Influence of microvascular sutures on shear strain rate in realistic pulsatile flow

Arterial thrombus formation is directly related to the mechanical shear experienced by platelets within flow. High shear strain rates (SSRs) and large shear gradients cause platelet activation, aggregation and production of thrombus. This study, for the first time, investigates the influence of puls...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Microvascular research Ročník 118; s. 69 - 81
Hlavní autoři: Wain, R.A.J., Smith, D.J., Hammond, D.R., Whitty, J.P.M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Elsevier Inc 01.07.2018
Témata:
ISSN:0026-2862, 1095-9319, 1095-9319
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Arterial thrombus formation is directly related to the mechanical shear experienced by platelets within flow. High shear strain rates (SSRs) and large shear gradients cause platelet activation, aggregation and production of thrombus. This study, for the first time, investigates the influence of pulsatile flow on local haemodynamics within sutured microarterial anastomoses. We measured physiological arterial waveform velocities experimentally using Doppler ultrasound velocimetry, and a representative example was applied to a realistic sutured microarterial geometry. Computational geometries were created using measurements taken from sutured chicken femoral arteries. Arterial SSRs were predicted using computational fluid dynamics (CFD) software, to indicate the potential for platelet activation, deposition and thrombus formation. Predictions of steady and sinusoidal inputs were compared to analyse whether the addition of physiological pulse characteristics affects local intravascular flow characteristics. Simulations were designed to evaluate flow in pristine and hand-sutured microarterial anastomoses, each with a steady-state and sinusoidal pulse component. The presence of sutures increased SSRmax in the anastomotic region by factors of 2.1 and 2.3 in steady-state and pulsatile flows respectively, when compared to a pristine vessel. SSR values seen in these simulations are analogous to the presence of moderate arterial stenosis. Steady-state simulations, driven by a constant inflow velocity equal to the peak systolic velocity (PSV) of the measured pulsatile flow, underestimated SSRs by ∼ 9% in pristine, and ∼ 19% in sutured vessels compared with a realistic pulse. Sinusoidal flows, with equivalent frequency and amplitude to a measured arterial waveform, represent a slight improvement on steady-state simulations, but still SSRs are underestimated by 1–2%. We recommend using a measured arterial waveform, of the form presented here, for simulating pulsatile flows in vessels of this nature. Under realistic pulsatile flow, shear gradients across microvascular sutures are high, of the order ∼ 7.9 × 106 m−1 s−1, which may also be associated with activation of platelets and formation of aggregates. •Haemodynamics of pulsatile flow in microarterial anastomoses are simulated.•Arterial thrombus formation is related to Shear Strain Rate (SSR).•SSR underestimated by 19% in sutured vessels (steady vs. pulsatile flow)•SSR increased by 2.3-fold under pulsatile flow (sutured vs. pristine vessels)•High shear gradients along sutures may indicate mechanical activation of platelets.
AbstractList Arterial thrombus formation is directly related to the mechanical shear experienced by platelets within flow. High shear strain rates (SSRs) and large shear gradients cause platelet activation, aggregation and production of thrombus. This study, for the first time, investigates the influence of pulsatile flow on local haemodynamics within sutured microarterial anastomoses. We measured physiological arterial waveform velocities experimentally using Doppler ultrasound velocimetry, and a representative example was applied to a realistic sutured microarterial geometry. Computational geometries were created using measurements taken from sutured chicken femoral arteries. Arterial SSRs were predicted using computational fluid dynamics (CFD) software, to indicate the potential for platelet activation, deposition and thrombus formation. Predictions of steady and sinusoidal inputs were compared to analyse whether the addition of physiological pulse characteristics affects local intravascular flow characteristics. Simulations were designed to evaluate flow in pristine and hand-sutured microarterial anastomoses, each with a steady-state and sinusoidal pulse component. The presence of sutures increased SSRmax in the anastomotic region by factors of 2.1 and 2.3 in steady-state and pulsatile flows respectively, when compared to a pristine vessel. SSR values seen in these simulations are analogous to the presence of moderate arterial stenosis. Steady-state simulations, driven by a constant inflow velocity equal to the peak systolic velocity (PSV) of the measured pulsatile flow, underestimated SSRs by ∼ 9% in pristine, and ∼ 19% in sutured vessels compared with a realistic pulse. Sinusoidal flows, with equivalent frequency and amplitude to a measured arterial waveform, represent a slight improvement on steady-state simulations, but still SSRs are underestimated by 1–2%. We recommend using a measured arterial waveform, of the form presented here, for simulating pulsatile flows in vessels of this nature. Under realistic pulsatile flow, shear gradients across microvascular sutures are high, of the order ∼ 7.9 × 106 m−1 s−1, which may also be associated with activation of platelets and formation of aggregates. •Haemodynamics of pulsatile flow in microarterial anastomoses are simulated.•Arterial thrombus formation is related to Shear Strain Rate (SSR).•SSR underestimated by 19% in sutured vessels (steady vs. pulsatile flow)•SSR increased by 2.3-fold under pulsatile flow (sutured vs. pristine vessels)•High shear gradients along sutures may indicate mechanical activation of platelets.
Arterial thrombus formation is directly related to the mechanical shear experienced by platelets within flow. High shear strain rates (SSRs) and large shear gradients cause platelet activation, aggregation and production of thrombus. This study, for the first time, investigates the influence of pulsatile flow on local haemodynamics within sutured microarterial anastomoses. We measured physiological arterial waveform velocities experimentally using Doppler ultrasound velocimetry, and a representative example was applied to a realistic sutured microarterial geometry. Computational geometries were created using measurements taken from sutured chicken femoral arteries. Arterial SSRs were predicted using computational fluid dynamics (CFD) software, to indicate the potential for platelet activation, deposition and thrombus formation. Predictions of steady and sinusoidal inputs were compared to analyse whether the addition of physiological pulse characteristics affects local intravascular flow characteristics. Simulations were designed to evaluate flow in pristine and hand-sutured microarterial anastomoses, each with a steady-state and sinusoidal pulse component. The presence of sutures increased SSRmax in the anastomotic region by factors of 2.1 and 2.3 in steady-state and pulsatile flows respectively, when compared to a pristine vessel. SSR values seen in these simulations are analogous to the presence of moderate arterial stenosis. Steady-state simulations, driven by a constant inflow velocity equal to the peak systolic velocity (PSV) of the measured pulsatile flow, underestimated SSRs by ∼ 9% in pristine, and ∼ 19% in sutured vessels compared with a realistic pulse. Sinusoidal flows, with equivalent frequency and amplitude to a measured arterial waveform, represent a slight improvement on steady-state simulations, but still SSRs are underestimated by 1-2%. We recommend using a measured arterial waveform, of the form presented here, for simulating pulsatile flows in vessels of this nature. Under realistic pulsatile flow, shear gradients across microvascular sutures are high, of the order ∼ 7.9 × 106 m-1 s-1, which may also be associated with activation of platelets and formation of aggregates.Arterial thrombus formation is directly related to the mechanical shear experienced by platelets within flow. High shear strain rates (SSRs) and large shear gradients cause platelet activation, aggregation and production of thrombus. This study, for the first time, investigates the influence of pulsatile flow on local haemodynamics within sutured microarterial anastomoses. We measured physiological arterial waveform velocities experimentally using Doppler ultrasound velocimetry, and a representative example was applied to a realistic sutured microarterial geometry. Computational geometries were created using measurements taken from sutured chicken femoral arteries. Arterial SSRs were predicted using computational fluid dynamics (CFD) software, to indicate the potential for platelet activation, deposition and thrombus formation. Predictions of steady and sinusoidal inputs were compared to analyse whether the addition of physiological pulse characteristics affects local intravascular flow characteristics. Simulations were designed to evaluate flow in pristine and hand-sutured microarterial anastomoses, each with a steady-state and sinusoidal pulse component. The presence of sutures increased SSRmax in the anastomotic region by factors of 2.1 and 2.3 in steady-state and pulsatile flows respectively, when compared to a pristine vessel. SSR values seen in these simulations are analogous to the presence of moderate arterial stenosis. Steady-state simulations, driven by a constant inflow velocity equal to the peak systolic velocity (PSV) of the measured pulsatile flow, underestimated SSRs by ∼ 9% in pristine, and ∼ 19% in sutured vessels compared with a realistic pulse. Sinusoidal flows, with equivalent frequency and amplitude to a measured arterial waveform, represent a slight improvement on steady-state simulations, but still SSRs are underestimated by 1-2%. We recommend using a measured arterial waveform, of the form presented here, for simulating pulsatile flows in vessels of this nature. Under realistic pulsatile flow, shear gradients across microvascular sutures are high, of the order ∼ 7.9 × 106 m-1 s-1, which may also be associated with activation of platelets and formation of aggregates.
Arterial thrombus formation is directly related to the mechanical shear experienced by platelets within flow. High shear strain rates (SSRs) and large shear gradients cause platelet activation, aggregation and production of thrombus. This study, for the first time, investigates the influence of pulsatile flow on local haemodynamics within sutured microarterial anastomoses. We measured physiological arterial waveform velocities experimentally using Doppler ultrasound velocimetry, and a representative example was applied to a realistic sutured microarterial geometry. Computational geometries were created using measurements taken from sutured chicken femoral arteries. Arterial SSRs were predicted using computational fluid dynamics (CFD) software, to indicate the potential for platelet activation, deposition and thrombus formation. Predictions of steady and sinusoidal inputs were compared to analyse whether the addition of physiological pulse characteristics affects local intravascular flow characteristics. Simulations were designed to evaluate flow in pristine and hand-sutured microarterial anastomoses, each with a steady-state and sinusoidal pulse component. The presence of sutures increased SSR in the anastomotic region by factors of 2.1 and 2.3 in steady-state and pulsatile flows respectively, when compared to a pristine vessel. SSR values seen in these simulations are analogous to the presence of moderate arterial stenosis. Steady-state simulations, driven by a constant inflow velocity equal to the peak systolic velocity (PSV) of the measured pulsatile flow, underestimated SSRs by ∼ 9% in pristine, and ∼ 19% in sutured vessels compared with a realistic pulse. Sinusoidal flows, with equivalent frequency and amplitude to a measured arterial waveform, represent a slight improvement on steady-state simulations, but still SSRs are underestimated by 1-2%. We recommend using a measured arterial waveform, of the form presented here, for simulating pulsatile flows in vessels of this nature. Under realistic pulsatile flow, shear gradients across microvascular sutures are high, of the order ∼ 7.9 × 10 m s , which may also be associated with activation of platelets and formation of aggregates.
Author Smith, D.J.
Hammond, D.R.
Wain, R.A.J.
Whitty, J.P.M.
Author_xml – sequence: 1
  givenname: R.A.J.
  surname: Wain
  fullname: Wain, R.A.J.
  email: richwain@doctors.org.uk
  organization: School of Mathematics, University of Birmingham, B15 2TT, UK
– sequence: 2
  givenname: D.J.
  surname: Smith
  fullname: Smith, D.J.
  organization: School of Mathematics, University of Birmingham, B15 2TT, UK
– sequence: 3
  givenname: D.R.
  surname: Hammond
  fullname: Hammond, D.R.
  organization: School of Medicine and Dentistry, University of Central Lancashire, Preston PR1 2HE, UK
– sequence: 4
  givenname: J.P.M.
  surname: Whitty
  fullname: Whitty, J.P.M.
  organization: Computational Mechanics Research Group, School of Engineering, University of Central Lancashire, Preston PR1 2HE, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29522755$$D View this record in MEDLINE/PubMed
BookMark eNp9kT1rHDEQhoU5Y58_foCboDLNrjXab1KFw3YODlzEroVWO8I6tKuLpL2Qf28tZzcpXA0Mz_vCPHNFVpObkJA7YDkwqO_3-Xj0OWfQ5qzIGYMzsgbWVVlXQLcia8Z4nfG25pfkKoR9AqDq-AW55F3FeVNVa_J7O2k746SQOk1Ho7w7yqBmKz0Nc5w9BuomGt5wWUQvzUS9jEiXidKaEI2ih9kGGY1Fqq37e0POtbQBbz_mNXl9fHjZ_Mp2z0_bzc9dpoqujlnP9NBobEvQtYS67Ie2KbUsGNeVYmmpULOea94x3UDfF7KEoWlrGIZSKqyKa_L91Hvw7s-MIYrRBIXWygndHEQSwzuABpqEfvtA537EQRy8GaX_Jz5FJKA5AUlACB61UCamk9y03GwFMLEoF3uRlC_NrWCFSEZTEv5LfpZ_lflxymDSczToRVBmecJgPKooBme-SL8DZhyagQ
CitedBy_id crossref_primary_10_14326_abe_8_63
crossref_primary_10_1007_s00604_025_07239_1
crossref_primary_10_1016_j_ultrasmedbio_2023_12_019
Cites_doi 10.1067/mhj.2002.123118
10.1038/nm.1955
10.1182/blood.V77.1.5.5
10.1016/j.bjps.2016.02.017
10.1097/PRS.0b013e3181cb636d
10.1097/00006534-199609000-00015
10.1016/j.jbiomech.2013.10.021
10.14797/mdcj-5-3-26
10.1016/j.ejmp.2009.03.004
10.1161/01.ATV.0000229658.76797.30
10.1007/s10439-009-9719-9
10.4244/EIJY16M05_01
10.1055/s-0037-1614237
10.1097/00006534-199406000-00022
10.1097/00006534-199809010-00015
10.1063/1.4941315
10.1016/j.compbiomed.2010.02.005
10.1016/0021-9150(81)90027-7
10.1007/s10237-005-0070-2
10.1016/0141-5425(87)90099-9
10.1182/blood.V75.2.390.390
10.1016/j.bpj.2013.05.049
10.1016/0002-9343(62)90243-7
10.1172/JCI112663
10.1007/BF01340631
10.1016/j.medengphy.2014.05.011
10.1007/s10237-012-0417-4
10.1097/01.sap.0000202614.45743.34
10.1080/0953710031000092839
10.1161/01.ATV.5.3.293
10.1182/blood.V88.5.1525.1525
10.1055/s-0038-1650343
10.1182/blood-2006-07-028282
10.1016/j.otohns.2007.12.029
10.1002/micr.20813
10.1016/j.anplas.2013.08.004
10.1016/j.ces.2011.12.015
10.1016/j.jss.2008.02.038
10.1016/0021-9290(91)90029-M
10.1016/j.mvr.2016.02.003
10.1097/SCS.0b013e31820f8004
10.1073/pnas.0608546103
10.1111/j.1749-6632.1985.tb11855.x
10.1161/01.ATV.14.12.1984
10.1016/j.bjps.2014.03.016
10.1159/000083845
10.1161/ATVBAHA.108.173930
10.1016/j.bjps.2016.04.010
10.1111/j.1365-2141.1986.tb07552.x
10.1007/s10439-010-9901-0
10.1161/01.ATV.10.2.276
10.1016/j.bjoms.2005.11.022
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.mvr.2018.03.001
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9319
EndPage 81
ExternalDocumentID 29522755
10_1016_j_mvr_2018_03_001
S0026286217302157
Genre Video-Audio Media
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/M025888/1
GroupedDBID ---
--K
--M
.55
.GJ
.~1
0R~
123
1B1
1RT
1~.
1~5
29M
3O-
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABBQC
ABFNM
ABFRF
ABGSF
ABJNI
ABLVK
ABMAC
ABMZM
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHPSJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEB
HLW
HMK
HMO
HVGLF
HZ~
IHE
J1W
J5H
KOM
LCYCR
LG5
LX2
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAE
SBG
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
UHS
UNMZH
WUQ
X7M
XPP
ZGI
ZKB
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c396t-b0fd7fe841f6a164bd874fa302f5c01f6cef0b2f290f71bb3a41d7861dd4ace53
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000433400400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0026-2862
1095-9319
IngestDate Sun Sep 28 08:00:08 EDT 2025
Wed Feb 19 02:32:01 EST 2025
Sat Nov 29 05:35:17 EST 2025
Tue Nov 18 22:38:26 EST 2025
Fri Feb 23 02:28:10 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Sutures
Microvascular
Computational Fluid Dynamics (CFD)
Shear strain rate
Pulsatile
Anastomosis
Language English
License Copyright © 2018 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c396t-b0fd7fe841f6a164bd874fa302f5c01f6cef0b2f290f71bb3a41d7861dd4ace53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0026286217302157
PMID 29522755
PQID 2012911717
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2012911717
pubmed_primary_29522755
crossref_citationtrail_10_1016_j_mvr_2018_03_001
crossref_primary_10_1016_j_mvr_2018_03_001
elsevier_sciencedirect_doi_10_1016_j_mvr_2018_03_001
PublicationCentury 2000
PublicationDate July 2018
2018-07-00
20180701
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: July 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Microvascular research
PublicationTitleAlternate Microvasc Res
PublicationYear 2018
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ku, Giddens, Zarins, Glagov (bb0165) 1985; 5
Chernichenko, Ross, Shin, Chow, Sasaki, Ariyan (bb0090) 2008; 138
Taylor, Steinman (bb0285) 2010; 38
Maxwell, Westein, Nesbitt, Giuliano, Dopheide, Jackson (bb0180) 2007; 109
Lowe (bb0170) 2003; 33
Alghoul, Gordon, Yetman, Buncke, Siemionow, Afifi, Moon (bb0025) 2011; 31
(bb0030) 2015
Jiménez, Davies (bb0130) 2009; 37
Bossavy, Sakariassen, Barret, Boneu, Cadroy (bb0080) 1998; 79
Tenekecioglu, Torii, Bourantas, Crake, Yaping, Sotomi, Onuma, Yılmaz, Santoso, Serruys (bb0290) 2016; 12
Perktold, Resch, Peter (bb0215) 1991; 24
Barstad, Roald, Cui, Turitto, Sakariassen (bb0050) 1994; 14
Berti (bb0070) 2010
Perktold, Florian, Hilbert (bb0210) 1987; 9
Ahn, Shaw, Berns, Markowitz (bb0005) 1994; 93
Feldman, Ilegbusi, Hu, Nesto, Waxman, Stone (bb0095) 2002; 143
Steinman (bb0280) 2012
Gijsen, Schuurbiers, van de Giessen, Schaap, van der Steen, Wentzel (bb0105) 2014; 47
Perdikaris, Grinberg, Karniadakis (bb0205) 2016; 28
Weiss, Turitto, Baumgartner (bb0310) 1986; 78
Khouri, Cooley, Kunselman, Landis, Yeramian, Ingram, Natarajan, Benes, Wallemark (bb0150) 1998; 102
Shen, Kastrup, Liu, Ismagilov (bb0270) 2008; 28
Baumgartner, Sakariassen (bb0055) 1985; 454
Shadden, Hendabadi (bb0265) 2013; 12
Karanasiou, Gatsios, Lykissas, Stefanou, Rigas, Lagaris, Kostas-Agnantis, Gkiatas, Beris, Fotiadis (bb0140) 2015
Beugels, Hoekstra, Tuinder, Heuts, van der Hulst, Piatkowski (bb0075) 2016; 69
White (bb0315) 2005
White (bb0320) 2009
Bendon, Giele (bb0065) 2016; 69
Rickard, Meyer, Hudson (bb0225) 2009; 153
Al-Sukhun, Penttilä, Ashammakhi (bb0015) 2011; 22
Tenekecioglu, Torii, Bourantas, Cavalcante, Sotomi, Zeng, Collet, Crake, Abizaid, Onuma, Su, Santoso, Serruys (bb0295) 2017; 00
Friedman, Hutchins, Bargeron, Deters, Mark (bb0100) 1981; 39
Kanaris, Anastasiou, Paras (bb0135) 2012; 71
Grabowski (bb0110) 1990; 75
Martin, Murphy, Boyle (bb0175) 2014; 36
Sakariassen, Orning, Turitto (bb0255) 2015; 1
Pivkin, Richardson, Karniadakis (bb0220) 2006; 103
Rozen, Whitaker, Acosta (bb0235) 2010; 30
Hathcock (bb0115) 2006; 26
Wain, Whitty, Dalal, Holmes, Ahmed (bb0305) 2014; 67
Wain, Hammond, McPhillips, Whitty, Ahmed (bb0300) 2016; 105
Sexl (bb0260) 1930; 61
Whitty, Wain, Fsadni, Francis (bb0325) 2016; 1
Spector, Draper, Levine, Ahn (bb0275) 2006; 56
Chaniotis, Kaiktsis, Katritsis, Efstathopoulos, Pantos, Marmarellis (bb0085) 2010; 26
Kroll, Schusterman, Reece, Miller, Evans, Robb, Baldwin (bb0160) 1996; 98
Karmonik, Bismuth, Davies, Lumsden (bb0145) 2009; 5
Nesbitt, Westein, Tovar-Lopez, Tolouei, Mitchell, Fu, Carberry, Fouras, Jackson (bb0200) 2009; 15
Migliavacca, Dubini (bb0185) 2005; 3
Jesty, Yin, Perrotta, Bluestein (bb0125) 2003; 14
Sakariassen, Aarts, de Groot, Houdijk, Sixma (bb0240) 1983; 102
Sakariassen, Joss, Muggli, Kuhn, Tschopp, Sage, Baumgartner (bb0245) 1990; 10
Kroll, Hellums, McIntire, Schafer, Moake (bb0155) 1996; 88
Aletti, Gerbeau, Lombardi (bb0020) 2015; 1
Bark, Ku (bb0040) 2013; 105
Barstad, Kierulf, Sakariassen (bb0045) 1996; 75
Sakariassen, Nievelstein, Coller, Sixma (bb0250) 1986; 63
Roth (bb0230) 1991; 77
Jandali, Wu, Vega, Kovach, Serletti (bb0120) 2010; 125
Avril, Hunthley, Cusack (bb0035) 2009; 18
Murphy, Boyle (bb0190) 2010; 40
Mustard, Murphy, Rowsell, Downie (bb0195) 1962; 33
Bellidenty, Chastel, Pluvy, Pauchot, Tropet (bb0060) 2014; 59
Al-Sukhun, Lindqvist, Ashammakhi, Penttilä (bb0010) 2007; 45
Khouri (10.1016/j.mvr.2018.03.001_bb0150) 1998; 102
Whitty (10.1016/j.mvr.2018.03.001_bb0325) 2016; 1
Bendon (10.1016/j.mvr.2018.03.001_bb0065) 2016; 69
Sakariassen (10.1016/j.mvr.2018.03.001_bb0250) 1986; 63
Murphy (10.1016/j.mvr.2018.03.001_bb0190) 2010; 40
Roth (10.1016/j.mvr.2018.03.001_bb0230) 1991; 77
Tenekecioglu (10.1016/j.mvr.2018.03.001_bb0290) 2016; 12
Bark (10.1016/j.mvr.2018.03.001_bb0040) 2013; 105
Jiménez (10.1016/j.mvr.2018.03.001_bb0130) 2009; 37
Baumgartner (10.1016/j.mvr.2018.03.001_bb0055) 1985; 454
Chaniotis (10.1016/j.mvr.2018.03.001_bb0085) 2010; 26
Feldman (10.1016/j.mvr.2018.03.001_bb0095) 2002; 143
Perktold (10.1016/j.mvr.2018.03.001_bb0210) 1987; 9
Hathcock (10.1016/j.mvr.2018.03.001_bb0115) 2006; 26
Maxwell (10.1016/j.mvr.2018.03.001_bb0180) 2007; 109
Migliavacca (10.1016/j.mvr.2018.03.001_bb0185) 2005; 3
Perdikaris (10.1016/j.mvr.2018.03.001_bb0205) 2016; 28
Barstad (10.1016/j.mvr.2018.03.001_bb0050) 1994; 14
Bellidenty (10.1016/j.mvr.2018.03.001_bb0060) 2014; 59
Chernichenko (10.1016/j.mvr.2018.03.001_bb0090) 2008; 138
(10.1016/j.mvr.2018.03.001_bb0030) 2015
Jesty (10.1016/j.mvr.2018.03.001_bb0125) 2003; 14
Mustard (10.1016/j.mvr.2018.03.001_bb0195) 1962; 33
Pivkin (10.1016/j.mvr.2018.03.001_bb0220) 2006; 103
Barstad (10.1016/j.mvr.2018.03.001_bb0045) 1996; 75
Sakariassen (10.1016/j.mvr.2018.03.001_bb0240) 1983; 102
Wain (10.1016/j.mvr.2018.03.001_bb0305) 2014; 67
Sexl (10.1016/j.mvr.2018.03.001_bb0260) 1930; 61
Bossavy (10.1016/j.mvr.2018.03.001_bb0080) 1998; 79
Lowe (10.1016/j.mvr.2018.03.001_bb0170) 2003; 33
Avril (10.1016/j.mvr.2018.03.001_bb0035) 2009; 18
Rickard (10.1016/j.mvr.2018.03.001_bb0225) 2009; 153
Ahn (10.1016/j.mvr.2018.03.001_bb0005) 1994; 93
Sakariassen (10.1016/j.mvr.2018.03.001_bb0255) 2015; 1
Wain (10.1016/j.mvr.2018.03.001_bb0300) 2016; 105
Taylor (10.1016/j.mvr.2018.03.001_bb0285) 2010; 38
Ku (10.1016/j.mvr.2018.03.001_bb0165) 1985; 5
Perktold (10.1016/j.mvr.2018.03.001_bb0215) 1991; 24
Spector (10.1016/j.mvr.2018.03.001_bb0275) 2006; 56
Friedman (10.1016/j.mvr.2018.03.001_bb0100) 1981; 39
Jandali (10.1016/j.mvr.2018.03.001_bb0120) 2010; 125
Shadden (10.1016/j.mvr.2018.03.001_bb0265) 2013; 12
Gijsen (10.1016/j.mvr.2018.03.001_bb0105) 2014; 47
Grabowski (10.1016/j.mvr.2018.03.001_bb0110) 1990; 75
Kanaris (10.1016/j.mvr.2018.03.001_bb0135) 2012; 71
Beugels (10.1016/j.mvr.2018.03.001_bb0075) 2016; 69
Berti (10.1016/j.mvr.2018.03.001_bb0070) 2010
Tenekecioglu (10.1016/j.mvr.2018.03.001_bb0295) 2017; 00
Sakariassen (10.1016/j.mvr.2018.03.001_bb0245) 1990; 10
Aletti (10.1016/j.mvr.2018.03.001_bb0020) 2015; 1
Alghoul (10.1016/j.mvr.2018.03.001_bb0025) 2011; 31
Karmonik (10.1016/j.mvr.2018.03.001_bb0145) 2009; 5
Rozen (10.1016/j.mvr.2018.03.001_bb0235) 2010; 30
Kroll (10.1016/j.mvr.2018.03.001_bb0160) 1996; 98
Kroll (10.1016/j.mvr.2018.03.001_bb0155) 1996; 88
Weiss (10.1016/j.mvr.2018.03.001_bb0310) 1986; 78
White (10.1016/j.mvr.2018.03.001_bb0315) 2005
White (10.1016/j.mvr.2018.03.001_bb0320) 2009
Shen (10.1016/j.mvr.2018.03.001_bb0270) 2008; 28
Nesbitt (10.1016/j.mvr.2018.03.001_bb0200) 2009; 15
Al-Sukhun (10.1016/j.mvr.2018.03.001_bb0015) 2011; 22
Al-Sukhun (10.1016/j.mvr.2018.03.001_bb0010) 2007; 45
Martin (10.1016/j.mvr.2018.03.001_bb0175) 2014; 36
Steinman (10.1016/j.mvr.2018.03.001_bb0280) 2012
Karanasiou (10.1016/j.mvr.2018.03.001_bb0140) 2015
References_xml – volume: 47
  start-page: 39
  year: 2014
  end-page: 43
  ident: bb0105
  article-title: 3d reconstruction techniques of human coronary bifurcations for shear stress computations
  publication-title: J. Biomech.
– volume: 75
  start-page: 390
  year: 1990
  end-page: 398
  ident: bb0110
  article-title: Platelet aggregation in flowing blood at a site of injury to an endothelial cell monolayer: quantitation and real-time imaging with the TAB monoclonal antibody
  publication-title: Blood
– volume: 78
  start-page: 1072
  year: 1986
  end-page: 1082
  ident: bb0310
  article-title: Role of shear rate and platelets in promoting fibrin formation on rabbit subendothelium. Studies utilizing patients with quantitative and qualitative platelet defects
  publication-title: J. Clin. Invest.
– volume: 143
  start-page: 931
  year: 2002
  end-page: 939
  ident: bb0095
  article-title: Determination of in vivo velocity and endothelial shear stress patterns with phasic flow in human coronary arteries: a methodology to predict progression of coronary atherosclerosis
  publication-title: Am. Heart J.
– volume: 9
  start-page: 46
  year: 1987
  end-page: 53
  ident: bb0210
  article-title: Analysis of pulsatile blood flow: a carotid siphon model
  publication-title: J. Biomech. Eng.
– volume: 1
  year: 2015
  ident: bb0020
  article-title: Modeling autoregulation in three-dimensional simulations of retinal hemodynamics
  publication-title: J. Model. Ophthalmol.
– volume: 33
  start-page: 621
  year: 1962
  end-page: 647
  ident: bb0195
  article-title: Factors influencing thrombus formation in vivo
  publication-title: Am. J. Med.
– volume: 00
  start-page: 1
  year: 2017
  end-page: 8
  ident: bb0295
  article-title: Hemodynamic analysis of a novel bioresorbable scaffold in porcine coronary artery model
  publication-title: Catheter. Cardiovasc. Interv.
– volume: 18
  start-page: 9
  year: 2009
  end-page: 20
  ident: bb0035
  article-title: In vivo measurements of blood viscosity and wall stiffness in the carotid using PC-MRI
  publication-title: Rev. Eur. Mech. Numer.
– volume: 26
  start-page: 140
  year: 2010
  end-page: 156
  ident: bb0085
  article-title: Computational study of pulsatile blood flow in prototype vessel geometries of coronary segments
  publication-title: Phys. Med.
– volume: 39
  start-page: 425
  year: 1981
  end-page: 436
  ident: bb0100
  article-title: Correlation between intimal thickness and fluid shear in human arteries
  publication-title: Atherosclerosis
– volume: 22
  start-page: 883
  year: 2011
  end-page: 887
  ident: bb0015
  article-title: Microvascular stress analysis: Part II. Effects of vascular wall compliance on blood flow at the graft/recipient vessel junction
  publication-title: J. Craniofac. Surg.
– volume: 103
  start-page: 17164
  year: 2006
  end-page: 17169
  ident: bb0220
  article-title: Blood flow velocity effects and role of activation delay time on growth and form of platelet thrombi
  publication-title: Proc. Natl. Acad. Sci.
– volume: 63
  start-page: 681
  year: 1986
  end-page: 691
  ident: bb0250
  article-title: The role of platelet membrane glycoproteins Ib and IIb-IIIa in platelet adherence to human artery subendothelium
  publication-title: Br. J. Haematol.
– start-page: 1
  year: 2012
  end-page: 18
  ident: bb0280
  article-title: Assumptions in modelling of large artery hemodynamics
  publication-title: Modeling of Physiological Flows
– volume: 79
  start-page: 162
  year: 1998
  end-page: 168
  ident: bb0080
  article-title: A new method for quantifying platelet deposition in flowing native blood in an ex vivo model of human thrombogenesis
  publication-title: Thromb. Haemost.
– volume: 31
  start-page: 72
  year: 2011
  end-page: 80
  ident: bb0025
  article-title: From simple interrupted to complex spiral: a systematic review of various suture techniques for microvascular anastomoses
  publication-title: Microsurgery
– volume: 12
  start-page: 1296
  year: 2016
  ident: bb0290
  article-title: Preclinical assessment of the endothelial shear stress in porcine-based models following implantation of two different bioresorbable scaffolds: effect of scaffold design on the local haemodynamic micro-environment
  publication-title: EuroIntervention
– volume: 71
  start-page: 202
  year: 2012
  end-page: 211
  ident: bb0135
  article-title: Modeling the effect of blood viscosity on hemodynamic factors in a small bifurcated artery
  publication-title: Chem. Eng. Sci.
– volume: 5
  start-page: 293
  year: 1985
  end-page: 302
  ident: bb0165
  article-title: Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress
  publication-title: Arteriosclerosis
– volume: 109
  start-page: 566
  year: 2007
  end-page: 576
  ident: bb0180
  article-title: Identification of a 2-stage platelet aggregation process mediating shear-dependent thrombus formation
  publication-title: Blood
– volume: 454
  start-page: 162
  year: 1985
  end-page: 177
  ident: bb0055
  article-title: Factors controlling thrombus formation on arterial lesions
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 24
  start-page: 409
  year: 1991
  end-page: 420
  ident: bb0215
  article-title: Three-dimensional numerical analysis of pulsatile flow and wall shear stress in the carotid artery bifurcation
  publication-title: J. Biomech.
– volume: 98
  start-page: 459
  year: 1996
  end-page: 463
  ident: bb0160
  article-title: Choice of flap and incidence of free flap success
  publication-title: Plast. Reconstr. Surg.
– volume: 61
  start-page: 349
  year: 1930
  end-page: 362
  ident: bb0260
  article-title: Über den von EG Richardson entdeckten “Annulareffekt”
  publication-title: Z. Phys.
– volume: 33
  start-page: 455
  year: 2003
  end-page: 457
  ident: bb0170
  article-title: Virchow's triad revisited: abnormal flow
  publication-title: Pathophysiol. Haemost. Thromb.
– volume: 1
  start-page: 103
  year: 2016
  ident: bb0325
  article-title: Computational Non-Newtonian Hemodynamics of Small Vessels
  publication-title: J. Bioinforma. Comput. Sys. Biol.
– volume: 45
  start-page: 130
  year: 2007
  end-page: 137
  ident: bb0010
  article-title: Microvascular stress analysis. Part I: simulation of microvascular anastomoses using finite element analysis
  publication-title: Br. J. Oral Maxillofac. Surg.
– volume: 153
  start-page: 1
  year: 2009
  end-page: 11
  ident: bb0225
  article-title: Computational modeling of microarterial anastomoses with size discrepancy (small-to-large)
  publication-title: J. Surg. Res.
– volume: 102
  start-page: 711
  year: 1998
  end-page: 721
  ident: bb0150
  article-title: A prospective study of microvascular free-flap surgery and outcome
  publication-title: Plast. Reconstr. Surg.
– volume: 69
  start-page: 1291
  year: 2016
  end-page: 1298
  ident: bb0075
  article-title: Complications in unilateral versus bilateral deep inferior epigastric artery perforator flap breast reconstructions: a multicentre study
  publication-title: J. Plast. Reconstr. Aesthet. Surg.
– volume: 28
  start-page: 2035
  year: 2008
  end-page: 2041
  ident: bb0270
  article-title: Threshold response of initiation of blood coagulation by tissue factor in patterned microfluidic capillaries is controlled by shear rate
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 37
  start-page: 1483
  year: 2009
  ident: bb0130
  article-title: Hemodynamically driven stent strut design
  publication-title: Ann. Biomed. Eng.
– volume: 88
  start-page: 1525
  year: 1996
  end-page: 1541
  ident: bb0155
  article-title: Platelets and shear stress
  publication-title: Blood
– volume: 102
  start-page: 522
  year: 1983
  end-page: 535
  ident: bb0240
  article-title: A perfusion chamber developed to investigate platelet interaction in flowing blood with human vessel wall cells, their extracellular matrix, and purified components
  publication-title: J. Lab. Clin. Med.
– volume: 10
  start-page: 276
  year: 1990
  end-page: 284
  ident: bb0245
  article-title: Collagen type III induced ex vivo thrombogenesis in humans. Role of platelets and leukocytes in deposition of fibrin
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 3
  start-page: 235
  year: 2005
  end-page: 250
  ident: bb0185
  article-title: Computational modeling of vascular anastomoses
  publication-title: Biomech. Model. Mechanobiol.
– volume: 40
  start-page: 408
  year: 2010
  end-page: 418
  ident: bb0190
  article-title: Predicting neointimal hyperplasia in stented arteries using time-dependant computational fluid dynamics: a review
  publication-title: Comput. Biol. Med.
– volume: 36
  start-page: 1047
  year: 2014
  end-page: 1056
  ident: bb0175
  article-title: Computational fluid dynamics analysis of balloon-expandable coronary stents: influence of stent and vessel deformation
  publication-title: Med. Eng. Phys.
– volume: 105
  start-page: 141
  year: 2016
  end-page: 148
  ident: bb0300
  article-title: Microarterial anastomoses: a parameterised computational study examining the effect of suture position on intravascular blood flow
  publication-title: Microvasc. Res.
– volume: 59
  start-page: 35
  year: 2014
  end-page: 41
  ident: bb0060
  article-title: Emergency free flap in reconstruction of the lower limb. Thirty-five years of experience
  publication-title: Ann. Chir. Plast. Esthet.
– start-page: 104
  year: 2005
  end-page: 211
  ident: bb0315
  article-title: Viscous Fluid Flow
– volume: 75
  start-page: 685
  year: 1996
  end-page: 692
  ident: bb0045
  article-title: Collagen induced thrombus formation at the apex of eccentric stenoses-a time course study with non-anticoagulated human blood
  publication-title: Thromb. Haemost.
– volume: 28
  start-page: 021304
  year: 2016
  ident: bb0205
  article-title: Multiscale modeling and simulation of brain blood flow
  publication-title: Phys. Fluids
– volume: 26
  start-page: 1729
  year: 2006
  end-page: 1737
  ident: bb0115
  article-title: Flow effects on coagulation and thrombosis
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– year: 2015
  ident: bb0030
  article-title: Introduction to ANSYS CFX 16.0 - Lecture 4: Domains, Boundary Conditions and Sources
  publication-title: Tech. rep.
– volume: 138
  start-page: 614
  year: 2008
  end-page: 618
  ident: bb0090
  article-title: Arterial coupling for microvascular free tissue transfer
  publication-title: Otolaryngol. Head Neck Surg.
– volume: 56
  start-page: 365
  year: 2006
  end-page: 368
  ident: bb0275
  article-title: Routine use of microvascular coupling device for arterial anastomosis in breast reconstruction
  publication-title: Ann. Plast. Surg.
– volume: 38
  start-page: 1188
  year: 2010
  end-page: 1203
  ident: bb0285
  article-title: Image-based modeling of blood flow and vessel wall dynamics: applications, methods and future directions: Sixth International Bio-Fluid Mechanics Symposium and Workshop, March 28–30, 2008 Pasadena, California
  publication-title: Ann. Biomed. Eng.
– volume: 93
  start-page: 1481
  year: 1994
  end-page: 1484
  ident: bb0005
  article-title: Clinical experience with the 3M microvascular coupling anastomotic device in 100 free-tissue transfers
  publication-title: Plast. Reconstr. Surg.
– volume: 14
  start-page: 1984
  year: 1994
  end-page: 1991
  ident: bb0050
  article-title: A perfusion chamber developed to investigate thrombus formation and shear profiles in flowing native human blood at the apex of well-defined stenoses
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 125
  start-page: 792
  year: 2010
  end-page: 798
  ident: bb0120
  article-title: 1000 consecutive venous anastomoses using the microvascular anastomotic coupler in breast reconstruction
  publication-title: Plast. Reconstr. Surg.
– start-page: 1877
  year: 2015
  end-page: 1880
  ident: bb0140
  article-title: Modeling of blood flow through sutured micro-vascular anastomoses
  publication-title: Engineering in Medicine and Biology Society, 2015 37th Annual International Conference of the IEEE
– volume: 15
  start-page: 665
  year: 2009
  end-page: 673
  ident: bb0200
  article-title: A shear gradient–dependent platelet aggregation mechanism drives thrombus formation
  publication-title: Nat. Med.
– volume: 14
  start-page: 143
  year: 2003
  end-page: 149
  ident: bb0125
  article-title: Platelet activation in a circulating flow loop: combined effects of shear stress and exposure time
  publication-title: Platelets
– volume: 5
  start-page: 26
  year: 2009
  end-page: 33
  ident: bb0145
  article-title: Computational fluid dynamics as a tool for visualizing hemodynamic flow patterns
  publication-title: Methodist Debakey Cardiovasc. J.
– volume: 1
  year: 2015
  ident: bb0255
  article-title: The impact of blood shear rate on arterial thrombus formation
  publication-title: Future Sci.
– volume: 12
  start-page: 467
  year: 2013
  end-page: 474
  ident: bb0265
  article-title: Potential fluid mechanic pathways of platelet activation
  publication-title: Biomech. Model. Mechanobiol.
– volume: 105
  start-page: 502
  year: 2013
  end-page: 511
  ident: bb0040
  article-title: Platelet transport rates and binding kinetics at high shear over a thrombus
  publication-title: Biophys. J.
– volume: 30
  start-page: 1293
  year: 2010
  end-page: 1294
  ident: bb0235
  article-title: Venous coupler for free-flap anastomosis: outcomes of 1,000 cases
  publication-title: Anticancer Res.
– year: 2010
  ident: bb0070
  article-title: Aneurist D23v2 - Analysis Protocols Version 2
  publication-title: Tech. Rep. v1.2
– start-page: 3
  year: 2009
  end-page: 48
  ident: bb0320
  article-title: Fluid Mechanics
– volume: 67
  start-page: 951
  year: 2014
  end-page: 959
  ident: bb0305
  article-title: Blood flow through sutured and coupled microvascular anastomoses: a comparative computational study
  publication-title: J. Plast. Reconstr. Aesthet. Surg.
– volume: 77
  start-page: 5
  year: 1991
  end-page: 19
  ident: bb0230
  article-title: Developing relationships: arterial platelet adhesion, glycoprotein Ib, and leucine-rich glycoproteins
  publication-title: Blood
– volume: 69
  start-page: 888
  year: 2016
  end-page: 893
  ident: bb0065
  article-title: Success of free flap anastomoses performed within the zone of trauma in acute lower limb reconstruction
  publication-title: J. Plast. Reconstr. Aesthet. Surg.
– volume: 143
  start-page: 931
  issue: 6
  year: 2002
  ident: 10.1016/j.mvr.2018.03.001_bb0095
  article-title: Determination of in vivo velocity and endothelial shear stress patterns with phasic flow in human coronary arteries: a methodology to predict progression of coronary atherosclerosis
  publication-title: Am. Heart J.
  doi: 10.1067/mhj.2002.123118
– volume: 15
  start-page: 665
  issue: 6
  year: 2009
  ident: 10.1016/j.mvr.2018.03.001_bb0200
  article-title: A shear gradient–dependent platelet aggregation mechanism drives thrombus formation
  publication-title: Nat. Med.
  doi: 10.1038/nm.1955
– volume: 77
  start-page: 5
  issue: 1
  year: 1991
  ident: 10.1016/j.mvr.2018.03.001_bb0230
  article-title: Developing relationships: arterial platelet adhesion, glycoprotein Ib, and leucine-rich glycoproteins
  publication-title: Blood
  doi: 10.1182/blood.V77.1.5.5
– volume: 69
  start-page: 888
  issue: 7
  year: 2016
  ident: 10.1016/j.mvr.2018.03.001_bb0065
  article-title: Success of free flap anastomoses performed within the zone of trauma in acute lower limb reconstruction
  publication-title: J. Plast. Reconstr. Aesthet. Surg.
  doi: 10.1016/j.bjps.2016.02.017
– volume: 125
  start-page: 792
  issue: 3
  year: 2010
  ident: 10.1016/j.mvr.2018.03.001_bb0120
  article-title: 1000 consecutive venous anastomoses using the microvascular anastomotic coupler in breast reconstruction
  publication-title: Plast. Reconstr. Surg.
  doi: 10.1097/PRS.0b013e3181cb636d
– start-page: 1
  year: 2012
  ident: 10.1016/j.mvr.2018.03.001_bb0280
  article-title: Assumptions in modelling of large artery hemodynamics
– volume: 00
  start-page: 1
  year: 2017
  ident: 10.1016/j.mvr.2018.03.001_bb0295
  article-title: Hemodynamic analysis of a novel bioresorbable scaffold in porcine coronary artery model
  publication-title: Catheter. Cardiovasc. Interv.
– volume: 98
  start-page: 459
  issue: 3
  year: 1996
  ident: 10.1016/j.mvr.2018.03.001_bb0160
  article-title: Choice of flap and incidence of free flap success
  publication-title: Plast. Reconstr. Surg.
  doi: 10.1097/00006534-199609000-00015
– volume: 47
  start-page: 39
  issue: 1
  year: 2014
  ident: 10.1016/j.mvr.2018.03.001_bb0105
  article-title: 3d reconstruction techniques of human coronary bifurcations for shear stress computations
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.10.021
– volume: 5
  start-page: 26
  issue: 3
  year: 2009
  ident: 10.1016/j.mvr.2018.03.001_bb0145
  article-title: Computational fluid dynamics as a tool for visualizing hemodynamic flow patterns
  publication-title: Methodist Debakey Cardiovasc. J.
  doi: 10.14797/mdcj-5-3-26
– volume: 26
  start-page: 140
  issue: 3
  year: 2010
  ident: 10.1016/j.mvr.2018.03.001_bb0085
  article-title: Computational study of pulsatile blood flow in prototype vessel geometries of coronary segments
  publication-title: Phys. Med.
  doi: 10.1016/j.ejmp.2009.03.004
– volume: 26
  start-page: 1729
  issue: 8
  year: 2006
  ident: 10.1016/j.mvr.2018.03.001_bb0115
  article-title: Flow effects on coagulation and thrombosis
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/01.ATV.0000229658.76797.30
– volume: 37
  start-page: 1483
  issue: 8
  year: 2009
  ident: 10.1016/j.mvr.2018.03.001_bb0130
  article-title: Hemodynamically driven stent strut design
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-009-9719-9
– volume: 12
  start-page: 1296
  issue: 10
  year: 2016
  ident: 10.1016/j.mvr.2018.03.001_bb0290
  article-title: Preclinical assessment of the endothelial shear stress in porcine-based models following implantation of two different bioresorbable scaffolds: effect of scaffold design on the local haemodynamic micro-environment
  publication-title: EuroIntervention
  doi: 10.4244/EIJY16M05_01
– volume: 79
  start-page: 162
  issue: 1
  year: 1998
  ident: 10.1016/j.mvr.2018.03.001_bb0080
  article-title: A new method for quantifying platelet deposition in flowing native blood in an ex vivo model of human thrombogenesis
  publication-title: Thromb. Haemost.
  doi: 10.1055/s-0037-1614237
– volume: 93
  start-page: 1481
  issue: 7
  year: 1994
  ident: 10.1016/j.mvr.2018.03.001_bb0005
  article-title: Clinical experience with the 3M microvascular coupling anastomotic device in 100 free-tissue transfers
  publication-title: Plast. Reconstr. Surg.
  doi: 10.1097/00006534-199406000-00022
– volume: 1
  start-page: 103
  issue: 1
  year: 2016
  ident: 10.1016/j.mvr.2018.03.001_bb0325
  article-title: Computational Non-Newtonian Hemodynamics of Small Vessels
  publication-title: J. Bioinforma. Comput. Sys. Biol.
– volume: 102
  start-page: 711
  issue: 3
  year: 1998
  ident: 10.1016/j.mvr.2018.03.001_bb0150
  article-title: A prospective study of microvascular free-flap surgery and outcome
  publication-title: Plast. Reconstr. Surg.
  doi: 10.1097/00006534-199809010-00015
– volume: 28
  start-page: 021304
  issue: 2
  year: 2016
  ident: 10.1016/j.mvr.2018.03.001_bb0205
  article-title: Multiscale modeling and simulation of brain blood flow
  publication-title: Phys. Fluids
  doi: 10.1063/1.4941315
– volume: 40
  start-page: 408
  issue: 4
  year: 2010
  ident: 10.1016/j.mvr.2018.03.001_bb0190
  article-title: Predicting neointimal hyperplasia in stented arteries using time-dependant computational fluid dynamics: a review
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2010.02.005
– volume: 39
  start-page: 425
  issue: 3
  year: 1981
  ident: 10.1016/j.mvr.2018.03.001_bb0100
  article-title: Correlation between intimal thickness and fluid shear in human arteries
  publication-title: Atherosclerosis
  doi: 10.1016/0021-9150(81)90027-7
– volume: 3
  start-page: 235
  issue: 4
  year: 2005
  ident: 10.1016/j.mvr.2018.03.001_bb0185
  article-title: Computational modeling of vascular anastomoses
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-005-0070-2
– volume: 9
  start-page: 46
  issue: 1
  year: 1987
  ident: 10.1016/j.mvr.2018.03.001_bb0210
  article-title: Analysis of pulsatile blood flow: a carotid siphon model
  publication-title: J. Biomech. Eng.
  doi: 10.1016/0141-5425(87)90099-9
– volume: 75
  start-page: 390
  issue: 2
  year: 1990
  ident: 10.1016/j.mvr.2018.03.001_bb0110
  article-title: Platelet aggregation in flowing blood at a site of injury to an endothelial cell monolayer: quantitation and real-time imaging with the TAB monoclonal antibody
  publication-title: Blood
  doi: 10.1182/blood.V75.2.390.390
– volume: 105
  start-page: 502
  issue: 2
  year: 2013
  ident: 10.1016/j.mvr.2018.03.001_bb0040
  article-title: Platelet transport rates and binding kinetics at high shear over a thrombus
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2013.05.049
– volume: 33
  start-page: 621
  issue: 5
  year: 1962
  ident: 10.1016/j.mvr.2018.03.001_bb0195
  article-title: Factors influencing thrombus formation in vivo
  publication-title: Am. J. Med.
  doi: 10.1016/0002-9343(62)90243-7
– volume: 78
  start-page: 1072
  issue: 4
  year: 1986
  ident: 10.1016/j.mvr.2018.03.001_bb0310
  article-title: Role of shear rate and platelets in promoting fibrin formation on rabbit subendothelium. Studies utilizing patients with quantitative and qualitative platelet defects
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI112663
– volume: 30
  start-page: 1293
  issue: 4
  year: 2010
  ident: 10.1016/j.mvr.2018.03.001_bb0235
  article-title: Venous coupler for free-flap anastomosis: outcomes of 1,000 cases
  publication-title: Anticancer Res.
– volume: 18
  start-page: 9
  issue: 1
  year: 2009
  ident: 10.1016/j.mvr.2018.03.001_bb0035
  article-title: In vivo measurements of blood viscosity and wall stiffness in the carotid using PC-MRI
  publication-title: Rev. Eur. Mech. Numer.
– volume: 61
  start-page: 349
  issue: 5
  year: 1930
  ident: 10.1016/j.mvr.2018.03.001_bb0260
  article-title: Über den von EG Richardson entdeckten “Annulareffekt”
  publication-title: Z. Phys.
  doi: 10.1007/BF01340631
– volume: 36
  start-page: 1047
  issue: 8
  year: 2014
  ident: 10.1016/j.mvr.2018.03.001_bb0175
  article-title: Computational fluid dynamics analysis of balloon-expandable coronary stents: influence of stent and vessel deformation
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2014.05.011
– volume: 12
  start-page: 467
  issue: 3
  year: 2013
  ident: 10.1016/j.mvr.2018.03.001_bb0265
  article-title: Potential fluid mechanic pathways of platelet activation
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-012-0417-4
– volume: 56
  start-page: 365
  issue: 4
  year: 2006
  ident: 10.1016/j.mvr.2018.03.001_bb0275
  article-title: Routine use of microvascular coupling device for arterial anastomosis in breast reconstruction
  publication-title: Ann. Plast. Surg.
  doi: 10.1097/01.sap.0000202614.45743.34
– year: 2010
  ident: 10.1016/j.mvr.2018.03.001_bb0070
  article-title: Aneurist D23v2 - Analysis Protocols Version 2
– volume: 14
  start-page: 143
  issue: 3
  year: 2003
  ident: 10.1016/j.mvr.2018.03.001_bb0125
  article-title: Platelet activation in a circulating flow loop: combined effects of shear stress and exposure time
  publication-title: Platelets
  doi: 10.1080/0953710031000092839
– volume: 5
  start-page: 293
  issue: 3
  year: 1985
  ident: 10.1016/j.mvr.2018.03.001_bb0165
  article-title: Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress
  publication-title: Arteriosclerosis
  doi: 10.1161/01.ATV.5.3.293
– volume: 88
  start-page: 1525
  issue: 5
  year: 1996
  ident: 10.1016/j.mvr.2018.03.001_bb0155
  article-title: Platelets and shear stress
  publication-title: Blood
  doi: 10.1182/blood.V88.5.1525.1525
– volume: 75
  start-page: 685
  issue: 4
  year: 1996
  ident: 10.1016/j.mvr.2018.03.001_bb0045
  article-title: Collagen induced thrombus formation at the apex of eccentric stenoses-a time course study with non-anticoagulated human blood
  publication-title: Thromb. Haemost.
  doi: 10.1055/s-0038-1650343
– volume: 109
  start-page: 566
  issue: 2
  year: 2007
  ident: 10.1016/j.mvr.2018.03.001_bb0180
  article-title: Identification of a 2-stage platelet aggregation process mediating shear-dependent thrombus formation
  publication-title: Blood
  doi: 10.1182/blood-2006-07-028282
– volume: 138
  start-page: 614
  issue: 5
  year: 2008
  ident: 10.1016/j.mvr.2018.03.001_bb0090
  article-title: Arterial coupling for microvascular free tissue transfer
  publication-title: Otolaryngol. Head Neck Surg.
  doi: 10.1016/j.otohns.2007.12.029
– volume: 31
  start-page: 72
  issue: 1
  year: 2011
  ident: 10.1016/j.mvr.2018.03.001_bb0025
  article-title: From simple interrupted to complex spiral: a systematic review of various suture techniques for microvascular anastomoses
  publication-title: Microsurgery
  doi: 10.1002/micr.20813
– volume: 59
  start-page: 35
  issue: 1
  year: 2014
  ident: 10.1016/j.mvr.2018.03.001_bb0060
  article-title: Emergency free flap in reconstruction of the lower limb. Thirty-five years of experience
  publication-title: Ann. Chir. Plast. Esthet.
  doi: 10.1016/j.anplas.2013.08.004
– volume: 71
  start-page: 202
  year: 2012
  ident: 10.1016/j.mvr.2018.03.001_bb0135
  article-title: Modeling the effect of blood viscosity on hemodynamic factors in a small bifurcated artery
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2011.12.015
– volume: 153
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.mvr.2018.03.001_bb0225
  article-title: Computational modeling of microarterial anastomoses with size discrepancy (small-to-large)
  publication-title: J. Surg. Res.
  doi: 10.1016/j.jss.2008.02.038
– volume: 24
  start-page: 409
  issue: 6
  year: 1991
  ident: 10.1016/j.mvr.2018.03.001_bb0215
  article-title: Three-dimensional numerical analysis of pulsatile flow and wall shear stress in the carotid artery bifurcation
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(91)90029-M
– volume: 105
  start-page: 141
  year: 2016
  ident: 10.1016/j.mvr.2018.03.001_bb0300
  article-title: Microarterial anastomoses: a parameterised computational study examining the effect of suture position on intravascular blood flow
  publication-title: Microvasc. Res.
  doi: 10.1016/j.mvr.2016.02.003
– volume: 22
  start-page: 883
  issue: 3
  year: 2011
  ident: 10.1016/j.mvr.2018.03.001_bb0015
  article-title: Microvascular stress analysis: Part II. Effects of vascular wall compliance on blood flow at the graft/recipient vessel junction
  publication-title: J. Craniofac. Surg.
  doi: 10.1097/SCS.0b013e31820f8004
– volume: 103
  start-page: 17164
  issue: 46
  year: 2006
  ident: 10.1016/j.mvr.2018.03.001_bb0220
  article-title: Blood flow velocity effects and role of activation delay time on growth and form of platelet thrombi
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0608546103
– volume: 454
  start-page: 162
  issue: 1
  year: 1985
  ident: 10.1016/j.mvr.2018.03.001_bb0055
  article-title: Factors controlling thrombus formation on arterial lesions
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.1985.tb11855.x
– volume: 1
  issue: 4
  year: 2015
  ident: 10.1016/j.mvr.2018.03.001_bb0255
  article-title: The impact of blood shear rate on arterial thrombus formation
  publication-title: Future Sci.
– volume: 14
  start-page: 1984
  issue: 12
  year: 1994
  ident: 10.1016/j.mvr.2018.03.001_bb0050
  article-title: A perfusion chamber developed to investigate thrombus formation and shear profiles in flowing native human blood at the apex of well-defined stenoses
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/01.ATV.14.12.1984
– volume: 67
  start-page: 951
  issue: 7
  year: 2014
  ident: 10.1016/j.mvr.2018.03.001_bb0305
  article-title: Blood flow through sutured and coupled microvascular anastomoses: a comparative computational study
  publication-title: J. Plast. Reconstr. Aesthet. Surg.
  doi: 10.1016/j.bjps.2014.03.016
– start-page: 1877
  year: 2015
  ident: 10.1016/j.mvr.2018.03.001_bb0140
  article-title: Modeling of blood flow through sutured micro-vascular anastomoses
– start-page: 104
  year: 2005
  ident: 10.1016/j.mvr.2018.03.001_bb0315
– volume: 33
  start-page: 455
  issue: 5-6
  year: 2003
  ident: 10.1016/j.mvr.2018.03.001_bb0170
  article-title: Virchow's triad revisited: abnormal flow
  publication-title: Pathophysiol. Haemost. Thromb.
  doi: 10.1159/000083845
– volume: 28
  start-page: 2035
  issue: 11
  year: 2008
  ident: 10.1016/j.mvr.2018.03.001_bb0270
  article-title: Threshold response of initiation of blood coagulation by tissue factor in patterned microfluidic capillaries is controlled by shear rate
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.108.173930
– start-page: 3
  year: 2009
  ident: 10.1016/j.mvr.2018.03.001_bb0320
– volume: 69
  start-page: 1291
  issue: 9
  year: 2016
  ident: 10.1016/j.mvr.2018.03.001_bb0075
  article-title: Complications in unilateral versus bilateral deep inferior epigastric artery perforator flap breast reconstructions: a multicentre study
  publication-title: J. Plast. Reconstr. Aesthet. Surg.
  doi: 10.1016/j.bjps.2016.04.010
– volume: 63
  start-page: 681
  issue: 4
  year: 1986
  ident: 10.1016/j.mvr.2018.03.001_bb0250
  article-title: The role of platelet membrane glycoproteins Ib and IIb-IIIa in platelet adherence to human artery subendothelium
  publication-title: Br. J. Haematol.
  doi: 10.1111/j.1365-2141.1986.tb07552.x
– year: 2015
  ident: 10.1016/j.mvr.2018.03.001_bb0030
  article-title: Introduction to ANSYS CFX 16.0 - Lecture 4: Domains, Boundary Conditions and Sources
– volume: 1
  year: 2015
  ident: 10.1016/j.mvr.2018.03.001_bb0020
  article-title: Modeling autoregulation in three-dimensional simulations of retinal hemodynamics
  publication-title: J. Model. Ophthalmol.
– volume: 38
  start-page: 1188
  issue: 3
  year: 2010
  ident: 10.1016/j.mvr.2018.03.001_bb0285
  article-title: Image-based modeling of blood flow and vessel wall dynamics: applications, methods and future directions: Sixth International Bio-Fluid Mechanics Symposium and Workshop, March 28–30, 2008 Pasadena, California
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-010-9901-0
– volume: 10
  start-page: 276
  issue: 2
  year: 1990
  ident: 10.1016/j.mvr.2018.03.001_bb0245
  article-title: Collagen type III induced ex vivo thrombogenesis in humans. Role of platelets and leukocytes in deposition of fibrin
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/01.ATV.10.2.276
– volume: 102
  start-page: 522
  issue: 4
  year: 1983
  ident: 10.1016/j.mvr.2018.03.001_bb0240
  article-title: A perfusion chamber developed to investigate platelet interaction in flowing blood with human vessel wall cells, their extracellular matrix, and purified components
  publication-title: J. Lab. Clin. Med.
– volume: 45
  start-page: 130
  issue: 2
  year: 2007
  ident: 10.1016/j.mvr.2018.03.001_bb0010
  article-title: Microvascular stress analysis. Part I: simulation of microvascular anastomoses using finite element analysis
  publication-title: Br. J. Oral Maxillofac. Surg.
  doi: 10.1016/j.bjoms.2005.11.022
SSID ssj0011592
Score 2.2299151
Snippet Arterial thrombus formation is directly related to the mechanical shear experienced by platelets within flow. High shear strain rates (SSRs) and large shear...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 69
SubjectTerms Anastomosis
Anastomosis, Surgical
Animals
Arterial Occlusive Diseases - blood
Arterial Occlusive Diseases - diagnostic imaging
Arterial Occlusive Diseases - etiology
Arterial Occlusive Diseases - physiopathology
Blood Flow Velocity
Chickens
Computational Fluid Dynamics (CFD)
Computer Simulation
Female
Femoral Artery - diagnostic imaging
Femoral Artery - physiopathology
Femoral Artery - surgery
Humans
Hydrodynamics
Laser-Doppler Flowmetry
Microvascular
Models, Cardiovascular
Platelet Aggregation
Pulsatile
Pulsatile Flow
Regional Blood Flow
Risk Factors
Shear strain rate
Stress, Mechanical
Suture Techniques - adverse effects
Suture Techniques - instrumentation
Sutures
Sutures - adverse effects
Thrombosis - blood
Thrombosis - diagnostic imaging
Thrombosis - etiology
Thrombosis - physiopathology
Time Factors
Title Influence of microvascular sutures on shear strain rate in realistic pulsatile flow
URI https://dx.doi.org/10.1016/j.mvr.2018.03.001
https://www.ncbi.nlm.nih.gov/pubmed/29522755
https://www.proquest.com/docview/2012911717
Volume 118
WOSCitedRecordID wos000433400400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-9319
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011592
  issn: 0026-2862
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DSFeJq6jAyYj8QRKFOdSO48VG2IVnaYxoG9RLra0KSTVemEP_HjOiS9tgU2AxEtSWbnJ5-vxZ_uc7xDyKkSNtTQuPRi6lBeXIvDyKKm8oKxkxWWh8k5L7_MHfnIiJpP0tNf7bnNhljVvGnF9nU7_q6mhDYyNqbN_YW73UGiA32B0OILZ4fhHhj-2ZUe6rXOMt3PRprNOQKTbIJhhJWvMFMkxoQUIp05sQTlElHCdLmoM86nlG1W339YZ7HjjiUYryK0pf8m1JsGZP_RH_i_LN4drjbhmbmoaH_pn_mp0uJjrQgUj_9Qf--vLEky4EFazVmbzZTbCOXHGB6gw_ldqlxtgtcjIOE7rk41T1l5VF3Ox4zP7refXixCX_tclqrwyoaVr2WqYc8GHuD-NCbkwGYuQ8fAtshPyJAWfuDM8PpqM3C4UUD2jNq-_2u6Kd_GBP73oJl5z07yl4y_n98mumXjQoQbMA9KTzUNyd2xCKx6Rjw43tFV0AzfU4Ia2De1wQzVuKOKG4tnihjrcUMTNY_Lp3dH52_eeqbjhlVE6mHtFoCqupIiZGuQwkS4qwWOVQzeppAygsZQqKEIVpoHirCiiPGYVFwNWVXFeyiR6QrabtpFPCR0Ale8IbyjTOFeVQG1CpEMsBbIUFH0S2P7KSiNHj99eZzbu8DKDLs6wi7MgwtjLPnntbplqLZbbLo6tETJDJjVJzAAxt9320hosA0eLu2d5I9vFDC8KgRlwxvtkT1vSfUWYwjSGJ8n-v730Gbm3-gs9J9vzq4V8Qe6Uy_nF7OqAbPGJODDY_AHQkqt_
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+microvascular+sutures+on+shear+strain+rate+in+realistic+pulsatile+flow&rft.jtitle=Microvascular+research&rft.au=Wain%2C+R.A.J.&rft.au=Smith%2C+D.J.&rft.au=Hammond%2C+D.R.&rft.au=Whitty%2C+J.P.M.&rft.date=2018-07-01&rft.pub=Elsevier+Inc&rft.issn=0026-2862&rft.eissn=1095-9319&rft.volume=118&rft.spage=69&rft.epage=81&rft_id=info:doi/10.1016%2Fj.mvr.2018.03.001&rft.externalDocID=S0026286217302157
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-2862&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-2862&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-2862&client=summon