A Comparison of the Embedding Method With Multiparametric Programming, Mixed-Integer Programming, Gradient-Descent, and Hybrid Minimum Principle-Based Methods

In recent years, the embedding approach for solving switched optimal control problems has been developed in a series of papers. However, the embedding approach, which advantageously converts the hybrid optimal control problem to a classical nonlinear optimization, has not been extensively compared w...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on control systems technology Ročník 22; číslo 5; s. 1784 - 1800
Hlavní autoři: Meyer, Richard T., Zefran, Milos, DeCarlo, Raymond A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.09.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1063-6536, 1558-0865
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In recent years, the embedding approach for solving switched optimal control problems has been developed in a series of papers. However, the embedding approach, which advantageously converts the hybrid optimal control problem to a classical nonlinear optimization, has not been extensively compared with alternative solution approaches. The goal of this paper is thus to compare the embedding approach with multiparametric programming, mixed-integer programming [mixed integer programming (MIP), commercial (CPLEX)], and gradient-descent-based methods in the context of five recently published examples: 1) a spring-mass system; 2) moving-target tracking for a mobile robot; 3) two-tank filling; dc-dc boost converter; and 5) skid-steered vehicle. A sixth example, an autonomous switched 11-region linear system, is used to compare a hybrid minimum principle method and traditional numerical programming. For a given performance index (PI) for each case, cost and solution times are presented. It is shown that there are numerical advantages of the embedding approach: lower PI cost (except in some instances when autonomous switches are present), generally faster solution time, and convergence to a solution when other methods may fail. In addition, the embedding method requires no ad hoc assumptions (e.g., predetermined mode sequences) or specialized control models. Theoretical advantages of the embedding approach over the other methods are also described; guaranteed existence of a solution under mild conditions, convexity of the embedded hybrid optimization problem (under the customary conditions on the PI), solvability with traditional techniques (e.g., sequential quadratic programming) avoiding the combinatorial complexity in the number of modes/discrete variables of MIP, applicability to affine nonlinear systems, and no need to explicitly assign discrete/mode variables to autonomous switches. Finally, common misconceptions regarding the embedding approach are addressed, including whether it uses an average value control model (no), whether it is necessary to tweak the algorithm to obtain bang-bang solutions (no), whether it requires infinite switching to implement embedded solution (no), and whether it has real-time capability (yes).
AbstractList In recent years, the embedding approach for solving switched optimal control problems has been developed in a series of papers. However, the embedding approach, which advantageously converts the hybrid optimal control problem to a classical nonlinear optimization, has not been extensively compared with alternative solution approaches. The goal of this paper is thus to compare the embedding approach with multiparametric programming, mixed-integer programming [mixed integer programming (MIP), commercial (CPLEX)], and gradient-descent-based methods in the context of five recently published examples: 1) a spring-mass system; 2) moving-target tracking for a mobile robot; 3) two-tank filling; dc-dc boost converter; and 5) skid-steered vehicle. A sixth example, an autonomous switched 11-region linear system, is used to compare a hybrid minimum principle method and traditional numerical programming. For a given performance index (PI) for each case, cost and solution times are presented. It is shown that there are numerical advantages of the embedding approach: lower PI cost (except in some instances when autonomous switches are present), generally faster solution time, and convergence to a solution when other methods may fail. In addition, the embedding method requires no ad hoc assumptions (e.g., predetermined mode sequences) or specialized control models. Theoretical advantages of the embedding approach over the other methods are also described; guaranteed existence of a solution under mild conditions, convexity of the embedded hybrid optimization problem (under the customary conditions on the PI), solvability with traditional techniques (e.g., sequential quadratic programming) avoiding the combinatorial complexity in the number of modes/discrete variables of MIP, applicability to affine nonlinear systems, and no need to explicitly assign discrete/mode variables to autonomous switches. Finally, common misconceptions regarding the embedding approach are addressed, including whether it uses an average value control model (no), whether it is necessary to tweak the algorithm to obtain bang-bang solutions (no), whether it requires infinite switching to implement embedded solution (no), and whether it has real-time capability (yes).
Author Meyer, Richard T.
Zefran, Milos
DeCarlo, Raymond A.
Author_xml – sequence: 1
  givenname: Richard T.
  surname: Meyer
  fullname: Meyer, Richard T.
  email: rtmeyer@purdue.edu
  organization: School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
– sequence: 2
  givenname: Milos
  surname: Zefran
  fullname: Zefran, Milos
  email: mzefran@uic.edu
  organization: Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, USA
– sequence: 3
  givenname: Raymond A.
  surname: DeCarlo
  fullname: DeCarlo, Raymond A.
  email: decarlo@ecn.purdue.edu
  organization: School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
BookMark eNp9kc1q3DAURkVJIcm0D1C6EXTTRTzVn2V7mU7SJJChgUzp0sjS9YyCLU0lGZKXybNWwwyBZJGFuBI6R_ei7xQdOe8AoS-UzCklzY_V4n41Z4TyOWONZJR-QCe0LOuC1LI8ynsieSFLLo_RaYwPhFBRsuoEPZ_jhR-3KtjoHfY9ThvAl2MHxli3xktIG2_wX5s2eDkNyWZSjZCC1fgu-HU-jJk7w0v7CKa4cQnWEF5fXQVlLLhUXEDUuZ5h5Qy-fuqCNdlzdpzGbFin7XaA4qeKYA6N4yf0sVdDhM-HOkN_fl2uFtfF7e-rm8X5baF5I1Ohe0UZdLUypNSaMtJ0msm-FBUwIzpiNJe86anshOx60fOuriVXFZFlQwkwPkPf9-9ug_83QUztaPOww6Ac-Cm2-SubivA6rxn69gZ98FNwebpMiSY3F1WVqWpP6eBjDNC32iaVrHcpKDu0lLS73Npdbu0ut_aQWzbpG3Mb7KjC07vO171jAeCFlxXnQhD-H8y2pvU
CODEN IETTE2
CitedBy_id crossref_primary_10_1002_rnc_4804
crossref_primary_10_1109_TASE_2016_2570141
crossref_primary_10_1002_asjc_2892
crossref_primary_10_1007_s40995_022_01265_x
crossref_primary_10_1016_j_actaastro_2018_01_051
crossref_primary_10_1007_s10044_019_00843_x
crossref_primary_10_1115_1_4037270
crossref_primary_10_3390_en14206736
crossref_primary_10_1002_oca_2673
crossref_primary_10_1109_TITS_2022_3229254
crossref_primary_10_1002_oca_2500
crossref_primary_10_2514_1_B37419
crossref_primary_10_1515_auto_2018_0080
crossref_primary_10_1109_TAES_2018_2836618
crossref_primary_10_1051_matecconf_20167602013
crossref_primary_10_3390_en13133364
crossref_primary_10_1002_asjc_1259
crossref_primary_10_1016_j_proeng_2015_01_539
Cites_doi 10.1109/TIE.2008.2006951
10.1109/APEC.2009.4802805
10.1109/CDC.2003.1272479
10.1016/0005-1098(88)90027-1
10.1109/CDC.2010.5717263
10.1016/j.automatica.2005.04.017
10.1109/TCST.2012.2227964
10.1109/CDC.2010.5717264
10.1016/S0005-1098(01)00174-1
10.1016/j.nahs.2006.10.007
10.1016/j.automatica.2010.10.010
10.1002/asjc.553
10.1109/ACC.1999.786491
10.1109/CDC.1999.831404
10.1109/ROBOT.2007.363674
10.1007/978-3-540-24743-2_30
10.1016/S0005-1098(02)00308-4
10.1109/TAC.1981.1102596
10.1109/ROBOT.2010.5509356
10.1109/TCST.2009.2035306
10.1109/TAC.1983.1103294
10.1049/ip-cta:20050094
10.1109/TAC.2010.2047437
10.1109/COMPEL.2010.5562383
10.1109/ACC.2011.5991428
10.1109/ACC.2012.6314919
10.1109/CDC.2010.5717840
10.1016/S0005-1098(04)00223-7
10.1109/TAC.2006.878720
10.1109/TCST.2009.2017934
10.1109/APEC.2010.5433628
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2014
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
L7M
F28
DOI 10.1109/TCST.2013.2296211
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Engineering Research Database
Engineering Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0865
EndPage 1800
ExternalDocumentID 3386483391
10_1109_TCST_2013_2296211
6733440
Genre orig-research
GrantInformation_xml – fundername: Office of Naval Research and in part by the National Science Foundation
  grantid: IIS-0905593; CNS-0910988; CNS-1035914
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACBEA
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
7TB
8FD
FR3
L7M
F28
ID FETCH-LOGICAL-c396t-cfa12eb8ad05cc1209bc26f547e2d4b0dc3639f16b46bf4f3b8863a7065910e23
IEDL.DBID RIE
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000345574100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6536
IngestDate Thu Oct 02 05:48:10 EDT 2025
Sun Nov 30 04:02:58 EST 2025
Sat Nov 29 02:44:39 EST 2025
Tue Nov 18 19:50:36 EST 2025
Wed Aug 27 02:14:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords model predictive control
multiparametric programming
switched optimal control
embedding method
Boost converter
numerical optimization
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-cfa12eb8ad05cc1209bc26f547e2d4b0dc3639f16b46bf4f3b8863a7065910e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1549120477
PQPubID 85425
PageCount 17
ParticipantIDs proquest_miscellaneous_1559703870
crossref_citationtrail_10_1109_TCST_2013_2296211
ieee_primary_6733440
crossref_primary_10_1109_TCST_2013_2296211
proquest_journals_1549120477
PublicationCentury 2000
PublicationDate 2014-09-01
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on control systems technology
PublicationTitleAbbrev TCST
PublicationYear 2014
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref37
ref14
ref30
ref11
ref10
ref32
wolsey (ref1) 1998
meyer (ref39) 2012
ref2
xu (ref31) 2000
ref17
ref16
ref38
(ref7) 2012
ref19
ref18
mayne (ref33) 2001
borrelli (ref8) 2013
bengea (ref25) 2011
žefran (ref42) 1997
ref23
ref26
ref20
ref22
ref21
ref43
borrelli (ref36) 2003
ref28
ref27
ref29
ref9
ref4
ref3
ref6
ref5
uthaichana (ref15) 2011; 2
ref40
neely (ref41) 2010
bengea (ref24) 2003; 5
References_xml – ident: ref19
  doi: 10.1109/TIE.2008.2006951
– ident: ref18
  doi: 10.1109/APEC.2009.4802805
– ident: ref26
  doi: 10.1109/CDC.2003.1272479
– start-page: 113
  year: 1997
  ident: ref42
  article-title: Continuous motion plans for robotic systems with changing dynamic behavior
  publication-title: Robotic motion and manipulation
– year: 1998
  ident: ref1
  publication-title: Integer Programming
– ident: ref28
  doi: 10.1016/0005-1098(88)90027-1
– ident: ref4
  doi: 10.1109/CDC.2010.5717263
– ident: ref34
  doi: 10.1016/j.automatica.2005.04.017
– ident: ref14
  doi: 10.1109/TCST.2012.2227964
– ident: ref5
  doi: 10.1109/CDC.2010.5717264
– start-page: 1
  year: 2001
  ident: ref33
  article-title: Constrained optimal control
  publication-title: Proc Eur Control Conf Plenary Lecture
– ident: ref35
  doi: 10.1016/S0005-1098(01)00174-1
– ident: ref13
  doi: 10.1016/j.nahs.2006.10.007
– ident: ref23
  doi: 10.1016/j.automatica.2010.10.010
– start-page: 2683
  year: 2000
  ident: ref31
  article-title: Optimal control of switched systems: New results and open problems
  publication-title: Proc Amer Control Conf
– ident: ref27
  doi: 10.1002/asjc.553
– ident: ref29
  doi: 10.1109/ACC.1999.786491
– ident: ref30
  doi: 10.1109/CDC.1999.831404
– ident: ref17
  doi: 10.1109/ROBOT.2007.363674
– ident: ref6
  doi: 10.1007/978-3-540-24743-2_30
– ident: ref37
  doi: 10.1016/S0005-1098(02)00308-4
– ident: ref32
  doi: 10.1109/TAC.1981.1102596
– year: 2012
  ident: ref39
  publication-title: MATLAB Toolbox for Hybrid Optimal Control
– volume: 2
  start-page: 96
  year: 2011
  ident: ref15
  article-title: Hybrid optimal theory and predictive control for power management in hybrid electric vehicle
  publication-title: Applied Nonlinear Systems
– ident: ref22
  doi: 10.1109/ROBOT.2010.5509356
– ident: ref9
  doi: 10.1109/TCST.2009.2035306
– ident: ref40
  doi: 10.1109/TAC.1983.1103294
– year: 2003
  ident: ref36
  publication-title: Constrained optimal control of discrete-time linear hybrid systems
– ident: ref10
  doi: 10.1049/ip-cta:20050094
– volume: 5
  start-page: 11
  year: 2003
  ident: ref24
  article-title: Optimal control of a two-switched linear system
  publication-title: J Control Eng Appl Inf
– ident: ref38
  doi: 10.1109/TAC.2010.2047437
– ident: ref21
  doi: 10.1109/COMPEL.2010.5562383
– year: 2013
  ident: ref8
  publication-title: Predictive Control for Linear and Hybrid Systems
– year: 2010
  ident: ref41
  publication-title: Real-time hybrid model predictive control of switched DC-DC converters
– ident: ref16
  doi: 10.1109/ACC.2011.5991428
– ident: ref3
  doi: 10.1109/ACC.2012.6314919
– ident: ref2
  doi: 10.1109/CDC.2010.5717840
– start-page: 1
  year: 2011
  ident: ref25
  publication-title: The Control Handbook Advanced Methods
– ident: ref12
  doi: 10.1016/S0005-1098(04)00223-7
– ident: ref11
  doi: 10.1109/TAC.2006.878720
– ident: ref43
  doi: 10.1109/TCST.2009.2017934
– year: 2012
  ident: ref7
  publication-title: IBM ILOG CPLEX Optimizer 12 3
– ident: ref20
  doi: 10.1109/APEC.2010.5433628
SSID ssj0014527
Score 2.2508905
Snippet In recent years, the embedding approach for solving switched optimal control problems has been developed in a series of papers. However, the embedding...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1784
SubjectTerms Algorithms
Autonomous
Boost converter
Combinatorial analysis
Complexity theory
Embedded systems
embedding method
Integer programming
Mathematical models
Methods
model predictive control
multiparametric programming
numerical optimization
Optimal control
Optimization
Programming
Robots
switched optimal control
Switched systems
Switches
Title A Comparison of the Embedding Method With Multiparametric Programming, Mixed-Integer Programming, Gradient-Descent, and Hybrid Minimum Principle-Based Methods
URI https://ieeexplore.ieee.org/document/6733440
https://www.proquest.com/docview/1549120477
https://www.proquest.com/docview/1559703870
Volume 22
WOSCitedRecordID wos000345574100009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0865
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014527
  issn: 1063-6536
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VigMcKFAQoQUZiRNat4nttZNjWVp6aVWJRfQW-StlJZJFu1lE_0x_Kx7HjahASNwi2Y4Tje2Z8cy8B_DWCVdYUeXUGW-osMrTileOimnTcCVkIW0eySbU-Xl5eVldbMFkrIXx3sfkM3-AjzGW75Z2g1dlh1JxLkRw0O8pJYdarTFiIAZ61uDhcCpjSDJLeJqH89mnOSZx8QPGKsmK4o4OiqQqf5zEUb2c7Pzfhz2GR8mMJEeD3J_Alu-ewsPfwAV34eaIzEaSQbJsSDD1yHFrvEN1Rc4idTT5sui_kliFiyDgLfJrWXIxJG21od-EnC1-ekfx5vDKr-42fVzFhLGefhhAoSZEd46cXmMVWBjXLdpNG0ak63z6PmhMlyZeP4PPJ8fz2SlNbAzU8kr21Da6YN6U2uVTa7Hk1lgmm6lQnjlhcmd5sHaaQhohTSMabspSco1h1GCSeMafw3a37PwLIIWTNuhOrQWiC2qlFWOlcdqHA0IyVWaQ38qntgmqHBkzvtXRZcmrGkVao0jrJNIM3o1Dvg84Hf_qvIsyHDsm8WWwf7sI6rST1zVC2IWfFUpl8GZsDnsQAyu688sN9gluGeYB5C___uY9eBDmF0Nu2j5s96uNfwX37Y9-sV69jgv5F5_38a4
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9NAwl44GtMBAYYiSdUb4nt2snjKBtFrNUkithb5K9AJZKiNkXwz_C34nOyiAmExFsknxNHZ_vOvrvfD-CFEy6zokipM95QYZWnBS8cFeOq4krITNo0kk2o-Ty_uCjOd2A01MJ472PymT_ExxjLdyu7xauyI6k4FyIc0K-NhWBpV601xAxER9AazjicyhiUTHpEzaPF5P0C07j4IWOFZFl2xQpFWpU_9uJoYE7v_N_Q7sLt3pEkx53m78GOb-7Drd_gBffg5zGZDDSDZFWR4OyRk9p4hwaLzCJ5NPm4bD-TWIeLMOA1MmxZct6lbdVBbkRmy-_eUbw7_OTXV5verGPKWEtfd7BQI6IbR6Y_sA4s9GuW9bYOPfoLffoq2EzXf3jzAD6cniwmU9rzMVDLC9lSW-mMeZNrl46txaJbY5msxkJ55oRJneXB36kyaYQ0lai4yXPJNQZSg1PiGd-H3WbV-IdAMidtsJ5aC8QX1EorxnLjtA9bhGQqTyC91E9pe7By5Mz4UsZDS1qUqNISVVr2Kk3g5dDla4fU8S_hPdThINirL4GDy0lQ9mt5UyKIXfhZoVQCz4fmsAoxtKIbv9qiTDiYYSZA-ujvb34GN6aL2Vl59nb-7jHcDGMRXabaAey2661_Atftt3a5WT-Nk_oXUl309Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparison+of+the+Embedding+Method+With+Multiparametric+Programming%2C+Mixed-Integer+Programming%2C+Gradient-Descent%2C+and+Hybrid+Minimum+Principle-Based+Methods&rft.jtitle=IEEE+transactions+on+control+systems+technology&rft.au=Meyer%2C+Richard+T&rft.au=Zefran%2C+Milos&rft.au=DeCarlo%2C+Raymond+A&rft.date=2014-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6536&rft.eissn=1558-0865&rft.volume=22&rft.issue=5&rft.spage=1784&rft_id=info:doi/10.1109%2FTCST.2013.2296211&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3386483391
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6536&client=summon