The bond-algebraic approach to dualities

An algebraic theory of dualities is developed based on the notion of bond algebras. It deals with classical and quantum dualities in a unified fashion explaining the precise connection between quantum dualities and the low temperature (strong-coupling)/high temperature (weak-coupling) dualities of c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advances in physics Ročník 60; číslo 5; s. 679 - 798
Hlavní autoři: Cobanera, Emilio, Ortiz, Gerardo, Nussinov, Zohar
Médium: Journal Article
Jazyk:angličtina
Vydáno: Abingdon Taylor & Francis 01.10.2011
Taylor & Francis Ltd
Témata:
ISSN:0001-8732, 1460-6976
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract An algebraic theory of dualities is developed based on the notion of bond algebras. It deals with classical and quantum dualities in a unified fashion explaining the precise connection between quantum dualities and the low temperature (strong-coupling)/high temperature (weak-coupling) dualities of classical statistical mechanics (or (Euclidean) path integrals). Its range of applications includes discrete lattice, continuum field and gauge theories. Dualities are revealed to be local, structure-preserving mappings between model-specific bond algebras that can be implemented as unitary transformations, or partial isometries if gauge symmetries are involved. This characterization permits us to search systematically for dualities and self-dualities in quantum models of arbitrary system size, dimensionality and complexity, and any classical model admitting a transfer matrix or operator representation. In particular, special dualities such as exact dimensional reduction, emergent and gauge-reducing dualities that solve gauge constraints can be easily understood in terms of mappings of bond algebras. As a new example, we show that the ℤ 2 Higgs model is dual to the extended toric code model in any number of dimensions. Non-local transformations such as dual variables and Jordan-Wigner dictionaries are algorithmically derived from the local mappings of bond algebras. This permits us to establish a precise connection between quantum dual and classical disorder variables. Our bond-algebraic approach goes beyond the standard approach to classical dualities, and could help resolve the long-standing problem of obtaining duality transformations for lattice non-Abelian models. As an illustration, we present new dualities in any spatial dimension for the quantum Heisenberg model. Finally, we discuss various applications including location of phase boundaries, spectral behavior and, notably, we show how bond-algebraic dualities help constrain and realize fermionization in an arbitrary number of spatial dimensions.
AbstractList An algebraic theory of dualities is developed based on the notion of bond algebras. It deals with classical and quantum dualities in a unified fashion explaining the precise connection between quantum dualities and the low temperature (strong-coupling)/high temperature (weak-coupling) dualities of classical statistical mechanics (or (Euclidean) path integrals). Its range of applications includes discrete lattice, continuum field and gauge theories. Dualities are revealed to be local, structure-preserving mappings between model-specific bond algebras that can be implemented as unitary transformations, or partial isometries if gauge symmetries are involved. This characterization permits us to search systematically for dualities and self-dualities in quantum models of arbitrary system size, dimensionality and complexity, and any classical model admitting a transfer matrix or operator representation. In particular, special dualities such as exact dimensional reduction, emergent and gauge-reducing dualities that solve gauge constraints can be easily understood in terms of mappings of bond algebras. As a new example, we show that the ℤ 2 Higgs model is dual to the extended toric code model in any number of dimensions. Non-local transformations such as dual variables and Jordan-Wigner dictionaries are algorithmically derived from the local mappings of bond algebras. This permits us to establish a precise connection between quantum dual and classical disorder variables. Our bond-algebraic approach goes beyond the standard approach to classical dualities, and could help resolve the long-standing problem of obtaining duality transformations for lattice non-Abelian models. As an illustration, we present new dualities in any spatial dimension for the quantum Heisenberg model. Finally, we discuss various applications including location of phase boundaries, spectral behavior and, notably, we show how bond-algebraic dualities help constrain and realize fermionization in an arbitrary number of spatial dimensions.
An algebraic theory of dualities is developed based on the notion of bond algebras. It deals with classical and quantum dualities in a unified fashion explaining the precise connection between quantum dualities and the low temperature (strong-coupling)/high temperature (weak-coupling) dualities of classical statistical mechanics (or (Euclidean) path integrals). Its range of applications includes discrete lattice, continuum field and gauge theories. Dualities are revealed to be local, structure-preserving mappings between model-specific bond algebras that can be implemented as unitary transformations, or partial isometries if gauge symmetries are involved. This characterization permits us to search systematically for dualities and self-dualities in quantum models of arbitrary system size, dimensionality and complexity, and any classical model admitting a transfer matrix or operator representation. In particular, special dualities such as exact dimensional reduction, emergent and gauge-reducing dualities that solve gauge constraints can be easily understood in terms of mappings of bond algebras. As a new example, we show that the ... Higgs model is dual to the extended toric code model in any number of dimensions. Non-local transformations such as dual variables and Jordan-Wigner dictionaries are algorithmically derived from the local mappings of bond algebras. This permits us to establish a precise connection between quantum dual and classical disorder variables. Our bond-algebraic approach goes beyond the standard approach to classical dualities, and could help resolve the long-standing problem of obtaining duality transformations for lattice non-Abelian models. As an illustration, we present new dualities in any spatial dimension for the quantum Heisenberg model. Finally, we discuss various applications including location of phase boundaries, spectral behavior and, notably, we show how bond-algebraic dualities help constrain and realize fermionization in an arbitrary number of spatial dimensions. (ProQuest: ... denotes formulae/symbols omitted.)
An algebraic theory of dualities is developed based on the notion of bond algebras. It deals with classical and quantum dualities in a unified fashion explaining the precise connection between quantum dualities and the low temperature (strong-coupling)/high temperature (weak-coupling) dualities of classical statistical mechanics (or (Euclidean) path integrals). Its range of applications includes discrete lattice, continuum field and gauge theories. Dualities are revealed to be local, structure-preserving mappings between model-specific bond algebras that can be implemented as unitary transformations, or partial isometries if gauge symmetries are involved. This characterization permits us to search systematically for dualities and self-dualities in quantum models of arbitrary system size, dimensionality and complexity, and any classical model admitting a transfer matrix or operator representation. In particular, special dualities such as exact dimensional reduction, emergent and gauge-reducing dualities that solve gauge constraints can be easily understood in terms of mappings of bond algebras. As a new example, we show that the '2 Higgs model is dual to the extended toric code model in any number of dimensions. Non-local transformations such as dual variables and Jordan--Wigner dictionaries are algorithmically derived from the local mappings of bond algebras. This permits us to establish a precise connection between quantum dual and classical disorder variables. Our bond-algebraic approach goes beyond the standard approach to classical dualities, and could help resolve the long-standing problem of obtaining duality transformations for lattice non-Abelian models. As an illustration, we present new dualities in any spatial dimension for the quantum Heisenberg model. Finally, we discuss various applications including location of phase boundaries, spectral behavior and, notably, we show how bond-algebraic dualities help constrain and realize fermionization in an arbitrary number of spatial dimensions.
Author Nussinov, Zohar
Ortiz, Gerardo
Cobanera, Emilio
Author_xml – sequence: 1
  givenname: Emilio
  surname: Cobanera
  fullname: Cobanera, Emilio
  email: ecobaner@indiana.edu
  organization: Department of Physics , Indiana University
– sequence: 2
  givenname: Gerardo
  surname: Ortiz
  fullname: Ortiz, Gerardo
  organization: Department of Physics , Indiana University
– sequence: 3
  givenname: Zohar
  surname: Nussinov
  fullname: Nussinov, Zohar
  organization: Department of Physics , Washington University
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24618486$$DView record in Pascal Francis
BookMark eNqFkEtLxDAUhYMoOD7-gYsiiG465jZtmrgRGXyB4GZchztp4kQyzZi0iP_elhlduNDV5cJ3DofvgOy2oTWEnACdAhX0klIKombFtKAAUw5SQLlDJlBymnNZ810yGZF8ZPbJQUpvw1vVwCbkYr402SK0TY7-1SwiOp3heh0D6mXWhazp0bvOmXRE9iz6ZI6395C83N3OZw_50_P94-zmKddM8i7XheUWKPIFlZUouNa2GeYUGi0aA8ZYxqQFK4oasEIhTGPKqhRgSib4AtghOd_0Dhvee5M6tXJJG--xNaFPSnImKl4XfCBPf5FvoY_tME5JSiVwIasBOttCmDR6G7HVLql1dCuMn6ooOYhSjGXlhtMxpBSN_UGAqlGy-pasRslqI3mIXf2Kaddh50LbDSr9f-HrTdi1NsQVfoToG9Xhpw_xeyj7s-ELYTaURw
CODEN ADPHAH
CitedBy_id crossref_primary_10_1007_s11128_011_0346_7
crossref_primary_10_1103_PhysRevResearch_2_023353
crossref_primary_10_1007_s00220_021_04220_w
crossref_primary_10_1103_PhysRevB_111_115106
crossref_primary_10_1103_PhysRevResearch_4_043003
crossref_primary_10_1103_PhysRevB_108_214429
crossref_primary_10_1016_j_aop_2018_02_017
crossref_primary_10_1103_PRXQuantum_1_010303
crossref_primary_10_1016_j_aop_2014_08_013
crossref_primary_10_1103_PhysRevResearch_5_023099
crossref_primary_10_1103_PhysRevX_15_011001
crossref_primary_10_1103_PhysRevX_14_021040
crossref_primary_10_1038_s42005_022_00946_8
crossref_primary_10_1007_JHEP01_2015_105
crossref_primary_10_1209_0295_5075_131_40006
crossref_primary_10_1103_PRXQuantum_5_040330
crossref_primary_10_1007_JHEP08_2025_009
crossref_primary_10_1103_g76f_tlvq
crossref_primary_10_1103_PhysRevX_10_041018
crossref_primary_10_1103_PhysRevLett_134_130403
crossref_primary_10_1103_ctxg_k3b6
crossref_primary_10_1016_j_aop_2012_07_001
crossref_primary_10_1103_PhysRevX_12_011050
crossref_primary_10_1088_1361_648X_aa718f
crossref_primary_10_1038_s41534_024_00900_2
crossref_primary_10_1007_JHEP07_2024_225
crossref_primary_10_1088_1367_2630_18_3_033011
crossref_primary_10_1103_PhysRevB_111_045142
crossref_primary_10_1103_PhysRevResearch_3_023120
crossref_primary_10_1103_PhysRevResearch_5_013086
crossref_primary_10_1103_PhysRevX_14_041069
crossref_primary_10_1016_j_nuclphysb_2018_12_029
crossref_primary_10_1007_JHEP02_2016_180
crossref_primary_10_1016_j_nuclphysb_2013_10_018
crossref_primary_10_1103_PRXQuantum_5_010338
crossref_primary_10_1016_j_aop_2019_168018
crossref_primary_10_1016_j_aop_2023_169384
crossref_primary_10_1103_PhysRevResearch_2_013135
crossref_primary_10_1016_j_nuclphysb_2014_12_026
crossref_primary_10_1103_PhysRevB_104_165140
crossref_primary_10_1103_PhysRevX_11_041008
crossref_primary_10_1103_PRXQuantum_4_020357
crossref_primary_10_1103_PRXQuantum_4_020339
crossref_primary_10_1088_1742_5468_2014_02_P02012
Cites_doi 10.1088/0022-3719/5/11/004
10.1017/CBO9780511626265
10.1103/PhysRev.131.2766
10.1007/978-93-80250-90-8
10.1103/PhysRevB.72.045137
10.1103/PhysRev.60.252
10.1016/0375-9601(84)90816-8
10.1142/2262
10.1103/PhysRevLett.46.379
10.1088/0022-3719/6/7/010
10.1103/RevModPhys.52.453
10.1103/PhysRevLett.86.1082
10.1209/0295-5075/84/36005
10.1017/S0305004100027419
10.4310/ATMP.1998.v2.n2.a2
10.1016/0003-4916(62)90232-4
10.1073/pnas.0803726105
10.1016/0031-8914(73)90381-9
10.1103/PhysRevB.71.195120
10.1103/PhysRevD.25.1587
10.1007/978-1-4757-6848-0
10.1088/0305-4470/30/18/005
10.1016/0550-3213(80)90403-4
10.1088/0034-4885/70/6/R03
10.1016/S0370-1573(99)00083-6
10.1103/RevModPhys.36.856
10.1016/0550-3213(94)90230-5
10.1103/PhysRevB.77.064302
10.1103/PhysRevLett.96.110405
10.1103/PhysRev.115.485
10.1103/PhysRev.65.117
10.4310/ATMP.1998.v2.n2.a1
10.1016/S0370-2693(98)00377-3
10.1063/1.523343
10.1103/PhysRevB.79.214440
10.1126/science.288.5465.462
10.1017/CBO9780511470783
10.56021/9780801869099
10.1063/1.1665530
10.1103/RevModPhys.17.50
10.1103/PhysRevB.24.218
10.1016/0550-3213(79)90595-9
10.1007/BF01208273
10.1103/RevModPhys.80.1083
10.1103/PhysRevLett.94.040402
10.1007/978-1-4613-0097-7
10.1103/PhysRevLett.3.296
10.1103/PhysRevB.75.144401
10.1103/RevModPhys.63.1
10.1088/1742-5468/2005/09/P09012
10.1103/PhysRevLett.94.111601
10.1103/PhysRevB.80.081104
10.1007/978-1-4612-0869-3
10.1016/0003-4916(70)90270-8
10.1093/acprof:oso/9780199577224.001.0001
10.1016/j.nuclphysb.2004.12.016
10.1016/0370-1573(74)90023-4
10.1016/j.nuclphysb.2005.04.003
10.1016/0370-2693(92)90168-4
10.1103/PhysRevB.3.3918
10.1007/BF01089192
10.1103/PhysRevB.24.5229
10.1103/PhysRevB.80.104413
10.1016/j.aop.2008.11.002
10.1201/b10273
10.1088/1751-8113/41/7/075001
10.1017/CBO9780511622625
10.1016/0550-3213(78)90153-0
10.1103/PhysRevD.19.3682
10.1016/j.aop.2006.05.007
10.1103/PhysRevD.19.3698
10.1088/0305-4470/13/4/037
10.1063/1.881616
10.1103/RevModPhys.51.659
10.1088/0305-4470/27/4/008
10.1016/S0003-4916(02)00018-0
10.1063/1.1704281
10.1088/0305-4470/20/9/043
10.1016/0550-3213(92)90269-H
10.1103/PhysRevB.82.060411
10.1016/0550-3213(78)90502-3
10.1007/BF02710808
10.1103/PhysRevLett.93.047003
10.1103/PhysRevD.72.054509
10.1070/PU1982v025n04ABEH004537
10.1142/0983
10.1016/0550-3213(94)90093-0
10.1103/PhysRevB.2.723
10.1016/S0550-3213(00)00770-7
10.1016/0550-3213(78)90382-6
10.1063/1.1665111
10.1088/0305-4470/16/12/004
10.1016/0370-2693(79)91269-3
10.1103/PhysRevLett.63.322
10.1103/PhysRevLett.104.020402
10.1016/j.physletb.2004.10.042
10.1017/CBO9780511600722
10.1515/9780691221274
10.1142/9789812799838
10.1016/0003-4916(78)90252-X
10.1103/PhysRevLett.92.107902
10.1063/1.522914
10.1103/PhysRevLett.61.2376
10.1016/j.aop.2005.10.005
10.1016/0370-2693(77)90076-4
10.2307/1968693
10.1103/PhysRevD.21.2316
10.1007/978-3-662-03937-3
10.1016/0370-2693(95)00777-I
10.1103/PhysRevLett.96.110404
10.1103/PhysRevD.25.1103
10.1016/j.aop.2010.11.002
10.1007/978-3-662-04589-3
10.1142/9789812832870
10.1088/1751-8113/40/49/006
10.1016/0550-3213(85)90350-5
10.1103/PhysRevE.51.1004
10.1103/PhysRevD.75.085020
10.1088/0953-8984/20/27/275233
10.1143/PTP.56.1454
10.1103/PhysRevD.19.3715
10.1103/PhysRevD.10.2445
10.1016/0370-1573(76)90052-1
10.1103/PhysRevD.17.2637
10.1088/0305-4470/38/21/001
10.1017/CBO9780511813870
10.1143/PTP.6.907
10.1103/PhysRevD.11.395
10.1088/1126-6708/2005/05/066
10.1103/PhysRevB.35.8865
10.1007/BF01213610
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2011
2015 INIST-CNRS
Copyright Taylor & Francis Ltd. 2011
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2011
– notice: 2015 INIST-CNRS
– notice: Copyright Taylor & Francis Ltd. 2011
DBID AAYXX
CITATION
IQODW
7U5
8FD
L7M
DOI 10.1080/00018732.2011.619814
DatabaseName CrossRef
Pascal-Francis
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1460-6976
EndPage 798
ExternalDocumentID 2497688851
24618486
10_1080_00018732_2011_619814
619814
Genre Feature
GroupedDBID -DZ
-~X
.7F
.QJ
0BK
0R~
23M
2DF
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABLIJ
ABPAQ
ABPEM
ABRLO
ABTAI
ABXUL
ABXYU
ACGEJ
ACGOD
ACNCT
ACTIO
ADCVX
ADGTB
ADPDO
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFDUV
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIPZZ
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
C5L
CAG
CCCUG
CE4
CS3
D0L
DGEBU
DKSSO
EAU
EBS
EJD
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NZ-
O9-
P2P
PQQKQ
RIG
RNANH
RNS
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEX
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
WH7
ZGOLN
~02
~S~
07S
1TA
6TJ
8WZ
A6W
AANMX
AATVF
AAYXX
ABCES
ABEFU
ABGQB
ABZIJ
ACKDS
ACLZH
ADIYS
AETEA
AFFNX
AFGMD
AHWVO
AI.
ASQZU
BVUPT
C09
CITATION
COF
DGEYW
DWNMW
EBKLY
ECKKI
EXXQB
H~9
JHRKR
LJTGL
MVM
NUSFT
QSQFL
TAZ
TCJPB
TFMCV
UC4
UU9
V3L
VH1
VOH
ZY4
ADYSH
IQODW
XOL
7U5
8FD
L7M
ID FETCH-LOGICAL-c396t-c2f6f10a6b095826ccfd9812cafaee1eef339f1f8271a5a88ede45481e4386b13
IEDL.DBID TFW
ISICitedReferencesCount 94
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000295451600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0001-8732
IngestDate Fri Sep 05 10:24:06 EDT 2025
Sat Jul 26 00:55:16 EDT 2025
Mon Jul 21 09:13:13 EDT 2025
Sat Nov 29 04:24:40 EST 2025
Tue Nov 18 21:51:02 EST 2025
Mon Oct 20 23:33:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Quantum system
Dimensionality
Symmetry property
Path integral
Heisenberg model
Strong coupling
High temperature
Quantum size effect
Structural models
Continuum
Local structure
Classical mechanics
Phase boundaries
Lattice field theory
Lattice model
Transfer matrix method
Statistical mechanics
Classical theory
Mathematical physics
Gauge field theory
Quantum theory
Crystal structure
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-c2f6f10a6b095826ccfd9812cafaee1eef339f1f8271a5a88ede45481e4386b13
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 900916895
PQPubID 53051
PageCount 120
ParticipantIDs proquest_miscellaneous_963856726
pascalfrancis_primary_24618486
proquest_journals_900916895
crossref_primary_10_1080_00018732_2011_619814
informaworld_taylorfrancis_310_1080_00018732_2011_619814
crossref_citationtrail_10_1080_00018732_2011_619814
PublicationCentury 2000
PublicationDate 10/1/2011
PublicationDateYYYYMMDD 2011-10-01
PublicationDate_xml – month: 10
  year: 2011
  text: 10/1/2011
  day: 01
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Advances in physics
PublicationYear 2011
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0074
Kittel C. (CIT0075) 1987
CIT0073
CIT0076
CIT0078
CIT0111
CIT0077
CIT0110
Schwinger J. (CIT0067) 2001
CIT0113
CIT0079
CIT0112
CIT0115
CIT0114
CIT0117
CIT0116
CIT0119
CIT0118
CIT0083
CIT0082
CIT0085
CIT0084
CIT0087
CIT0001
CIT0089
CIT0122
CIT0088
CIT0121
CIT0081
CIT0080
Ortiz G. (CIT0063) 2012
Sewell G. (CIT0039) 2002
Maldacena J. M. (CIT0008) 1998; 2
CIT0003
Nahin P. J. (CIT0026) 2002
CIT0123
CIT0005
CIT0126
CIT0004
CIT0125
CIT0007
CIT0128
CIT0006
CIT0127
CIT0009
CIT0129
CIT0094
CIT0093
CIT0096
CIT0095
CIT0098
CIT0131
CIT0130
CIT0012
CIT0133
CIT0011
CIT0132
Bredon G. E. (CIT0028) 1993
CIT0090
CIT0092
CIT0091
CIT0014
CIT0135
CIT0013
CIT0016
CIT0137
CIT0015
CIT0136
CIT0018
CIT0139
CIT0017
CIT0138
CIT0019
Suzuki M. (CIT0120) 1993
CIT0140
CIT0021
CIT0142
CIT0020
Wen X.-G. (CIT0134) 2004
CIT0141
CIT0023
CIT0144
CIT0022
CIT0143
Henkel M. (CIT0070) 1999
CIT0025
CIT0146
CIT0024
CIT0027
CIT0148
CIT0147
CIT0149
CIT0030
CIT0151
Rotman J. J. (CIT0071) 1999
CIT0150
CIT0032
CIT0031
CIT0034
CIT0033
Sunder V. S. (CIT0044) 1997
Schulman L. S. (CIT0058) 2005
Takahashi Y. (CIT0097) 1969
CIT0036
David Mermin N. (CIT0086) 2007
CIT0035
CIT0037
Dirac P. A.M. (CIT0002) 1982
CIT0043
CIT0042
CIT0045
Martin P. (CIT0072) 1991
von Neumann J. (CIT0038) 1938; 6
Barton G. (CIT0040) 1963
Kadanoff L. P. (CIT0041) 1966; 44
CIT0047
CIT0046
CIT0049
CIT0048
CIT0050
CIT0052
CIT0051
CIT0054
CIT0053
CIT0056
CIT0055
CIT0057
CIT0061
CIT0060
CIT0062
CIT0065
CIT0100
CIT0066
Fradkin E. (CIT0099) 1991
Baxter R. J. (CIT0029) 2007
Terras A. (CIT0145) 1999
Berezinskii V. L. (CIT0064) 1971; 32
CIT0109
Witten E. (CIT0010) 1998; 2
Rivers R. J. (CIT0059) 1988
CIT0069
CIT0102
CIT0068
CIT0101
CIT0104
CIT0103
CIT0106
CIT0105
CIT0108
CIT0107
References_xml – ident: CIT0118
  doi: 10.1088/0022-3719/5/11/004
– volume-title: Fourier Analysis on Finite Groups and Applications
  year: 1999
  ident: CIT0145
  doi: 10.1017/CBO9780511626265
– ident: CIT0102
  doi: 10.1103/PhysRev.131.2766
– volume-title: Functional Analysis, Spectral Theory
  year: 1997
  ident: CIT0044
  doi: 10.1007/978-93-80250-90-8
– ident: CIT0019
  doi: 10.1103/PhysRevB.72.045137
– ident: CIT0004
  doi: 10.1103/PhysRev.60.252
– ident: CIT0078
  doi: 10.1016/0375-9601(84)90816-8
– volume-title: Quantum Monte Carlo Methods in Condensed Matter Physics
  year: 1993
  ident: CIT0120
  doi: 10.1142/2262
– ident: CIT0036
  doi: 10.1103/PhysRevLett.46.379
– ident: CIT0065
  doi: 10.1088/0022-3719/6/7/010
– ident: CIT0138
– ident: CIT0006
  doi: 10.1103/RevModPhys.52.453
– ident: CIT0023
  doi: 10.1103/PhysRevLett.86.1082
– ident: CIT0017
  doi: 10.1209/0295-5075/84/36005
– ident: CIT0030
  doi: 10.1017/S0305004100027419
– volume: 2
  start-page: 253
  year: 1998
  ident: CIT0010
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.1998.v2.n2.a2
– ident: CIT0109
  doi: 10.1016/0003-4916(62)90232-4
– ident: CIT0141
  doi: 10.1073/pnas.0803726105
– ident: CIT0031
  doi: 10.1016/0031-8914(73)90381-9
– ident: CIT0081
  doi: 10.1103/PhysRevB.71.195120
– ident: CIT0132
  doi: 10.1103/PhysRevD.25.1587
– volume-title: Topology and Geometry
  year: 1993
  ident: CIT0028
  doi: 10.1007/978-1-4757-6848-0
– ident: CIT0003
  doi: 10.1088/0305-4470/30/18/005
– ident: CIT0056
  doi: 10.1016/0550-3213(80)90403-4
– ident: CIT0148
  doi: 10.1088/0034-4885/70/6/R03
– ident: CIT0011
  doi: 10.1016/S0370-1573(99)00083-6
– volume-title: Introduction to Advanced Field Theory
  year: 1963
  ident: CIT0040
– ident: CIT0114
  doi: 10.1103/RevModPhys.36.856
– volume-title: Techniques and Applications of Path Integration
  year: 2005
  ident: CIT0058
– ident: CIT0094
  doi: 10.1016/0550-3213(94)90230-5
– ident: CIT0088
  doi: 10.1103/PhysRevB.77.064302
– ident: CIT0137
  doi: 10.1103/PhysRevLett.96.110405
– ident: CIT0108
  doi: 10.1103/PhysRev.115.485
– ident: CIT0005
  doi: 10.1103/PhysRev.65.117
– volume: 2
  start-page: 231
  year: 1998
  ident: CIT0008
  publication-title: Adv. Theor. Math. Phys.
  doi: 10.4310/ATMP.1998.v2.n2.a1
– ident: CIT0009
  doi: 10.1016/S0370-2693(98)00377-3
– ident: CIT0119
  doi: 10.1063/1.523343
– ident: CIT0016
  doi: 10.1103/PhysRevB.79.214440
– ident: CIT0080
  doi: 10.1126/science.288.5465.462
– ident: CIT0151
  doi: 10.1017/CBO9780511470783
– volume-title: Oliver Heaviside: The Life, Work, and Times of an Electrical Genius of the Victorian Age
  year: 2002
  ident: CIT0026
  doi: 10.56021/9780801869099
– ident: CIT0047
  doi: 10.1063/1.1665530
– ident: CIT0027
  doi: 10.1103/RevModPhys.17.50
– ident: CIT0073
  doi: 10.1103/PhysRevB.24.218
– ident: CIT0091
  doi: 10.1016/0550-3213(79)90595-9
– ident: CIT0144
– ident: CIT0066
  doi: 10.1007/BF01208273
– ident: CIT0135
  doi: 10.1103/RevModPhys.80.1083
– ident: CIT0142
  doi: 10.1103/PhysRevLett.94.040402
– ident: CIT0149
  doi: 10.1007/978-1-4613-0097-7
– ident: CIT0096
  doi: 10.1103/PhysRevLett.3.296
– ident: CIT0130
  doi: 10.1103/PhysRevB.75.144401
– ident: CIT0046
  doi: 10.1103/RevModPhys.63.1
– ident: CIT0129
  doi: 10.1088/1742-5468/2005/09/P09012
– ident: CIT0014
  doi: 10.1103/PhysRevLett.94.111601
– ident: CIT0082
  doi: 10.1103/PhysRevB.80.081104
– ident: CIT0052
  doi: 10.1007/978-1-4612-0869-3
– ident: CIT0037
  doi: 10.1016/0003-4916(70)90270-8
– ident: CIT0021
  doi: 10.1093/acprof:oso/9780199577224.001.0001
– ident: CIT0133
  doi: 10.1016/j.nuclphysb.2004.12.016
– ident: CIT0150
  doi: 10.1016/0370-1573(74)90023-4
– ident: CIT0077
  doi: 10.1016/j.nuclphysb.2005.04.003
– ident: CIT0127
  doi: 10.1016/0370-2693(92)90168-4
– ident: CIT0024
  doi: 10.1103/PhysRevB.3.3918
– ident: CIT0007
  doi: 10.1007/BF01089192
– volume: 6
  start-page: 1
  year: 1938
  ident: CIT0038
  publication-title: Compos. Math.
– ident: CIT0121
  doi: 10.1103/PhysRevB.24.5229
– ident: CIT0055
  doi: 10.1103/PhysRevB.80.104413
– ident: CIT0020
  doi: 10.1016/j.aop.2008.11.002
– volume-title: Quantum Field Theory of Many-Body Systems
  year: 2004
  ident: CIT0134
– ident: CIT0013
  doi: 10.1201/b10273
– ident: CIT0049
  doi: 10.1088/1751-8113/41/7/075001
– ident: CIT0100
  doi: 10.1017/CBO9780511622625
– ident: CIT0107
  doi: 10.1016/0550-3213(78)90153-0
– ident: CIT0025
  doi: 10.1103/PhysRevD.19.3682
– volume-title: 40 Years of the Berezinskii–Kosterlitz–Thouless Theory
  year: 2012
  ident: CIT0063
– ident: CIT0050
  doi: 10.1016/j.aop.2006.05.007
– ident: CIT0068
  doi: 10.1103/PhysRevD.19.3698
– ident: CIT0061
  doi: 10.1088/0305-4470/13/4/037
– ident: CIT0001
  doi: 10.1063/1.881616
– ident: CIT0035
  doi: 10.1103/RevModPhys.51.659
– ident: CIT0051
  doi: 10.1088/0305-4470/27/4/008
– ident: CIT0087
  doi: 10.1016/S0003-4916(02)00018-0
– ident: CIT0101
  doi: 10.1063/1.1704281
– ident: CIT0111
  doi: 10.1088/0305-4470/20/9/043
– volume-title: Exactly Solved Models in Statistical Mechanics
  year: 2007
  ident: CIT0029
– ident: CIT0093
  doi: 10.1016/0550-3213(92)90269-H
– ident: CIT0131
  doi: 10.1103/PhysRevB.82.060411
– ident: CIT0089
– volume: 32
  start-page: 493
  year: 1971
  ident: CIT0064
  publication-title: Sov. Phys. JETP
– ident: CIT0105
  doi: 10.1016/0550-3213(78)90502-3
– volume: 44
  start-page: 276
  year: 1966
  ident: CIT0041
  publication-title: Nuovo Cimento
  doi: 10.1007/BF02710808
– ident: CIT0043
– ident: CIT0076
  doi: 10.1103/PhysRevLett.93.047003
– ident: CIT0123
  doi: 10.1103/PhysRevD.72.054509
– ident: CIT0079
  doi: 10.1070/PU1982v025n04ABEH004537
– volume-title: Potts Models and Related Problems in Statistical Mechanics
  year: 1991
  ident: CIT0072
  doi: 10.1142/0983
– ident: CIT0092
  doi: 10.1016/0550-3213(94)90093-0
– ident: CIT0116
  doi: 10.1103/PhysRevB.2.723
– ident: CIT0147
  doi: 10.1016/S0550-3213(00)00770-7
– volume-title: Path Integral Methods in Quantum Field Theory
  year: 1988
  ident: CIT0059
– ident: CIT0106
  doi: 10.1016/0550-3213(78)90382-6
– ident: CIT0115
  doi: 10.1063/1.1665111
– ident: CIT0117
  doi: 10.1088/0305-4470/16/12/004
– ident: CIT0033
  doi: 10.1016/0370-2693(79)91269-3
– ident: CIT0126
  doi: 10.1103/PhysRevLett.63.322
– ident: CIT0015
  doi: 10.1103/PhysRevLett.104.020402
– ident: CIT0139
– ident: CIT0122
  doi: 10.1016/j.physletb.2004.10.042
– ident: CIT0146
  doi: 10.1017/CBO9780511600722
– volume-title: Quantum Mechanics and Its Emergent Macrophysics
  year: 2002
  ident: CIT0039
  doi: 10.1515/9780691221274
– ident: CIT0057
  doi: 10.1142/9789812799838
– ident: CIT0083
  doi: 10.1016/0003-4916(78)90252-X
– ident: CIT0140
  doi: 10.1103/PhysRevLett.92.107902
– ident: CIT0032
  doi: 10.1063/1.522914
– ident: CIT0054
  doi: 10.1103/PhysRevLett.61.2376
– ident: CIT0048
  doi: 10.1016/j.aop.2005.10.005
– volume-title: The Principles of Quantum Mechanics
  year: 1982
  ident: CIT0002
– ident: CIT0090
  doi: 10.1016/0370-2693(77)90076-4
– ident: CIT0042
  doi: 10.2307/1968693
– ident: CIT0112
  doi: 10.1103/PhysRevD.21.2316
– volume-title: Conformal Invariance and Critical Phenomena
  year: 1999
  ident: CIT0070
  doi: 10.1007/978-3-662-03937-3
– ident: CIT0095
  doi: 10.1016/0370-2693(95)00777-I
– ident: CIT0136
  doi: 10.1103/PhysRevLett.96.110404
– ident: CIT0045
  doi: 10.1103/PhysRevD.25.1103
– ident: CIT0143
  doi: 10.1016/j.aop.2010.11.002
– volume-title: Quantum Mechanics: Symbolism of Atomic Measurements
  year: 2001
  ident: CIT0067
  doi: 10.1007/978-3-662-04589-3
– volume-title: Introduction to Field Quantization
  year: 1969
  ident: CIT0097
– volume-title: Field Theories of Condensed Matter Systems
  year: 1991
  ident: CIT0099
– ident: CIT0110
  doi: 10.1142/9789812832870
– ident: CIT0069
  doi: 10.1088/1751-8113/40/49/006
– ident: CIT0074
  doi: 10.1016/0550-3213(85)90350-5
– ident: CIT0128
  doi: 10.1103/PhysRevE.51.1004
– ident: CIT0012
  doi: 10.1103/PhysRevD.75.085020
– ident: CIT0062
  doi: 10.1088/0953-8984/20/27/275233
– ident: CIT0018
– ident: CIT0060
  doi: 10.1143/PTP.56.1454
– ident: CIT0034
  doi: 10.1103/PhysRevD.19.3715
– volume-title: Quantum Theory of Solids
  year: 1987
  ident: CIT0075
– ident: CIT0084
  doi: 10.1103/PhysRevD.10.2445
– ident: CIT0098
  doi: 10.1016/0370-1573(76)90052-1
– ident: CIT0022
  doi: 10.1103/PhysRevD.17.2637
– ident: CIT0125
  doi: 10.1088/0305-4470/38/21/001
– volume-title: Quantum Computer Science: An Introduction
  year: 2007
  ident: CIT0086
  doi: 10.1017/CBO9780511813870
– ident: CIT0113
  doi: 10.1143/PTP.6.907
– ident: CIT0085
  doi: 10.1103/PhysRevD.11.395
– ident: CIT0103
  doi: 10.1088/1126-6708/2005/05/066
– ident: CIT0053
  doi: 10.1103/PhysRevB.35.8865
– volume-title: An Introduction to the Theory of Groups
  year: 1999
  ident: CIT0071
– ident: CIT0104
  doi: 10.1007/BF01213610
SSID ssj0005713
Score 2.4207425
SecondaryResourceType review_article
Snippet An algebraic theory of dualities is developed based on the notion of bond algebras. It deals with classical and quantum dualities in a unified fashion...
SourceID proquest
pascalfrancis
crossref
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 679
SubjectTerms 03.65.Fd Algebraic methods
05.30.-d Quantum statistical mechanics
05.50.+q Lattice theory and statistics
64.60.Cn Order-disorder transformations
Algebra
Algorithms
bond algebras, operator algebras
Bonding
Classical and quantum physics: mechanics and fields
dimensional reduction
Exact sciences and technology
fermionization
field theory
Gages
gauge theories
Gauges
High temperature
Lattice theory
Logic, set theory, and algebra
Low temperature
Mapping
Mathematical methods in physics
Mathematical models
Other topics in mathematical methods in physics
Phase boundaries
phase transitions
Physics
quantum and classical dualities
Quantum mechanics
Quantum physics
statistical mechanics
Transformations
Title The bond-algebraic approach to dualities
URI https://www.tandfonline.com/doi/abs/10.1080/00018732.2011.619814
https://www.proquest.com/docview/900916895
https://www.proquest.com/docview/963856726
Volume 60
WOSCitedRecordID wos000295451600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 1460-6976
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005713
  issn: 0001-8732
  databaseCode: TFW
  dateStart: 19520101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6yKHjxLa6rSw8evAQ2TZsmRxEXT4uHFfcW8oQFaWXb9fc76ctdRAW9FZq0zUwmmS-d-Qahm5Q7EROrcUK1CUc3DnPqKVxp8J9poiaW18UmstmMLxbiaSOLP4RVBgztG6KIeq0Oxq102UXEheQDwjMaNwScgAB4Xckadv5gmfPpy2eMR0baUmoEhx5d7tw3D9nam7aYS0PIpCpBar4pd_Fl5a63o-nh_wdyhA5aVzS6a-bOMdpx-Qnaq0NCTXmKbmEGRbrILQ6lQABUL03UMZBHVRHZOh0TgPYZep4-zO8fcVtXARsqWIVN7JknE8U0-FcAL4zxFl4dG-WVc8Q5T6nwxPM4IypVnDvrEkA2xCWUM03oORrkRe4uUGRTwYTixiobkA2BpqkRibFGZIbodIhoJ1FpWtLxUPviVZKem7SRgQwykI0Mhgj3vd4a0o1f2vNNZcmqPuxoVSXpz13HW4rt3xd49njC2RCNOk3L1rxLKcAzJYwLGF_U3wW7DD9bVO6KNTSBhS1lWcwu__5xI7QfdyGH5AoNqtXaXaNd814ty9W4nuofFPP3fQ
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS8MwFA4yFX3xLs7p7IMPvhSWpk2TRxHHxDl8mLi3kOYCA2ll7fz9nvSmQ1QQ3wpN2uacXM6XfvkOQpcRMzzAOvFDkii3dWN8RiyBqwTiZxLKgWZlsol4MmGzGX-s2YR5Tat0GNpWQhHlXO0Gt9uMbihx7vQBZjEJKgVOgADMpbJej2CpdfL50-HzB8sjxnUyNey7Ks3puW-esrI6rWiXOtKkzMFutkp48WXuLhek4e4_NGUP7dTRqHdddZ99tGbSA7RZskJVfoiuoBN5SZZq32UDAVw9V14jQu4VmafLE5mAtY_Q0_B2ejPy69QKviKcFr4KLLV4IGkCIRYgDKWshlcHSlppDDbGEsIttiyIsYwkY0abEMANNiFhNMHkGHXSLDUnyNMRp1wypaV24AZD0UjxUGnFY4WTqItIY1Khat1xl_7iReBWnrSygXA2EJUNushva71Wuhu_lGefvSWKcr-j9pUgP1ftr3i2fZ-T2mMho13Ua1wt6hGeCw7BKaaMQ_u89i4MTfe_RaYmW0IRmNsiGgf09O8fd4G2RtOHsRjfTe57aDtoGIj4DHWKxdKcow31VszzRb_s9-_N7_un
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6yPvDiW1xX1x48eClsmjZNjqIuirLsYcW9hTQPWJB22Xb9_U760kVU0FuhSdPMTNL50plvELqMmOEB1okfkkS5oxvjM2IJXCXgP5NQDjQri03EoxGbTvn4Uxa_C6t0GNpWRBHlXu0W91zbJiLOJR9gFpOgIuAEBMBcJet18Jyps_HJ8OUjyCPGdS017LsuTfLcN09Z-TitUJe6mEmZg9hsVe_iy9Zdfo-Gu_-fyR7aqX1R77oynn20ZtIDtFnGhKr8EF2BCXlJlmrf1QIBVD1TXkNB7hWZp8t8TEDaR-h5eDe5uffrwgq-IpwWvgostXggaQIOFuALpayGoQMlrTQGG2MJ4RZbFsRYRpIxo00I0AabkDCaYHKMOmmWmhPk6YhTLpnSUjtog6FppHiotOKxwknURaSRqFA167grfvEqcEtOWslAOBmISgZd5Le95hXrxi_t2WdliaI87ahVJcjPXfsrim3Hc0R7LGS0i3qNpkW9vnPBwTXFlHGYn9fehYXp_rbI1GRLaAI7W0TjgJ7-_eUu0Nb4diieHkaPPbQdNOGH-Ax1isXSnKMN9VbM8kW_tPp30KL6WQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+bond-algebraic+approach+to+dualities&rft.jtitle=Advances+in+physics&rft.au=Cobanera%2C+Emilio&rft.au=Ortiz%2C+Gerardo&rft.au=Nussinov%2C+Zohar&rft.date=2011-10-01&rft.pub=Taylor+%26+Francis&rft.issn=0001-8732&rft.eissn=1460-6976&rft.volume=60&rft.issue=5&rft.spage=679&rft.epage=798&rft_id=info:doi/10.1080%2F00018732.2011.619814&rft.externalDocID=619814
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-8732&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-8732&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-8732&client=summon