43) 2017 Reygaert (b5) 2018; 4 Andersson, Nicoloff, Hjort (b7) 2019; 17 Anderson (b33) 2007; 127 Martínez, Villaverde (b37) 2020; 8 Dengler, McCallum, Kiefer, Christen, Patrignani, Vorholt, Berger-Bächi, Senn (b13) 2013; 8 Balaban, Helaine, Lewis, Ackermann, Aldridge, Andersson, Brynildsen, Bumann, Camilli, Collins (b24) 2019; 17 Walter, Pronzato (b29) 1997 Gillespie (b31) 2007; 58 Díaz-Seoane, Rey Barreiro, Villaverde (b38) 2023; 39 Novozhilov, Karev, Koonin (b22) 2006; 7 Manrique, López, Gnanakaran, Rybenkov, Zgurskaya (b23) 2023; 1519 Anguelova (b39) 2007 Nikolaou, Tam (b18) 2006; 52 Tazzyman, Bonhoeffer (b32) 2014; 68 Zhu, Schneider, Wang, Kempe, Wilson, Velkov, Li, Davis, Whittaker, Haddleton (b41) 2017; 259 Kurtz (b40) 1972; 57 Nicoloff (10.1016/j.mbs.2024.109278_b10) 2019; 4 Larsson (10.1016/j.mbs.2024.109278_b3) 2022; 20 Bailey (10.1016/j.mbs.2024.109278_b20) 1964 Panta (10.1016/j.mbs.2024.109278_b16) 2021; 11 Novozhilov (10.1016/j.mbs.2024.109278_b22) 2006; 7 García (10.1016/j.mbs.2024.109278_b43) 2017 Vilas (10.1016/j.mbs.2024.109278_b42) 2018; 58 Kumar (10.1016/j.mbs.2024.109278_b4) 2020; 9 Feller (10.1016/j.mbs.2024.109278_b21) 1968; Vol. I Yamakawa (10.1016/j.mbs.2024.109278_b8) 2012; 18 Gillespie (10.1016/j.mbs.2024.109278_b31) 2007; 58 Ligon (10.1016/j.mbs.2024.109278_b36) 2018; 34 Manrique (10.1016/j.mbs.2024.109278_b23) 2023; 1519 Balaban (10.1016/j.mbs.2024.109278_b24) 2019; 17 Limpert (10.1016/j.mbs.2024.109278_b30) 2001; 51 Anguelova (10.1016/j.mbs.2024.109278_b39) 2007 Tazzyman (10.1016/j.mbs.2024.109278_b32) 2014; 68 Pereira (10.1016/j.mbs.2024.109278_b11) 2021; 4 Zhao (10.1016/j.mbs.2024.109278_b14) 2022; 78 Nikolaou (10.1016/j.mbs.2024.109278_b18) 2006; 52 Berríos-Caro (10.1016/j.mbs.2024.109278_b26) 2021; 509 Kao (10.1016/j.mbs.2024.109278_b9) 2014; 23 Dengler (10.1016/j.mbs.2024.109278_b13) 2013; 8 Pedreira (10.1016/j.mbs.2024.109278_b27) 2024; 361 Díaz-Seoane (10.1016/j.mbs.2024.109278_b38) 2023; 39 Crawford (10.1016/j.mbs.2024.109278_b25) 2012; 65 Anderson (10.1016/j.mbs.2024.109278_b33) 2007; 127 Walter (10.1016/j.mbs.2024.109278_b29) 1997 El-Halfawy (10.1016/j.mbs.2024.109278_b6) 2015; 28 Hernandez-Beltran (10.1016/j.mbs.2024.109278_b12) 2022 Martínez (10.1016/j.mbs.2024.109278_b37) 2020; 8 Martínez-López (10.1016/j.mbs.2024.109278_b1) 2024 Kurtz (10.1016/j.mbs.2024.109278_b40) 1972; 57 Zhu (10.1016/j.mbs.2024.109278_b41) 2017; 259 Reygaert (10.1016/j.mbs.2024.109278_b5) 2018; 4 Chis (10.1016/j.mbs.2024.109278_b35) 2011; 6 Browning (10.1016/j.mbs.2024.109278_b34) 2020; 17 Melnyk (10.1016/j.mbs.2024.109278_b28) 2015; 8 Murray (10.1016/j.mbs.2024.109278_b2) 2022; 399 Andersson (10.1016/j.mbs.2024.109278_b7) 2019; 17 El-Halfawy (10.1016/j.mbs.2024.109278_b15) 2013; 8 Birkegård (10.1016/j.mbs.2024.109278_b17) 2018; 7 Djidjou-Demasse (10.1016/j.mbs.2024.109278_b19) 2023; 18 |
| References_xml | – start-page: 126 year: 2017 end-page: 136 ident: b43 article-title: A normalisation strategy to optimally design experiments in computational biology publication-title: 11th International Conference on Practical Applications of Computational Biology & Bioinformatics – volume: 4 start-page: 521 year: 2021 ident: b11 article-title: The highly dynamic nature of bacterial heteroresistance impairs its clinical detection publication-title: Commun. Biol. – volume: 57 start-page: 2976 year: 1972 end-page: 2978 ident: b40 article-title: The relationship between stochastic and deterministic models for chemical reactions publication-title: J. Chem. Phys. – volume: 1519 start-page: 46 year: 2023 end-page: 62 ident: b23 article-title: New understanding of multidrug efflux and permeation in antibiotic resistance, persistence, and heteroresistance publication-title: Ann. New York Acad. Sci. – volume: 8 start-page: 273 year: 2015 end-page: 283 ident: b28 article-title: The fitness costs of antibiotic resistance mutations publication-title: Evol. Appl. – volume: 20 start-page: 257 year: 2022 end-page: 269 ident: b3 article-title: Antibiotic resistance in the environment publication-title: Nat. Rev. Microbioly – volume: 509 year: 2021 ident: b26 article-title: Competition delays multi-drug resistance evolution during combination therapy publication-title: J. Theoret. Biol. – volume: 68 start-page: 2066 year: 2014 end-page: 2078 ident: b32 article-title: Plasmids and evolutionary rescue by drug resistance publication-title: Evolution – volume: 7 start-page: 70 year: 2006 end-page: 85 ident: b22 article-title: Biological applications of the theory of birth-and-death processes publication-title: Brief. Bioinform. – volume: 17 year: 2020 ident: b34 article-title: Identifiability analysis for stochastic differential equation models in systems biology publication-title: J. R. Soc. Interface – volume: 58 start-page: 35 year: 2007 end-page: 55 ident: b31 article-title: Stochastic simulation of chemical kinetics publication-title: Ann. Rev. Phys. Chem. – volume: 28 start-page: 191 year: 2015 end-page: 207 ident: b6 article-title: Antimicrobial heteroresistance: an emerging field in need of clarity publication-title: Clin. Microbiol. Rev. – year: 1997 ident: b29 article-title: Identification of parametric models from experimental data publication-title: Communications and Control Engineering – year: 2022 ident: b12 article-title: Antibiotic heteroresistance generated by multi-copy plasmids – volume: 8 start-page: 1876 year: 2020 ident: b37 article-title: Nonlinear observability algorithms with known and unknown inputs: Analysis and implementation publication-title: Mathematics – year: 1964 ident: b20 publication-title: The Elements of Stochastic Processes with Applications To the Natural Sciences – volume: 4 start-page: 504 year: 2019 end-page: 514 ident: b10 article-title: The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification publication-title: Nat. Microbiol. – volume: 51 start-page: 341 year: 2001 end-page: 352 ident: b30 article-title: Log-normal Distributions across the Sciences: Keys and Clues: On the charms of statistics, and how mechanical models resembling gambling machines offer a link to a handy way to characterize log-normal distributions, which can provide deeper insight into variability and probability—normal or log-normal: That is the question publication-title: BioScience – volume: 7 year: 2018 ident: b17 article-title: Send more data: a systematic review of mathematical models of antimicrobial resistance publication-title: Antimicrob. Resist. Infect. Control – volume: 361 year: 2024 ident: b27 article-title: Modelling the antimicrobial effect of food preservatives in bacteria: Application to escherichia coli and bacillus cereus inhibition with carvacrol publication-title: J. Food Eng. – volume: 399 start-page: 629 year: 2022 end-page: 655 ident: b2 article-title: Col., Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis publication-title: Lancet – volume: 4 start-page: 482 year: 2018 end-page: 501 ident: b5 article-title: An overview of the antimicrobial resistance mechanisms of bacteria publication-title: AIMS Microbiol. – volume: 23 start-page: 196 year: 2014 end-page: 202 ident: b9 article-title: Heteroresistance of publication-title: Infect. Genet. Evol.: J. Mol. Epidemiol. Evol. Genet. Infect. Dis. – volume: 18 start-page: 24 year: 2023 ident: b19 article-title: Within-host evolutionary dynamics of antimicrobial quantitative resistance publication-title: Math. Model. Nat. Phenom. – volume: 127 year: 2007 ident: b33 article-title: A modified next reaction method for simulating chemical systems with time dependent propensities and delays publication-title: J. Chem. Phys. – volume: 34 start-page: 1421 year: 2018 end-page: 1423 ident: b36 article-title: GenSSI 2.0: multi-experiment structural identifiability analysis of SBML models publication-title: Bioinformatics – year: 2007 ident: b39 article-title: Observability and identifiability of nonlinear systems with applications in biology – volume: 52 start-page: 154 year: 2006 end-page: 182 ident: b18 article-title: A new modeling approach to the effect of antimicrobial agents on heterogeneous microbial populations publication-title: J. Math. Biol. – year: 2024 ident: b1 article-title: A birth-death model to understand bacterial antimicrobial heteroresistance from time-kill curves publication-title: Matlab Codes – volume: 6 start-page: 1 year: 2011 end-page: 16 ident: b35 article-title: Structural identifiability of systems biology models: A critical comparison of methods publication-title: PLOS ONE – volume: 17 start-page: 479 year: 2019 end-page: 496 ident: b7 article-title: Mechanisms and clinical relevance of bacterial heteroresistance publication-title: Nat. Rev. Microbiol. – volume: 78 start-page: 216 year: 2022 end-page: 224 ident: b14 article-title: Decreased cyclic-amp caused by atp contributes to fosfomycin heteroresistance in avian publication-title: J. Antimicrob. Chemother. – volume: 8 year: 2013 ident: b15 article-title: Chemical communication of antibiotic resistance by a highly resistant subpopulation of bacterial cells publication-title: PLoS One – volume: 39 year: 2023 ident: b38 article-title: STRIKE-GOLDD 4.0: user-friendly, efficient analysis of structural identifiability and observability publication-title: Bioinformatics – volume: 17 start-page: 441 year: 2019 end-page: 448 ident: b24 article-title: Definitions and guidelines for research on antibiotic persistence publication-title: Nat. Rev. Microbiol. – volume: 9 year: 2020 ident: b4 article-title: Antibiotics in food chain: The consequences for antibiotic resistance publication-title: Antibiotics – volume: Vol. I year: 1968 ident: b21 publication-title: An Introduction To Probability Theory and Its Applications – volume: 259 start-page: 83 year: 2017 end-page: 91 ident: b41 article-title: A traceless reversible polymeric colistin prodrug to combat multidrug-resistant (mdr) gram-negative bacteria publication-title: J. Control. Release – volume: 8 start-page: 1 year: 2013 end-page: 11 ident: b13 article-title: Mutation in the C-Di-AMP cyclase dacA affects fitness and resistance of methicillin resistant publication-title: PLOS ONE – volume: 11 start-page: 13230 year: 2021 ident: b16 article-title: A link between pH homeostasis and colistin resistance in bacteria publication-title: Sci. Rep. – volume: 65 start-page: 553 year: 2012 end-page: 580 ident: b25 article-title: Transition probabilities for general birth–death processes with applications in ecology, genetics, and evolution publication-title: J. Math. Biol. – volume: 18 start-page: 406 year: 2012 end-page: 409 ident: b8 article-title: Heterogeneously vancomycin-intermediate publication-title: J. Infect. Chemother. – volume: 58 start-page: 436 year: 2018 end-page: 449 ident: b42 article-title: Toward predictive food process models: A protocol for parameter estimation publication-title: Crit. Rev. Food Sci. Nutr. – volume: 17 issue: 173 year: 2020 ident: 10.1016/j.mbs.2024.109278_b34 article-title: Identifiability analysis for stochastic differential equation models in systems biology publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2020.0652 – volume: 18 start-page: 24 year: 2023 ident: 10.1016/j.mbs.2024.109278_b19 article-title: Within-host evolutionary dynamics of antimicrobial quantitative resistance publication-title: Math. Model. Nat. Phenom. doi: 10.1051/mmnp/2023019 – volume: 78 start-page: 216 issue: 1 year: 2022 ident: 10.1016/j.mbs.2024.109278_b14 article-title: Decreased cyclic-amp caused by atp contributes to fosfomycin heteroresistance in avian Escherichia coli publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkac377 – year: 2022 ident: 10.1016/j.mbs.2024.109278_b12 – volume: 57 start-page: 2976 issue: 7 year: 1972 ident: 10.1016/j.mbs.2024.109278_b40 article-title: The relationship between stochastic and deterministic models for chemical reactions publication-title: J. Chem. Phys. doi: 10.1063/1.1678692 – volume: 8 start-page: 1876 issue: 11 year: 2020 ident: 10.1016/j.mbs.2024.109278_b37 article-title: Nonlinear observability algorithms with known and unknown inputs: Analysis and implementation publication-title: Mathematics doi: 10.3390/math8111876 – volume: 11 start-page: 13230 year: 2021 ident: 10.1016/j.mbs.2024.109278_b16 article-title: A link between pH homeostasis and colistin resistance in bacteria publication-title: Sci. Rep. doi: 10.1038/s41598-021-92718-7 – volume: 39 year: 2023 ident: 10.1016/j.mbs.2024.109278_b38 article-title: STRIKE-GOLDD 4.0: user-friendly, efficient analysis of structural identifiability and observability publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac748 – volume: 399 start-page: 629 issue: 10325 year: 2022 ident: 10.1016/j.mbs.2024.109278_b2 article-title: Col., Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis publication-title: Lancet doi: 10.1016/S0140-6736(21)02724-0 – volume: 18 start-page: 406 issue: 3 year: 2012 ident: 10.1016/j.mbs.2024.109278_b8 article-title: Heterogeneously vancomycin-intermediate Staphylococcus aureus (hvisa) emerged before the clinical introduction of vancomycin in Japan: a retrospective study publication-title: J. Infect. Chemother. doi: 10.1007/s10156-011-0330-2 – volume: 7 start-page: 70 year: 2006 ident: 10.1016/j.mbs.2024.109278_b22 article-title: Biological applications of the theory of birth-and-death processes publication-title: Brief. Bioinform. doi: 10.1093/bib/bbk006 – volume: 51 start-page: 341 issue: 5 year: 2001 ident: 10.1016/j.mbs.2024.109278_b30 publication-title: BioScience doi: 10.1641/0006-3568(2001)051[0341:LNDATS]2.0.CO;2 – volume: 361 year: 2024 ident: 10.1016/j.mbs.2024.109278_b27 article-title: Modelling the antimicrobial effect of food preservatives in bacteria: Application to escherichia coli and bacillus cereus inhibition with carvacrol publication-title: J. Food Eng. doi: 10.1016/j.jfoodeng.2023.111734 – volume: 68 start-page: 2066 issue: 7 year: 2014 ident: 10.1016/j.mbs.2024.109278_b32 article-title: Plasmids and evolutionary rescue by drug resistance publication-title: Evolution doi: 10.1111/evo.12423 – year: 1964 ident: 10.1016/j.mbs.2024.109278_b20 – volume: 34 start-page: 1421 issue: 8 year: 2018 ident: 10.1016/j.mbs.2024.109278_b36 article-title: GenSSI 2.0: multi-experiment structural identifiability analysis of SBML models publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx735 – volume: 28 start-page: 191 issue: 1 year: 2015 ident: 10.1016/j.mbs.2024.109278_b6 article-title: Antimicrobial heteroresistance: an emerging field in need of clarity publication-title: Clin. Microbiol. Rev. doi: 10.1128/CMR.00058-14 – volume: 4 start-page: 504 year: 2019 ident: 10.1016/j.mbs.2024.109278_b10 article-title: The high prevalence of antibiotic heteroresistance in pathogenic bacteria is mainly caused by gene amplification publication-title: Nat. Microbiol. doi: 10.1038/s41564-018-0342-0 – year: 2007 ident: 10.1016/j.mbs.2024.109278_b39 – volume: 259 start-page: 83 year: 2017 ident: 10.1016/j.mbs.2024.109278_b41 article-title: A traceless reversible polymeric colistin prodrug to combat multidrug-resistant (mdr) gram-negative bacteria publication-title: J. Control. Release doi: 10.1016/j.jconrel.2017.02.005 – volume: 4 start-page: 521 issue: 1 year: 2021 ident: 10.1016/j.mbs.2024.109278_b11 article-title: The highly dynamic nature of bacterial heteroresistance impairs its clinical detection publication-title: Commun. Biol. doi: 10.1038/s42003-021-02052-x – volume: 58 start-page: 436 issue: 3 year: 2018 ident: 10.1016/j.mbs.2024.109278_b42 article-title: Toward predictive food process models: A protocol for parameter estimation publication-title: Crit. Rev. Food Sci. Nutr. – volume: 17 start-page: 479 year: 2019 ident: 10.1016/j.mbs.2024.109278_b7 article-title: Mechanisms and clinical relevance of bacterial heteroresistance publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-019-0218-1 – volume: 1519 start-page: 46 issue: 1 year: 2023 ident: 10.1016/j.mbs.2024.109278_b23 article-title: New understanding of multidrug efflux and permeation in antibiotic resistance, persistence, and heteroresistance publication-title: Ann. New York Acad. Sci. doi: 10.1111/nyas.14921 – start-page: 126 year: 2017 ident: 10.1016/j.mbs.2024.109278_b43 article-title: A normalisation strategy to optimally design experiments in computational biology – year: 2024 ident: 10.1016/j.mbs.2024.109278_b1 article-title: A birth-death model to understand bacterial antimicrobial heteroresistance from time-kill curves publication-title: Matlab Codes – volume: 65 start-page: 553 issue: 3 year: 2012 ident: 10.1016/j.mbs.2024.109278_b25 article-title: Transition probabilities for general birth–death processes with applications in ecology, genetics, and evolution publication-title: J. Math. Biol. doi: 10.1007/s00285-011-0471-z – year: 1997 ident: 10.1016/j.mbs.2024.109278_b29 article-title: Identification of parametric models from experimental data – volume: 8 start-page: 273 issue: 3 year: 2015 ident: 10.1016/j.mbs.2024.109278_b28 article-title: The fitness costs of antibiotic resistance mutations publication-title: Evol. Appl. doi: 10.1111/eva.12196 – volume: 509 year: 2021 ident: 10.1016/j.mbs.2024.109278_b26 article-title: Competition delays multi-drug resistance evolution during combination therapy publication-title: J. Theoret. Biol. doi: 10.1016/j.jtbi.2020.110524 – volume: 8 start-page: 1 issue: 8 year: 2013 ident: 10.1016/j.mbs.2024.109278_b13 article-title: Mutation in the C-Di-AMP cyclase dacA affects fitness and resistance of methicillin resistant Staphylococcus aureus publication-title: PLOS ONE doi: 10.1371/journal.pone.0073512 – volume: 9 issue: 10 year: 2020 ident: 10.1016/j.mbs.2024.109278_b4 article-title: Antibiotics in food chain: The consequences for antibiotic resistance publication-title: Antibiotics doi: 10.3390/antibiotics9100688 – volume: 4 start-page: 482 issue: 3 year: 2018 ident: 10.1016/j.mbs.2024.109278_b5 article-title: An overview of the antimicrobial resistance mechanisms of bacteria publication-title: AIMS Microbiol. doi: 10.3934/microbiol.2018.3.482 – volume: 8 issue: 7 year: 2013 ident: 10.1016/j.mbs.2024.109278_b15 article-title: Chemical communication of antibiotic resistance by a highly resistant subpopulation of bacterial cells publication-title: PLoS One doi: 10.1371/journal.pone.0068874 – volume: 52 start-page: 154 year: 2006 ident: 10.1016/j.mbs.2024.109278_b18 article-title: A new modeling approach to the effect of antimicrobial agents on heterogeneous microbial populations publication-title: J. Math. Biol. doi: 10.1007/s00285-005-0350-6 – volume: 23 start-page: 196 year: 2014 ident: 10.1016/j.mbs.2024.109278_b9 article-title: Heteroresistance of Helicobacter pylori from the same patient prior to antibiotic treatment publication-title: Infect. Genet. Evol.: J. Mol. Epidemiol. Evol. Genet. Infect. Dis. doi: 10.1016/j.meegid.2014.02.009 – volume: 7 issue: 117 year: 2018 ident: 10.1016/j.mbs.2024.109278_b17 article-title: Send more data: a systematic review of mathematical models of antimicrobial resistance publication-title: Antimicrob. Resist. Infect. Control – volume: 20 start-page: 257 year: 2022 ident: 10.1016/j.mbs.2024.109278_b3 article-title: Antibiotic resistance in the environment publication-title: Nat. Rev. Microbioly doi: 10.1038/s41579-021-00649-x – volume: 127 issue: 21 year: 2007 ident: 10.1016/j.mbs.2024.109278_b33 article-title: A modified next reaction method for simulating chemical systems with time dependent propensities and delays publication-title: J. Chem. Phys. doi: 10.1063/1.2799998 – volume: 58 start-page: 35 year: 2007 ident: 10.1016/j.mbs.2024.109278_b31 article-title: Stochastic simulation of chemical kinetics publication-title: Ann. Rev. Phys. Chem. doi: 10.1146/annurev.physchem.58.032806.104637 – volume: 6 start-page: 1 issue: 11 year: 2011 ident: 10.1016/j.mbs.2024.109278_b35 article-title: Structural identifiability of systems biology models: A critical comparison of methods publication-title: PLOS ONE doi: 10.1371/journal.pone.0027755 – volume: 17 start-page: 441 year: 2019 ident: 10.1016/j.mbs.2024.109278_b24 article-title: Definitions and guidelines for research on antibiotic persistence publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-019-0196-3 – volume: Vol. I year: 1968 ident: 10.1016/j.mbs.2024.109278_b21 |
| SSID | ssj0017116 |
| Score | 2.4271688 |
| Snippet | Antimicrobial heteroresistance refers to the presence of different subpopulations with heterogeneous antimicrobial responses within the same bacterial isolate,... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 109278 |
| SubjectTerms | AMR fitness cost Antimicrobial Resistance (AMR) Maximum Likelihood Estimation (MLE) Model identifiability Stochastic modelling Stochastic Simulation Algorithm (SSA) |
| Title | A birth–death model to understand bacterial antimicrobial heteroresistance from time-kill curves |
| URI | https://dx.doi.org/10.1016/j.mbs.2024.109278 https://www.ncbi.nlm.nih.gov/pubmed/39182600 https://www.proquest.com/docview/3097149859 |
| Volume | 376 |
| WOSCitedRecordID | wos001304623300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-3134 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017116 issn: 0025-5564 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6XZDggGB5lcfKSJyoskps53Usy_ISVAgW1FtkN66UJU2qvrRw4j_wD_klzNiJyxbtCpC4WJYVJ67nsztjz3xDyGOFnFAsibxQstATkmtPJonygnyiJgHIOZe-STYRD4fJaJS-63RmbSzMuoyrKjk9TWf_VdTQBsLG0Nm_ELd7KTRAHYQOJYgdyj8S_KCvCnT7a7wYeI5Kns14g4rmykWz9JVlajZsActiWhhOJhMbCc012OGoW-LCtzEoxVR7n4uy7I9X83XjetjmgnLkr9BdFQ1B5sY9EckKzJX8s0p_9d5g9Smf2cProQa9tX3wU1HaCLNDOS9r1_8FyMj2N7ruW1uHoU_77w9-PbhgwrnANadpbUTNGYdPk143DC2zebtDc5si5rfd3h48nBxMFRKvM4HcWMxmBNoi0f5gbCd4LbrMBjwZ7ZBdFodp0iW7g1dHo9fu5ikOTLpcN472Jtz4BG596Dxd5jxbxegsx9fJtcbYoAMLkhuko6s9ctmmH_2yR65uxLa4SdSAGuD8-PbdQIYayNBlTTeQoQ4y9Axk6DZkKEKGOshQC5lb5OPzo-PDl16TgcMb8zRaetpnKpAqZjLikeIa9XFM1xTpSIHhrOD_IZdKCRnkOSztSRRJXzPQQJHWUYSC3ybdqq70XUID6ecp6IYqF7lgWsuECRmCggzFJA5Ej_jtXGbjhp4es6SUWeuHeJLB9Gc4_Zmd_h554rrMLDfLRQ-LVkBZswis0pgBmi7q9qgVZgYbL96myUrXq0XGkX1NwE9Ke-SOlbIbBU_RbPf9e__20fvkymbBPCDd5XylH5JL4_WyWMz3yU48SvYb3P4Ee2axgg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+birth%E2%80%93death+model+to+understand+bacterial+antimicrobial+heteroresistance+from+time-kill+curves&rft.jtitle=Mathematical+biosciences&rft.au=Mart%C3%ADnez-L%C3%B3pez%2C+Nerea&rft.au=Vilas%2C+Carlos&rft.au=Garc%C3%ADa%2C+M%C3%ADriam+R.&rft.date=2024-10-01&rft.pub=Elsevier+Inc&rft.issn=0025-5564&rft.volume=376&rft_id=info:doi/10.1016%2Fj.mbs.2024.109278&rft.externalDocID=S002555642400138X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5564&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5564&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5564&client=summon |