A keyword extraction method from twitter messages represented as graphs

Twitter is a microblog service that generates a huge amount of textual content daily. All this content needs to be explored by means of text mining, natural language processing, information retrieval, and other techniques. In this context, automatic keyword extraction is a task of great usefulness....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation Jg. 240; S. 308 - 325
Hauptverfasser: Abilhoa, Willyan D., de Castro, Leandro N.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.08.2014
Schlagworte:
ISSN:0096-3003, 1873-5649
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Twitter is a microblog service that generates a huge amount of textual content daily. All this content needs to be explored by means of text mining, natural language processing, information retrieval, and other techniques. In this context, automatic keyword extraction is a task of great usefulness. A fundamental step in text mining techniques consists of building a model for text representation. The model known as vector space model, VSM, is the most well-known and used among these techniques. However, some difficulties and limitations of VSM, such as scalability and sparsity, motivate the proposal of alternative approaches. This paper proposes a keyword extraction method for tweet collections that represents texts as graphs and applies centrality measures for finding the relevant vertices (keywords). To assess the performance of the proposed approach, three different sets of experiments are performed. The first experiment applies TKG to a text from the Time magazine and compares its performance with that of the literature. The second set of experiments takes tweets from three different TV shows, applies TKG and compares it with TFIDF and KEA, having human classifications as benchmarks. Finally, these three algorithms are applied to tweets sets of increasing size and their computational running time is measured and compared. Altogether, these experiments provide a general overview of how TKG can be used in practice, its performance when compared with other standard approaches, and how it scales to larger data instances. The results show that TKG is a novel and robust proposal to extract keywords from texts, particularly from short messages, such as tweets.
AbstractList Twitter is a microblog service that generates a huge amount of textual content daily. All this content needs to be explored by means of text mining, natural language processing, information retrieval, and other techniques. In this context, automatic keyword extraction is a task of great usefulness. A fundamental step in text mining techniques consists of building a model for text representation. The model known as vector space model, VSM, is the most well-known and used among these techniques. However, some difficulties and limitations of VSM, such as scalability and sparsity, motivate the proposal of alternative approaches. This paper proposes a keyword extraction method for tweet collections that represents texts as graphs and applies centrality measures for finding the relevant vertices (keywords). To assess the performance of the proposed approach, three different sets of experiments are performed. The first experiment applies TKG to a text from the Time magazine and compares its performance with that of the literature. The second set of experiments takes tweets from three different TV shows, applies TKG and compares it with TFIDF and KEA, having human classifications as benchmarks. Finally, these three algorithms are applied to tweets sets of increasing size and their computational running time is measured and compared. Altogether, these experiments provide a general overview of how TKG can be used in practice, its performance when compared with other standard approaches, and how it scales to larger data instances. The results show that TKG is a novel and robust proposal to extract keywords from texts, particularly from short messages, such as tweets.
Author de Castro, Leandro N.
Abilhoa, Willyan D.
Author_xml – sequence: 1
  givenname: Willyan D.
  surname: Abilhoa
  fullname: Abilhoa, Willyan D.
  email: abilhoa.willyan@gmail.com
– sequence: 2
  givenname: Leandro N.
  surname: de Castro
  fullname: de Castro, Leandro N.
  email: lnunes@mackenzie.br
BookMark eNp9kDFPwzAQhS1UJNrCD2DLyJJwjhMnFlNVQUGqxAKz5TqX1iWJi20o_fe4KhNDpSed7vS-k96bkNFgByTklkJGgfL7baZ6neVAiwyiBFyQMa0rlpa8ECMyBhA8ZQDsiky83wJAxWkxJotZ8oGHvXVNgj_BKR2MHZIew8Y2Setsn4S9CQFdvHmv1ugThzuHHoeATaJ8snZqt_HX5LJVncebvzkl70-Pb_PndPm6eJnPlqlmgod0RVvFGlQl00IXrVBtkatGi1xQVdSCr-o2brTQFLFmlFPdMOCtQF6wMteCTcnd6e_O2c8v9EH2xmvsOjWg_fKSliWFuio5i9bqZNXOeu-wldoEdcwXc5pOUpDH6uRWxurksToJUQIiSf-RO2d65Q5nmYcTgzH9t0EnvTY4aGyMQx1kY80Z-hcT64nD
CitedBy_id crossref_primary_10_1109_TCYB_2015_2489841
crossref_primary_10_1088_1757_899X_1074_1_012010
crossref_primary_10_1016_j_cogsys_2017_07_003
crossref_primary_10_1007_s13278_018_0536_8
crossref_primary_10_1155_2022_5649994
crossref_primary_10_1016_j_procs_2022_09_403
crossref_primary_10_1016_j_eswa_2022_116563
crossref_primary_10_1093_comjnl_bxaa133
crossref_primary_10_1038_s41598_024_52471_z
crossref_primary_10_1016_j_eswa_2023_120889
crossref_primary_10_1007_s10462_021_10010_6
crossref_primary_10_1007_s11192_018_2743_5
crossref_primary_10_1371_journal_pone_0255127
crossref_primary_10_1007_s11276_019_02128_x
crossref_primary_10_1016_j_ipm_2019_102088
crossref_primary_10_1017_S1351324919000457
crossref_primary_10_3233_JIFS_18629
crossref_primary_10_1016_j_eswa_2017_12_025
crossref_primary_10_1140_epjds_s13688_025_00545_x
crossref_primary_10_1007_s11192_023_04677_7
crossref_primary_10_1016_j_eswa_2022_118110
crossref_primary_10_3233_HSM_180344
crossref_primary_10_1016_j_eswa_2021_116051
crossref_primary_10_1109_ACCESS_2023_3344032
crossref_primary_10_1016_j_aci_2018_08_002
crossref_primary_10_1007_s10844_015_0391_2
crossref_primary_10_32604_cmc_2023_026607
crossref_primary_10_3390_su11113155
crossref_primary_10_7717_peerj_cs_389
crossref_primary_10_1016_j_procs_2018_10_415
crossref_primary_10_1016_j_procs_2018_10_413
crossref_primary_10_1080_19312458_2023_2278177
crossref_primary_10_2196_publichealth_5980
crossref_primary_10_3390_su11010196
crossref_primary_10_1007_s11192_020_03601_7
crossref_primary_10_1109_TKDE_2021_3090663
Cites_doi 10.1109/ICPP.2010.66
10.3115/1614038.1614047
10.1007/11775300_8
10.1109/NLPKE.2010.5587861
10.1016/j.bushor.2009.09.003
10.3390/ijerph7020596
10.1109/ADL.1998.670375
10.1145/1341531.1341557
10.1093/bib/6.1.57
10.1017/CBO9780511546914
10.1109/WI-IAT.2010.63
10.1147/rd.14.0309
10.1007/978-3-540-77046-6_62
10.1111/j.1467-9450.1974.tb00598.x
10.1109/SITIS.2008.47
10.1016/j.ipm.2007.01.015
10.1016/j.bushor.2011.01.005
10.1002/9780470689646.ch1
10.3115/1119355.1119383
10.1002/aris.1440370103
10.1016/0378-8733(94)00248-9
10.3115/1613172.1613178
10.1002/asi.4630260106
10.1145/1244002.1244182
ContentType Journal Article
Copyright 2014 Elsevier Inc.
Copyright_xml – notice: 2014 Elsevier Inc.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.amc.2014.04.090
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 325
ExternalDocumentID 10_1016_j_amc_2014_04_090
S0096300314006304
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABAOU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SME
SPC
SPCBC
SSW
SSZ
T5K
TN5
WH7
X6Y
XPP
ZMT
~02
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HMJ
HVGLF
HZ~
R2-
SEW
TAE
VH1
VOH
WUQ
~HD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c396t-b1fa3dea53c9c4f9af42adc9291a4896b8fdc914c1ee83161cd306f9e64352c93
ISICitedReferencesCount 76
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000338608700027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0096-3003
IngestDate Mon Sep 29 03:37:15 EDT 2025
Sat Nov 29 07:58:27 EST 2025
Tue Nov 18 21:46:29 EST 2025
Fri Feb 23 02:27:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Text mining
Knowledge discovery
Keyword extraction
Graph theory
Twitter data
Centrality measures
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c396t-b1fa3dea53c9c4f9af42adc9291a4896b8fdc914c1ee83161cd306f9e64352c93
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1551087563
PQPubID 23500
PageCount 18
ParticipantIDs proquest_miscellaneous_1551087563
crossref_citationtrail_10_1016_j_amc_2014_04_090
crossref_primary_10_1016_j_amc_2014_04_090
elsevier_sciencedirect_doi_10_1016_j_amc_2014_04_090
PublicationCentury 2000
PublicationDate 2014-08-01
2014-08-00
20140801
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied mathematics and computation
PublicationYear 2014
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References S. Rose, D. Engel, N. Cramer, W. Cowley, Automatic Keyword Extraction from Individual Documents, Text Mining: Applications and Theory, 2010.
Han, Kamber (b0325) 2001
S. Asur, B.A. Huberman, Predicting the future with social media, in: 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), vol. 1, IEEE, 2010, pp. 492–499.
M. Litvak, M. Last, Graph-based keyword extraction for single-document summarization, in: Proceedings of the Workshop on Multi-source Multilingual Information Extraction and Summarization, 2008, p. 17–24.
Wasserman, Faust, Iacobucci (b0170) 1995
Chowdhury (b0080) 2003; 37
R. Feldman, J. Sanger, The Text Mining Handbook Advanced Approaches in Analysing Unstructured Data, [S.l.]: Cambridge, 2007.
Hage, Harary (b0175) 1995; 17
Kaplan, Haenlein (b0010) 2010; 53
E. Frank, G.W. Paynter, I.H. Witten, Domain-specific keyphrase extraction, in: Proceedings of the 16th International Joint Conference on Artificial Intelligence, 1999.
Safko (b0270) 2010
A. Hulth, Improved automatic keyword extraction given more linguistic knowledge, in: Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing, 2003, p. 216–223.
Earle, Bowden, Guy (b0035) 2011; 54
C.A. Chahine, N. Chaignaud, J.Ph. Kotowicz, J.P. Pécuche, Context and keyword extraction in plain text using a graph representation, in: Proceedings of the 2008 IEEE International Conference on Signal Image Technology and Internet Based Systems, vol. 8, 2008, p. 692–696.
C.D. Manning, Foundations of statistical natural language processing, in: H. Schütze (Ed.), MIT Press, 1999.
Kietzmann, Hermkens, McCarthy, Silvestre (b0265) 2011; 54
Kowalski (b0250) 2011
Corley, Cook, Mikler, Singh (b0045) 2010; 7
Palshikar (b0330) 2007; 4815
Frakes, Baeza-Yates (b0285) 1992
(b0055) 2004
Salton, Yang, Yu (b0295) 1975
Cohen, Hersh (b0060) 2005; 6
Gupta, Lehal (b0070) 2009; 1
M. Yoshida, S. Matsushima, S. Ono, I. Sato, H. Nakagawa, ITC-UT: tweet categorization by query categorization of on-line reputation management, in: Conference on Multilingual and Multimodal Information Access Evaluation, 2010.
M.A. Russell, Mining the Social Web: Data Mining Facebook, Twitter, LinkedIn, Google+, GitHub, and More. O’Reilly Media Inc., 2013.
Hirschman, Thompson (b0275) 1997; vol. XII–XIII
Luhn (b0310) 1957
Baeza-Yates, Ribeiro-Neto (b0090) 1999
I.H. Witten, G.W. Paynter, E. Frank, C. Gutwin, C.G. Nevill-Manning, KEA practical automatic keyphrase action, in: Proceedings of the 4th ACM Conference on Digital Library (DL’99), Berkeley, CA, USA, 1999, p. 254–226.
P.D. Turney, Learning to Extract Keyphrases from Text, NRC Technical Report ERB-1057, National Research Council, Canada, 1999, p. 1–43.
Gross, Yellen (b0305) 2006
K. Zhang, H. Xu, J. Tang, J.Z. Li, Keyword extraction using support vector machine, in: Proceedings of the Seventh International Conference on Web-Age, Information Management (Waim2006), 2006.
B. Lott, Survey of Keyword Extraction Techniques, UNM Education, 2012.
Matsuo, Ishizuka (b0315) 2004; 4
Salton, McGill (b0280) 1983
Manning, Raghavan, Schütze (b0290) 2008; vol. 1
F. Zhou, F. Zhang, B. Yang, Graph-based text representation model and its realization, in: 2010 International Conference on Natural Language Processing and Knowledge Engineering (NLP-KE), vol. 1, No. 8, 2010, p. 21–23.
Datasift, Browse Data Sources – Twitter, 2012. [Online]. Available
S. Hensman, Construction of conceptual graph representation of texts, in: Proceedings of Student Research Workshop at HLT-NAACL, Boston, 2004, p. 49–54.
E. Agichtein, C. Castillo, D. Donato, A. Gionis, G. Mishne, Finding high-quality content in social media, in: Proceedings of the 2008 International Conference on Web Search and Data Mining, ACM, 2008, pp. 183–194.
Nieminen (b0165) 1974; 15
W.X. Zhao, J. Jiang, J. He, Y. Song, P. Achananuparp, E.-P. Lim, X. Li, Topical keyphrase extraction from Twitter, in: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (HLT ‘11), Association for Computational Linguistics, vol. 1, Stroudsburg, PA, USA, 2011, p. 379–388.
Erckan, Cicekli (b0320) 2007
Zhang, Wang, Liu, Wu, Liao, Wang (b0300) 2008
[Accessed24October 2013].
D. Ediger, K. Jiang, J. Riedy, D.A. Bader, C. Corley, R. Farber, W.N. Reynolds, Massive social network analysis: mining twitter for social good, in: 2010 39th International Conference on Parallel Processing (ICPP), IEEE, 2010, pp. 583–593.
A. Schenker, M. Last, H. Bunke, Classification of web documents using a graph model, in: Proceedings of 7th International Conference on Document Analysis and Recognition (ICDAR2003), Computer Society Press, Scotland, 2003.
A. Bermingham, A. Smeaton, On Using Twitter to Monitor Political Sentiment and Predict Election Results, Sentiment Analysis where AI meets Psychology, 2011, pp. 2–10.
Y. Ohsawa, N.E. Benson, M. Yachida, KeyGraph: automatic indexing by co-occurrence graph based on building construction metaphor, in: Proceedings. IEEE International Forum on Research and Technology Advances in Digital Libraries, 1998, ADL 98, p. 12–18.
Hotho, Nürnberger, Paaß (b0065) 2005; 20
W. Jin, R.K. Srihari, Graph-based text representation and knowledge discovery, in: Proceedings of the 2007 ACM Symposium on Applied, Computing, vol. 7, 2007, pp. 807–811.
S.F. Dennis, The design and testing of a fully automatic indexing–searching system for documents consisting of expository text, in: G. Schecter (Eds.), Information Retrieval: A Critical Review, 1967.
Earle (10.1016/j.amc.2014.04.090_b0035) 2011; 54
Wasserman (10.1016/j.amc.2014.04.090_b0170) 1995
Palshikar (10.1016/j.amc.2014.04.090_b0330) 2007; 4815
10.1016/j.amc.2014.04.090_b0015
10.1016/j.amc.2014.04.090_b0215
10.1016/j.amc.2014.04.090_b0050
Nieminen (10.1016/j.amc.2014.04.090_b0165) 1974; 15
10.1016/j.amc.2014.04.090_b0245
Kowalski (10.1016/j.amc.2014.04.090_b0250) 2011
10.1016/j.amc.2014.04.090_b0125
Matsuo (10.1016/j.amc.2014.04.090_b0315) 2004; 4
10.1016/j.amc.2014.04.090_b0205
10.1016/j.amc.2014.04.090_b0160
10.1016/j.amc.2014.04.090_b0085
10.1016/j.amc.2014.04.090_b0040
(10.1016/j.amc.2014.04.090_b0055) 2004
10.1016/j.amc.2014.04.090_b0120
10.1016/j.amc.2014.04.090_b0240
10.1016/j.amc.2014.04.090_b0190
Kaplan (10.1016/j.amc.2014.04.090_b0010) 2010; 53
Hirschman (10.1016/j.amc.2014.04.090_b0275) 1997; vol. XII–XIII
Cohen (10.1016/j.amc.2014.04.090_b0060) 2005; 6
10.1016/j.amc.2014.04.090_b0115
Gross (10.1016/j.amc.2014.04.090_b0305) 2006
10.1016/j.amc.2014.04.090_b0235
Salton (10.1016/j.amc.2014.04.090_b0295) 1975
Baeza-Yates (10.1016/j.amc.2014.04.090_b0090) 1999
10.1016/j.amc.2014.04.090_b0030
Manning (10.1016/j.amc.2014.04.090_b0290) 2008; vol. 1
10.1016/j.amc.2014.04.090_b0150
10.1016/j.amc.2014.04.090_b0230
Chowdhury (10.1016/j.amc.2014.04.090_b0080) 2003; 37
10.1016/j.amc.2014.04.090_b0155
Erckan (10.1016/j.amc.2014.04.090_b0320) 2007
Luhn (10.1016/j.amc.2014.04.090_b0310) 1957
10.1016/j.amc.2014.04.090_b0180
Hage (10.1016/j.amc.2014.04.090_b0175) 1995; 17
Salton (10.1016/j.amc.2014.04.090_b0280) 1983
Zhang (10.1016/j.amc.2014.04.090_b0300) 2008
10.1016/j.amc.2014.04.090_b0225
Kietzmann (10.1016/j.amc.2014.04.090_b0265) 2011; 54
Gupta (10.1016/j.amc.2014.04.090_b0070) 2009; 1
Safko (10.1016/j.amc.2014.04.090_b0270) 2010
10.1016/j.amc.2014.04.090_b0140
10.1016/j.amc.2014.04.090_b0260
Hotho (10.1016/j.amc.2014.04.090_b0065) 2005; 20
Han (10.1016/j.amc.2014.04.090_b0325) 2001
10.1016/j.amc.2014.04.090_b0020
10.1016/j.amc.2014.04.090_b0185
Frakes (10.1016/j.amc.2014.04.090_b0285) 1992
Corley (10.1016/j.amc.2014.04.090_b0045) 2010; 7
10.1016/j.amc.2014.04.090_b0220
References_xml – volume: 7
  start-page: 596
  year: 2010
  end-page: 615
  ident: b0045
  article-title: Text and structural data mining of influenza mentions in web and social media
  publication-title: Int. J. Environ. Res. Publ. Health
– volume: 37
  start-page: 51
  year: 2003
  end-page: 89
  ident: b0080
  article-title: Natural language processing
  publication-title: Annu. Rev. Inf. Sci. Technol.
– start-page: 1169
  year: 2008
  end-page: 1180
  ident: b0300
  article-title: Automatic keyword extraction from documents using conditional random fields
  publication-title: J. Comput. Inf. Syst.
– year: 2006
  ident: b0305
  article-title: Graph Theory and Its Applications
– reference: I.H. Witten, G.W. Paynter, E. Frank, C. Gutwin, C.G. Nevill-Manning, KEA practical automatic keyphrase action, in: Proceedings of the 4th ACM Conference on Digital Library (DL’99), Berkeley, CA, USA, 1999, p. 254–226.
– volume: 53
  start-page: 59
  year: 2010
  end-page: 68
  ident: b0010
  article-title: Users of the world, unite! The challenges and opportunities of social media
  publication-title: Bus. Horizons
– year: 2007
  ident: b0320
  article-title: Using lexical chains for keyword extraction
  publication-title: Inf. Processing Manage.
– reference: E. Frank, G.W. Paynter, I.H. Witten, Domain-specific keyphrase extraction, in: Proceedings of the 16th International Joint Conference on Artificial Intelligence, 1999.
– year: 2001
  ident: b0325
  article-title: Data Mining: Concepts and Techniques
– volume: 4815
  start-page: 503
  year: 2007
  end-page: 510
  ident: b0330
  article-title: Keyword extraction from a single document using centrality measures
  publication-title: Pattern Recogn. Mach. Intell.
– reference: W. Jin, R.K. Srihari, Graph-based text representation and knowledge discovery, in: Proceedings of the 2007 ACM Symposium on Applied, Computing, vol. 7, 2007, pp. 807–811.
– volume: 1
  start-page: 60
  year: 2009
  end-page: 76
  ident: b0070
  article-title: A survey of text mining techniques and applications
  publication-title: J. Emerg. Technol. Web Intell.
– year: 2010
  ident: b0270
  article-title: The Social Media Bible: Tactics, Tools, and Strategies for Business Success
– volume: 15
  start-page: 332
  year: 1974
  end-page: 336
  ident: b0165
  article-title: On the centrality in a graph
  publication-title: Scand. J. Psychol.
– volume: 54
  start-page: 241
  year: 2011
  end-page: 251
  ident: b0265
  article-title: Social media? Get serious! Understanding the functional building blocks of social media
  publication-title: Bus. Horizons
– reference: M. Litvak, M. Last, Graph-based keyword extraction for single-document summarization, in: Proceedings of the Workshop on Multi-source Multilingual Information Extraction and Summarization, 2008, p. 17–24.
– year: 1995
  ident: b0170
  article-title: Social Network Analysis: Methods and Applications
– reference: >. [Accessed24October 2013].
– reference: A. Schenker, M. Last, H. Bunke, Classification of web documents using a graph model, in: Proceedings of 7th International Conference on Document Analysis and Recognition (ICDAR2003), Computer Society Press, Scotland, 2003.
– volume: 20
  start-page: 19
  year: 2005
  end-page: 62
  ident: b0065
  article-title: A brief survey of text mining
  publication-title: Ldv Forum
– volume: 54
  start-page: 708
  year: 2011
  end-page: 715
  ident: b0035
  article-title: Twitter earthquake detection: earthquake monitoring in a social world
  publication-title: Ann. Geophys.
– reference: B. Lott, Survey of Keyword Extraction Techniques, UNM Education, 2012.
– reference: A. Hulth, Improved automatic keyword extraction given more linguistic knowledge, in: Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing, 2003, p. 216–223.
– reference: Datasift, Browse Data Sources – Twitter, 2012. [Online]. Available: <
– volume: 17
  start-page: 57
  year: 1995
  end-page: 63
  ident: b0175
  article-title: Eccentricity and centrality in networks
  publication-title: Soc. Networks
– reference: S.F. Dennis, The design and testing of a fully automatic indexing–searching system for documents consisting of expository text, in: G. Schecter (Eds.), Information Retrieval: A Critical Review, 1967.
– reference: P.D. Turney, Learning to Extract Keyphrases from Text, NRC Technical Report ERB-1057, National Research Council, Canada, 1999, p. 1–43.
– volume: vol. 1
  year: 2008
  ident: b0290
  publication-title: Introduction to Information Retrieval
– reference: C.D. Manning, Foundations of statistical natural language processing, in: H. Schütze (Ed.), MIT Press, 1999.
– reference: M. Yoshida, S. Matsushima, S. Ono, I. Sato, H. Nakagawa, ITC-UT: tweet categorization by query categorization of on-line reputation management, in: Conference on Multilingual and Multimodal Information Access Evaluation, 2010.
– volume: 4
  year: 2004
  ident: b0315
  article-title: Keyword extraction from a single document using word co-occurrence statistical information
  publication-title: Int. J. Artif. Intell. Tools
– year: 1957
  ident: b0310
  article-title: A statistical approach to mechanized encoding and searching of literary information
  publication-title: IBM J. Res. Dev.
– reference: M.A. Russell, Mining the Social Web: Data Mining Facebook, Twitter, LinkedIn, Google+, GitHub, and More. O’Reilly Media Inc., 2013.
– reference: S. Hensman, Construction of conceptual graph representation of texts, in: Proceedings of Student Research Workshop at HLT-NAACL, Boston, 2004, p. 49–54.
– year: 2011
  ident: b0250
  article-title: Information Retrieval Architecture and Algorithms
– volume: vol. XII–XIII
  start-page: 409
  year: 1997
  end-page: 414
  ident: b0275
  article-title: Overview of evaluation in speech and natural language processing
  publication-title: Survey of the State of the Art in Human Language Technology, Cambridge Studies in Natural Language Processing Series
– year: 1983
  ident: b0280
  article-title: Introduction to Modern Information Retrieval
– reference: A. Bermingham, A. Smeaton, On Using Twitter to Monitor Political Sentiment and Predict Election Results, Sentiment Analysis where AI meets Psychology, 2011, pp. 2–10.
– reference: C.A. Chahine, N. Chaignaud, J.Ph. Kotowicz, J.P. Pécuche, Context and keyword extraction in plain text using a graph representation, in: Proceedings of the 2008 IEEE International Conference on Signal Image Technology and Internet Based Systems, vol. 8, 2008, p. 692–696.
– reference: E. Agichtein, C. Castillo, D. Donato, A. Gionis, G. Mishne, Finding high-quality content in social media, in: Proceedings of the 2008 International Conference on Web Search and Data Mining, ACM, 2008, pp. 183–194.
– reference: Y. Ohsawa, N.E. Benson, M. Yachida, KeyGraph: automatic indexing by co-occurrence graph based on building construction metaphor, in: Proceedings. IEEE International Forum on Research and Technology Advances in Digital Libraries, 1998, ADL 98, p. 12–18.
– year: 1999
  ident: b0090
  article-title: Modern Information Retrieval
– reference: R. Feldman, J. Sanger, The Text Mining Handbook Advanced Approaches in Analysing Unstructured Data, [S.l.]: Cambridge, 2007.
– reference: F. Zhou, F. Zhang, B. Yang, Graph-based text representation model and its realization, in: 2010 International Conference on Natural Language Processing and Knowledge Engineering (NLP-KE), vol. 1, No. 8, 2010, p. 21–23.
– reference: K. Zhang, H. Xu, J. Tang, J.Z. Li, Keyword extraction using support vector machine, in: Proceedings of the Seventh International Conference on Web-Age, Information Management (Waim2006), 2006.
– year: 1975
  ident: b0295
  article-title: A theory of term importance in automatic text analysis
  publication-title: J. Am. Soc. Inf. Sci.
– reference: S. Asur, B.A. Huberman, Predicting the future with social media, in: 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), vol. 1, IEEE, 2010, pp. 492–499.
– year: 2004
  ident: b0055
  publication-title: Survey of Text Mining
– year: 1992
  ident: b0285
  article-title: Information Retrieval: Data Structures and Algorithms
– volume: 6
  start-page: 57
  year: 2005
  end-page: 71
  ident: b0060
  article-title: A survey of current work in biomedical text mining
  publication-title: Briefings Bioinf.
– reference: D. Ediger, K. Jiang, J. Riedy, D.A. Bader, C. Corley, R. Farber, W.N. Reynolds, Massive social network analysis: mining twitter for social good, in: 2010 39th International Conference on Parallel Processing (ICPP), IEEE, 2010, pp. 583–593.
– reference: S. Rose, D. Engel, N. Cramer, W. Cowley, Automatic Keyword Extraction from Individual Documents, Text Mining: Applications and Theory, 2010.
– reference: W.X. Zhao, J. Jiang, J. He, Y. Song, P. Achananuparp, E.-P. Lim, X. Li, Topical keyphrase extraction from Twitter, in: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (HLT ‘11), Association for Computational Linguistics, vol. 1, Stroudsburg, PA, USA, 2011, p. 379–388.
– ident: 10.1016/j.amc.2014.04.090_b0125
  doi: 10.1109/ICPP.2010.66
– ident: 10.1016/j.amc.2014.04.090_b0160
  doi: 10.3115/1614038.1614047
– ident: 10.1016/j.amc.2014.04.090_b0180
  doi: 10.1007/11775300_8
– ident: 10.1016/j.amc.2014.04.090_b0225
– year: 1992
  ident: 10.1016/j.amc.2014.04.090_b0285
– start-page: 1169
  year: 2008
  ident: 10.1016/j.amc.2014.04.090_b0300
  article-title: Automatic keyword extraction from documents using conditional random fields
  publication-title: J. Comput. Inf. Syst.
– ident: 10.1016/j.amc.2014.04.090_b0260
– ident: 10.1016/j.amc.2014.04.090_b0150
  doi: 10.1109/NLPKE.2010.5587861
– year: 2010
  ident: 10.1016/j.amc.2014.04.090_b0270
– year: 2001
  ident: 10.1016/j.amc.2014.04.090_b0325
– year: 2011
  ident: 10.1016/j.amc.2014.04.090_b0250
– year: 1999
  ident: 10.1016/j.amc.2014.04.090_b0090
– volume: 53
  start-page: 59
  issue: 1
  year: 2010
  ident: 10.1016/j.amc.2014.04.090_b0010
  article-title: Users of the world, unite! The challenges and opportunities of social media
  publication-title: Bus. Horizons
  doi: 10.1016/j.bushor.2009.09.003
– volume: 7
  start-page: 596
  issue: 2
  year: 2010
  ident: 10.1016/j.amc.2014.04.090_b0045
  article-title: Text and structural data mining of influenza mentions in web and social media
  publication-title: Int. J. Environ. Res. Publ. Health
  doi: 10.3390/ijerph7020596
– year: 2004
  ident: 10.1016/j.amc.2014.04.090_b0055
– ident: 10.1016/j.amc.2014.04.090_b0190
– ident: 10.1016/j.amc.2014.04.090_b0235
  doi: 10.1109/ADL.1998.670375
– ident: 10.1016/j.amc.2014.04.090_b0215
– ident: 10.1016/j.amc.2014.04.090_b0015
  doi: 10.1145/1341531.1341557
– ident: 10.1016/j.amc.2014.04.090_b0085
– volume: 6
  start-page: 57
  issue: 1
  year: 2005
  ident: 10.1016/j.amc.2014.04.090_b0060
  article-title: A survey of current work in biomedical text mining
  publication-title: Briefings Bioinf.
  doi: 10.1093/bib/6.1.57
– ident: 10.1016/j.amc.2014.04.090_b0050
  doi: 10.1017/CBO9780511546914
– ident: 10.1016/j.amc.2014.04.090_b0020
  doi: 10.1109/WI-IAT.2010.63
– ident: 10.1016/j.amc.2014.04.090_b0155
– year: 1983
  ident: 10.1016/j.amc.2014.04.090_b0280
– volume: vol. 1
  year: 2008
  ident: 10.1016/j.amc.2014.04.090_b0290
– ident: 10.1016/j.amc.2014.04.090_b0120
– year: 1957
  ident: 10.1016/j.amc.2014.04.090_b0310
  article-title: A statistical approach to mechanized encoding and searching of literary information
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/rd.14.0309
– volume: 20
  start-page: 19
  issue: 1
  year: 2005
  ident: 10.1016/j.amc.2014.04.090_b0065
  article-title: A brief survey of text mining
  publication-title: Ldv Forum
– volume: 4815
  start-page: 503
  year: 2007
  ident: 10.1016/j.amc.2014.04.090_b0330
  article-title: Keyword extraction from a single document using centrality measures
  publication-title: Pattern Recogn. Mach. Intell.
  doi: 10.1007/978-3-540-77046-6_62
– ident: 10.1016/j.amc.2014.04.090_b0040
– year: 2006
  ident: 10.1016/j.amc.2014.04.090_b0305
– volume: 54
  start-page: 708
  issue: 6
  year: 2011
  ident: 10.1016/j.amc.2014.04.090_b0035
  article-title: Twitter earthquake detection: earthquake monitoring in a social world
  publication-title: Ann. Geophys.
– volume: 15
  start-page: 332
  year: 1974
  ident: 10.1016/j.amc.2014.04.090_b0165
  article-title: On the centrality in a graph
  publication-title: Scand. J. Psychol.
  doi: 10.1111/j.1467-9450.1974.tb00598.x
– ident: 10.1016/j.amc.2014.04.090_b0245
  doi: 10.1109/SITIS.2008.47
– year: 2007
  ident: 10.1016/j.amc.2014.04.090_b0320
  article-title: Using lexical chains for keyword extraction
  publication-title: Inf. Processing Manage.
  doi: 10.1016/j.ipm.2007.01.015
– volume: 54
  start-page: 241
  issue: 3
  year: 2011
  ident: 10.1016/j.amc.2014.04.090_b0265
  article-title: Social media? Get serious! Understanding the functional building blocks of social media
  publication-title: Bus. Horizons
  doi: 10.1016/j.bushor.2011.01.005
– ident: 10.1016/j.amc.2014.04.090_b0185
  doi: 10.1002/9780470689646.ch1
– ident: 10.1016/j.amc.2014.04.090_b0205
  doi: 10.3115/1119355.1119383
– ident: 10.1016/j.amc.2014.04.090_b0230
– volume: 1
  start-page: 60
  issue: 1
  year: 2009
  ident: 10.1016/j.amc.2014.04.090_b0070
  article-title: A survey of text mining techniques and applications
  publication-title: J. Emerg. Technol. Web Intell.
– volume: 37
  start-page: 51
  issue: 1
  year: 2003
  ident: 10.1016/j.amc.2014.04.090_b0080
  article-title: Natural language processing
  publication-title: Annu. Rev. Inf. Sci. Technol.
  doi: 10.1002/aris.1440370103
– volume: 17
  start-page: 57
  year: 1995
  ident: 10.1016/j.amc.2014.04.090_b0175
  article-title: Eccentricity and centrality in networks
  publication-title: Soc. Networks
  doi: 10.1016/0378-8733(94)00248-9
– ident: 10.1016/j.amc.2014.04.090_b0240
  doi: 10.3115/1613172.1613178
– year: 1975
  ident: 10.1016/j.amc.2014.04.090_b0295
  article-title: A theory of term importance in automatic text analysis
  publication-title: J. Am. Soc. Inf. Sci.
  doi: 10.1002/asi.4630260106
– volume: vol. XII–XIII
  start-page: 409
  year: 1997
  ident: 10.1016/j.amc.2014.04.090_b0275
  article-title: Overview of evaluation in speech and natural language processing
– ident: 10.1016/j.amc.2014.04.090_b0220
– ident: 10.1016/j.amc.2014.04.090_b0140
  doi: 10.1145/1244002.1244182
– volume: 4
  year: 2004
  ident: 10.1016/j.amc.2014.04.090_b0315
  article-title: Keyword extraction from a single document using word co-occurrence statistical information
  publication-title: Int. J. Artif. Intell. Tools
– ident: 10.1016/j.amc.2014.04.090_b0115
– ident: 10.1016/j.amc.2014.04.090_b0030
– year: 1995
  ident: 10.1016/j.amc.2014.04.090_b0170
SSID ssj0007614
Score 2.3944983
Snippet Twitter is a microblog service that generates a huge amount of textual content daily. All this content needs to be explored by means of text mining, natural...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 308
SubjectTerms Algorithms
Centrality measures
Computation
Data mining
Extraction
Graph theory
Graphs
Keyword extraction
Knowledge discovery
Messages
Proposals
Text mining
Texts
Twitter data
Title A keyword extraction method from twitter messages represented as graphs
URI https://dx.doi.org/10.1016/j.amc.2014.04.090
https://www.proquest.com/docview/1551087563
Volume 240
WOSCitedRecordID wos000338608700027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLag4wEeEFexcZGREA9UQUnspvFjNHVcVAoPndQ3y7Ed0WlLS9Nu499zTmynZYhpPCBVUWslaeTPOf7sc_kIeWNYGSfGigh9cBEvTRYpy_NIMTsQwmDsuBObGE4m-WwmvnmVzqaVExjWdX55KZb_FWpoA7AxdfYf4O5uCg3wHUCHI8AOxxsBX_ThvbzALECwuysvBe6Eon0yycUcU3igrcGostZv4JKQgHyqpt_WsG52WWugqmddjdcm5MMtN7_78otyfvp90TJS3Mr5Ceajiyk2tn-omrXLrBlbhbUSvCvI7zskvIt662ypwKi5mO3a0tTVXvLWkMX5zsTKXIbzHzbbbR-cvFdnWFIy4a70bLydoIJTfvJVHh2Px3I6mk3fLn9EKB2GLnavo3Kb7KXDgch7ZK_4NJp97ibkYeZKvIcHDs7tNszvyr_-jZ5cmahb9jF9QO77ZQMtHNwPyS1bPyL3vmzxeEw-FNQDT7fAUwc8ReCpB54G4OkO8FQ11AH_hBwfjaaHHyMvkxFpJrJ1VCaVYsaqAdNC80qoiqfKaOC9ieK5yMq8gl8J14m1OQOGrw2sEythgYwOUi3YU9KrF7V9RqiG9XNlOFe4t1WKVOUGqzkZo2HOtEO9T-LQO1L7GvIoZXIqQ7DgiYQOldihMoaPiPfJu-6SpSugct3JPHS59AzQMTsJg-W6y14HeCRYR3R5qdouNo3EBQFqNmTs4AbnPCd3tyP9BemtVxv7ktzR5-t5s3rlh9UvZ8yJDA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+keyword+extraction+method+from+twitter+messages+represented+as+graphs&rft.jtitle=Applied+mathematics+and+computation&rft.au=Abilhoa%2C+Willyan+D&rft.au=de+Castro%2C+Leandro+N&rft.date=2014-08-01&rft.issn=0096-3003&rft.volume=240&rft.spage=308&rft.epage=325&rft_id=info:doi/10.1016%2Fj.amc.2014.04.090&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon