Influence of microvascular sutures on shear strain rate in realistic pulsatile flow
Arterial thrombus formation is directly related to the mechanical shear experienced by platelets within flow. High shear strain rates (SSRs) and large shear gradients cause platelet activation, aggregation and production of thrombus. This study, for the first time, investigates the influence of puls...
Uloženo v:
| Vydáno v: | Microvascular research Ročník 118; s. 69 - 81 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
Elsevier Inc
01.07.2018
|
| Témata: | |
| ISSN: | 0026-2862, 1095-9319, 1095-9319 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Arterial thrombus formation is directly related to the mechanical shear experienced by platelets within flow. High shear strain rates (SSRs) and large shear gradients cause platelet activation, aggregation and production of thrombus. This study, for the first time, investigates the influence of pulsatile flow on local haemodynamics within sutured microarterial anastomoses. We measured physiological arterial waveform velocities experimentally using Doppler ultrasound velocimetry, and a representative example was applied to a realistic sutured microarterial geometry. Computational geometries were created using measurements taken from sutured chicken femoral arteries. Arterial SSRs were predicted using computational fluid dynamics (CFD) software, to indicate the potential for platelet activation, deposition and thrombus formation. Predictions of steady and sinusoidal inputs were compared to analyse whether the addition of physiological pulse characteristics affects local intravascular flow characteristics. Simulations were designed to evaluate flow in pristine and hand-sutured microarterial anastomoses, each with a steady-state and sinusoidal pulse component.
The presence of sutures increased SSRmax in the anastomotic region by factors of 2.1 and 2.3 in steady-state and pulsatile flows respectively, when compared to a pristine vessel. SSR values seen in these simulations are analogous to the presence of moderate arterial stenosis.
Steady-state simulations, driven by a constant inflow velocity equal to the peak systolic velocity (PSV) of the measured pulsatile flow, underestimated SSRs by ∼ 9% in pristine, and ∼ 19% in sutured vessels compared with a realistic pulse. Sinusoidal flows, with equivalent frequency and amplitude to a measured arterial waveform, represent a slight improvement on steady-state simulations, but still SSRs are underestimated by 1–2%. We recommend using a measured arterial waveform, of the form presented here, for simulating pulsatile flows in vessels of this nature.
Under realistic pulsatile flow, shear gradients across microvascular sutures are high, of the order ∼ 7.9 × 106 m−1 s−1, which may also be associated with activation of platelets and formation of aggregates.
•Haemodynamics of pulsatile flow in microarterial anastomoses are simulated.•Arterial thrombus formation is related to Shear Strain Rate (SSR).•SSR underestimated by 19% in sutured vessels (steady vs. pulsatile flow)•SSR increased by 2.3-fold under pulsatile flow (sutured vs. pristine vessels)•High shear gradients along sutures may indicate mechanical activation of platelets. |
|---|---|
| AbstractList | Arterial thrombus formation is directly related to the mechanical shear experienced by platelets within flow. High shear strain rates (SSRs) and large shear gradients cause platelet activation, aggregation and production of thrombus. This study, for the first time, investigates the influence of pulsatile flow on local haemodynamics within sutured microarterial anastomoses. We measured physiological arterial waveform velocities experimentally using Doppler ultrasound velocimetry, and a representative example was applied to a realistic sutured microarterial geometry. Computational geometries were created using measurements taken from sutured chicken femoral arteries. Arterial SSRs were predicted using computational fluid dynamics (CFD) software, to indicate the potential for platelet activation, deposition and thrombus formation. Predictions of steady and sinusoidal inputs were compared to analyse whether the addition of physiological pulse characteristics affects local intravascular flow characteristics. Simulations were designed to evaluate flow in pristine and hand-sutured microarterial anastomoses, each with a steady-state and sinusoidal pulse component.
The presence of sutures increased SSRmax in the anastomotic region by factors of 2.1 and 2.3 in steady-state and pulsatile flows respectively, when compared to a pristine vessel. SSR values seen in these simulations are analogous to the presence of moderate arterial stenosis.
Steady-state simulations, driven by a constant inflow velocity equal to the peak systolic velocity (PSV) of the measured pulsatile flow, underestimated SSRs by ∼ 9% in pristine, and ∼ 19% in sutured vessels compared with a realistic pulse. Sinusoidal flows, with equivalent frequency and amplitude to a measured arterial waveform, represent a slight improvement on steady-state simulations, but still SSRs are underestimated by 1–2%. We recommend using a measured arterial waveform, of the form presented here, for simulating pulsatile flows in vessels of this nature.
Under realistic pulsatile flow, shear gradients across microvascular sutures are high, of the order ∼ 7.9 × 106 m−1 s−1, which may also be associated with activation of platelets and formation of aggregates.
•Haemodynamics of pulsatile flow in microarterial anastomoses are simulated.•Arterial thrombus formation is related to Shear Strain Rate (SSR).•SSR underestimated by 19% in sutured vessels (steady vs. pulsatile flow)•SSR increased by 2.3-fold under pulsatile flow (sutured vs. pristine vessels)•High shear gradients along sutures may indicate mechanical activation of platelets. Arterial thrombus formation is directly related to the mechanical shear experienced by platelets within flow. High shear strain rates (SSRs) and large shear gradients cause platelet activation, aggregation and production of thrombus. This study, for the first time, investigates the influence of pulsatile flow on local haemodynamics within sutured microarterial anastomoses. We measured physiological arterial waveform velocities experimentally using Doppler ultrasound velocimetry, and a representative example was applied to a realistic sutured microarterial geometry. Computational geometries were created using measurements taken from sutured chicken femoral arteries. Arterial SSRs were predicted using computational fluid dynamics (CFD) software, to indicate the potential for platelet activation, deposition and thrombus formation. Predictions of steady and sinusoidal inputs were compared to analyse whether the addition of physiological pulse characteristics affects local intravascular flow characteristics. Simulations were designed to evaluate flow in pristine and hand-sutured microarterial anastomoses, each with a steady-state and sinusoidal pulse component. The presence of sutures increased SSRmax in the anastomotic region by factors of 2.1 and 2.3 in steady-state and pulsatile flows respectively, when compared to a pristine vessel. SSR values seen in these simulations are analogous to the presence of moderate arterial stenosis. Steady-state simulations, driven by a constant inflow velocity equal to the peak systolic velocity (PSV) of the measured pulsatile flow, underestimated SSRs by ∼ 9% in pristine, and ∼ 19% in sutured vessels compared with a realistic pulse. Sinusoidal flows, with equivalent frequency and amplitude to a measured arterial waveform, represent a slight improvement on steady-state simulations, but still SSRs are underestimated by 1-2%. We recommend using a measured arterial waveform, of the form presented here, for simulating pulsatile flows in vessels of this nature. Under realistic pulsatile flow, shear gradients across microvascular sutures are high, of the order ∼ 7.9 × 106 m-1 s-1, which may also be associated with activation of platelets and formation of aggregates.Arterial thrombus formation is directly related to the mechanical shear experienced by platelets within flow. High shear strain rates (SSRs) and large shear gradients cause platelet activation, aggregation and production of thrombus. This study, for the first time, investigates the influence of pulsatile flow on local haemodynamics within sutured microarterial anastomoses. We measured physiological arterial waveform velocities experimentally using Doppler ultrasound velocimetry, and a representative example was applied to a realistic sutured microarterial geometry. Computational geometries were created using measurements taken from sutured chicken femoral arteries. Arterial SSRs were predicted using computational fluid dynamics (CFD) software, to indicate the potential for platelet activation, deposition and thrombus formation. Predictions of steady and sinusoidal inputs were compared to analyse whether the addition of physiological pulse characteristics affects local intravascular flow characteristics. Simulations were designed to evaluate flow in pristine and hand-sutured microarterial anastomoses, each with a steady-state and sinusoidal pulse component. The presence of sutures increased SSRmax in the anastomotic region by factors of 2.1 and 2.3 in steady-state and pulsatile flows respectively, when compared to a pristine vessel. SSR values seen in these simulations are analogous to the presence of moderate arterial stenosis. Steady-state simulations, driven by a constant inflow velocity equal to the peak systolic velocity (PSV) of the measured pulsatile flow, underestimated SSRs by ∼ 9% in pristine, and ∼ 19% in sutured vessels compared with a realistic pulse. Sinusoidal flows, with equivalent frequency and amplitude to a measured arterial waveform, represent a slight improvement on steady-state simulations, but still SSRs are underestimated by 1-2%. We recommend using a measured arterial waveform, of the form presented here, for simulating pulsatile flows in vessels of this nature. Under realistic pulsatile flow, shear gradients across microvascular sutures are high, of the order ∼ 7.9 × 106 m-1 s-1, which may also be associated with activation of platelets and formation of aggregates. Arterial thrombus formation is directly related to the mechanical shear experienced by platelets within flow. High shear strain rates (SSRs) and large shear gradients cause platelet activation, aggregation and production of thrombus. This study, for the first time, investigates the influence of pulsatile flow on local haemodynamics within sutured microarterial anastomoses. We measured physiological arterial waveform velocities experimentally using Doppler ultrasound velocimetry, and a representative example was applied to a realistic sutured microarterial geometry. Computational geometries were created using measurements taken from sutured chicken femoral arteries. Arterial SSRs were predicted using computational fluid dynamics (CFD) software, to indicate the potential for platelet activation, deposition and thrombus formation. Predictions of steady and sinusoidal inputs were compared to analyse whether the addition of physiological pulse characteristics affects local intravascular flow characteristics. Simulations were designed to evaluate flow in pristine and hand-sutured microarterial anastomoses, each with a steady-state and sinusoidal pulse component. The presence of sutures increased SSR in the anastomotic region by factors of 2.1 and 2.3 in steady-state and pulsatile flows respectively, when compared to a pristine vessel. SSR values seen in these simulations are analogous to the presence of moderate arterial stenosis. Steady-state simulations, driven by a constant inflow velocity equal to the peak systolic velocity (PSV) of the measured pulsatile flow, underestimated SSRs by ∼ 9% in pristine, and ∼ 19% in sutured vessels compared with a realistic pulse. Sinusoidal flows, with equivalent frequency and amplitude to a measured arterial waveform, represent a slight improvement on steady-state simulations, but still SSRs are underestimated by 1-2%. We recommend using a measured arterial waveform, of the form presented here, for simulating pulsatile flows in vessels of this nature. Under realistic pulsatile flow, shear gradients across microvascular sutures are high, of the order ∼ 7.9 × 10 m s , which may also be associated with activation of platelets and formation of aggregates. |
| Author | Smith, D.J. Hammond, D.R. Wain, R.A.J. Whitty, J.P.M. |
| Author_xml | – sequence: 1 givenname: R.A.J. surname: Wain fullname: Wain, R.A.J. email: richwain@doctors.org.uk organization: School of Mathematics, University of Birmingham, B15 2TT, UK – sequence: 2 givenname: D.J. surname: Smith fullname: Smith, D.J. organization: School of Mathematics, University of Birmingham, B15 2TT, UK – sequence: 3 givenname: D.R. surname: Hammond fullname: Hammond, D.R. organization: School of Medicine and Dentistry, University of Central Lancashire, Preston PR1 2HE, UK – sequence: 4 givenname: J.P.M. surname: Whitty fullname: Whitty, J.P.M. organization: Computational Mechanics Research Group, School of Engineering, University of Central Lancashire, Preston PR1 2HE, UK |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29522755$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kT1rHDEQhoU5Y58_foCboDLNrjXab1KFw3YODlzEroVWO8I6tKuLpL2Qf28tZzcpXA0Mz_vCPHNFVpObkJA7YDkwqO_3-Xj0OWfQ5qzIGYMzsgbWVVlXQLcia8Z4nfG25pfkKoR9AqDq-AW55F3FeVNVa_J7O2k746SQOk1Ho7w7yqBmKz0Nc5w9BuomGt5wWUQvzUS9jEiXidKaEI2ih9kGGY1Fqq37e0POtbQBbz_mNXl9fHjZ_Mp2z0_bzc9dpoqujlnP9NBobEvQtYS67Ie2KbUsGNeVYmmpULOea94x3UDfF7KEoWlrGIZSKqyKa_L91Hvw7s-MIYrRBIXWygndHEQSwzuABpqEfvtA537EQRy8GaX_Jz5FJKA5AUlACB61UCamk9y03GwFMLEoF3uRlC_NrWCFSEZTEv5LfpZ_lflxymDSczToRVBmecJgPKooBme-SL8DZhyagQ |
| CitedBy_id | crossref_primary_10_14326_abe_8_63 crossref_primary_10_1007_s00604_025_07239_1 crossref_primary_10_1016_j_ultrasmedbio_2023_12_019 |
| Cites_doi | 10.1067/mhj.2002.123118 10.1038/nm.1955 10.1182/blood.V77.1.5.5 10.1016/j.bjps.2016.02.017 10.1097/PRS.0b013e3181cb636d 10.1097/00006534-199609000-00015 10.1016/j.jbiomech.2013.10.021 10.14797/mdcj-5-3-26 10.1016/j.ejmp.2009.03.004 10.1161/01.ATV.0000229658.76797.30 10.1007/s10439-009-9719-9 10.4244/EIJY16M05_01 10.1055/s-0037-1614237 10.1097/00006534-199406000-00022 10.1097/00006534-199809010-00015 10.1063/1.4941315 10.1016/j.compbiomed.2010.02.005 10.1016/0021-9150(81)90027-7 10.1007/s10237-005-0070-2 10.1016/0141-5425(87)90099-9 10.1182/blood.V75.2.390.390 10.1016/j.bpj.2013.05.049 10.1016/0002-9343(62)90243-7 10.1172/JCI112663 10.1007/BF01340631 10.1016/j.medengphy.2014.05.011 10.1007/s10237-012-0417-4 10.1097/01.sap.0000202614.45743.34 10.1080/0953710031000092839 10.1161/01.ATV.5.3.293 10.1182/blood.V88.5.1525.1525 10.1055/s-0038-1650343 10.1182/blood-2006-07-028282 10.1016/j.otohns.2007.12.029 10.1002/micr.20813 10.1016/j.anplas.2013.08.004 10.1016/j.ces.2011.12.015 10.1016/j.jss.2008.02.038 10.1016/0021-9290(91)90029-M 10.1016/j.mvr.2016.02.003 10.1097/SCS.0b013e31820f8004 10.1073/pnas.0608546103 10.1111/j.1749-6632.1985.tb11855.x 10.1161/01.ATV.14.12.1984 10.1016/j.bjps.2014.03.016 10.1159/000083845 10.1161/ATVBAHA.108.173930 10.1016/j.bjps.2016.04.010 10.1111/j.1365-2141.1986.tb07552.x 10.1007/s10439-010-9901-0 10.1161/01.ATV.10.2.276 10.1016/j.bjoms.2005.11.022 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.mvr.2018.03.001 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1095-9319 |
| EndPage | 81 |
| ExternalDocumentID | 29522755 10_1016_j_mvr_2018_03_001 S0026286217302157 |
| Genre | Video-Audio Media Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/M025888/1 |
| GroupedDBID | --- --K --M .55 .GJ .~1 0R~ 123 1B1 1RT 1~. 1~5 29M 3O- 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABBQC ABFNM ABFRF ABGSF ABJNI ABLVK ABMAC ABMZM ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AHPSJ AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 DM4 DOVZS DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEB HLW HMK HMO HVGLF HZ~ IHE J1W J5H KOM LCYCR LG5 LX2 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAE SBG SDF SDG SDP SES SEW SPCBC SSH SSU SSZ T5K UHS UNMZH WUQ X7M XPP ZGI ZKB ZMT ZU3 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c396t-b0fd7fe841f6a164bd874fa302f5c01f6cef0b2f290f71bb3a41d7861dd4ace53 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000433400400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0026-2862 1095-9319 |
| IngestDate | Sun Sep 28 08:00:08 EDT 2025 Wed Feb 19 02:32:01 EST 2025 Sat Nov 29 05:35:17 EST 2025 Tue Nov 18 22:38:26 EST 2025 Fri Feb 23 02:28:10 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Sutures Microvascular Computational Fluid Dynamics (CFD) Shear strain rate Pulsatile Anastomosis |
| Language | English |
| License | Copyright © 2018 Elsevier Inc. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c396t-b0fd7fe841f6a164bd874fa302f5c01f6cef0b2f290f71bb3a41d7861dd4ace53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0026286217302157 |
| PMID | 29522755 |
| PQID | 2012911717 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2012911717 pubmed_primary_29522755 crossref_citationtrail_10_1016_j_mvr_2018_03_001 crossref_primary_10_1016_j_mvr_2018_03_001 elsevier_sciencedirect_doi_10_1016_j_mvr_2018_03_001 |
| PublicationCentury | 2000 |
| PublicationDate | July 2018 2018-07-00 20180701 |
| PublicationDateYYYYMMDD | 2018-07-01 |
| PublicationDate_xml | – month: 07 year: 2018 text: July 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Microvascular research |
| PublicationTitleAlternate | Microvasc Res |
| PublicationYear | 2018 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Ku, Giddens, Zarins, Glagov (bb0165) 1985; 5 Chernichenko, Ross, Shin, Chow, Sasaki, Ariyan (bb0090) 2008; 138 Taylor, Steinman (bb0285) 2010; 38 Maxwell, Westein, Nesbitt, Giuliano, Dopheide, Jackson (bb0180) 2007; 109 Lowe (bb0170) 2003; 33 Alghoul, Gordon, Yetman, Buncke, Siemionow, Afifi, Moon (bb0025) 2011; 31 (bb0030) 2015 Jiménez, Davies (bb0130) 2009; 37 Bossavy, Sakariassen, Barret, Boneu, Cadroy (bb0080) 1998; 79 Tenekecioglu, Torii, Bourantas, Crake, Yaping, Sotomi, Onuma, Yılmaz, Santoso, Serruys (bb0290) 2016; 12 Perktold, Resch, Peter (bb0215) 1991; 24 Barstad, Roald, Cui, Turitto, Sakariassen (bb0050) 1994; 14 Berti (bb0070) 2010 Perktold, Florian, Hilbert (bb0210) 1987; 9 Ahn, Shaw, Berns, Markowitz (bb0005) 1994; 93 Feldman, Ilegbusi, Hu, Nesto, Waxman, Stone (bb0095) 2002; 143 Steinman (bb0280) 2012 Gijsen, Schuurbiers, van de Giessen, Schaap, van der Steen, Wentzel (bb0105) 2014; 47 Perdikaris, Grinberg, Karniadakis (bb0205) 2016; 28 Weiss, Turitto, Baumgartner (bb0310) 1986; 78 Khouri, Cooley, Kunselman, Landis, Yeramian, Ingram, Natarajan, Benes, Wallemark (bb0150) 1998; 102 Shen, Kastrup, Liu, Ismagilov (bb0270) 2008; 28 Baumgartner, Sakariassen (bb0055) 1985; 454 Shadden, Hendabadi (bb0265) 2013; 12 Karanasiou, Gatsios, Lykissas, Stefanou, Rigas, Lagaris, Kostas-Agnantis, Gkiatas, Beris, Fotiadis (bb0140) 2015 Beugels, Hoekstra, Tuinder, Heuts, van der Hulst, Piatkowski (bb0075) 2016; 69 White (bb0315) 2005 White (bb0320) 2009 Bendon, Giele (bb0065) 2016; 69 Rickard, Meyer, Hudson (bb0225) 2009; 153 Al-Sukhun, Penttilä, Ashammakhi (bb0015) 2011; 22 Tenekecioglu, Torii, Bourantas, Cavalcante, Sotomi, Zeng, Collet, Crake, Abizaid, Onuma, Su, Santoso, Serruys (bb0295) 2017; 00 Friedman, Hutchins, Bargeron, Deters, Mark (bb0100) 1981; 39 Kanaris, Anastasiou, Paras (bb0135) 2012; 71 Grabowski (bb0110) 1990; 75 Martin, Murphy, Boyle (bb0175) 2014; 36 Sakariassen, Orning, Turitto (bb0255) 2015; 1 Pivkin, Richardson, Karniadakis (bb0220) 2006; 103 Rozen, Whitaker, Acosta (bb0235) 2010; 30 Hathcock (bb0115) 2006; 26 Wain, Whitty, Dalal, Holmes, Ahmed (bb0305) 2014; 67 Wain, Hammond, McPhillips, Whitty, Ahmed (bb0300) 2016; 105 Sexl (bb0260) 1930; 61 Whitty, Wain, Fsadni, Francis (bb0325) 2016; 1 Spector, Draper, Levine, Ahn (bb0275) 2006; 56 Chaniotis, Kaiktsis, Katritsis, Efstathopoulos, Pantos, Marmarellis (bb0085) 2010; 26 Kroll, Schusterman, Reece, Miller, Evans, Robb, Baldwin (bb0160) 1996; 98 Karmonik, Bismuth, Davies, Lumsden (bb0145) 2009; 5 Nesbitt, Westein, Tovar-Lopez, Tolouei, Mitchell, Fu, Carberry, Fouras, Jackson (bb0200) 2009; 15 Migliavacca, Dubini (bb0185) 2005; 3 Jesty, Yin, Perrotta, Bluestein (bb0125) 2003; 14 Sakariassen, Aarts, de Groot, Houdijk, Sixma (bb0240) 1983; 102 Sakariassen, Joss, Muggli, Kuhn, Tschopp, Sage, Baumgartner (bb0245) 1990; 10 Kroll, Hellums, McIntire, Schafer, Moake (bb0155) 1996; 88 Aletti, Gerbeau, Lombardi (bb0020) 2015; 1 Bark, Ku (bb0040) 2013; 105 Barstad, Kierulf, Sakariassen (bb0045) 1996; 75 Sakariassen, Nievelstein, Coller, Sixma (bb0250) 1986; 63 Roth (bb0230) 1991; 77 Jandali, Wu, Vega, Kovach, Serletti (bb0120) 2010; 125 Avril, Hunthley, Cusack (bb0035) 2009; 18 Murphy, Boyle (bb0190) 2010; 40 Mustard, Murphy, Rowsell, Downie (bb0195) 1962; 33 Bellidenty, Chastel, Pluvy, Pauchot, Tropet (bb0060) 2014; 59 Al-Sukhun, Lindqvist, Ashammakhi, Penttilä (bb0010) 2007; 45 Khouri (10.1016/j.mvr.2018.03.001_bb0150) 1998; 102 Whitty (10.1016/j.mvr.2018.03.001_bb0325) 2016; 1 Bendon (10.1016/j.mvr.2018.03.001_bb0065) 2016; 69 Sakariassen (10.1016/j.mvr.2018.03.001_bb0250) 1986; 63 Murphy (10.1016/j.mvr.2018.03.001_bb0190) 2010; 40 Roth (10.1016/j.mvr.2018.03.001_bb0230) 1991; 77 Tenekecioglu (10.1016/j.mvr.2018.03.001_bb0290) 2016; 12 Bark (10.1016/j.mvr.2018.03.001_bb0040) 2013; 105 Jiménez (10.1016/j.mvr.2018.03.001_bb0130) 2009; 37 Baumgartner (10.1016/j.mvr.2018.03.001_bb0055) 1985; 454 Chaniotis (10.1016/j.mvr.2018.03.001_bb0085) 2010; 26 Feldman (10.1016/j.mvr.2018.03.001_bb0095) 2002; 143 Perktold (10.1016/j.mvr.2018.03.001_bb0210) 1987; 9 Hathcock (10.1016/j.mvr.2018.03.001_bb0115) 2006; 26 Maxwell (10.1016/j.mvr.2018.03.001_bb0180) 2007; 109 Migliavacca (10.1016/j.mvr.2018.03.001_bb0185) 2005; 3 Perdikaris (10.1016/j.mvr.2018.03.001_bb0205) 2016; 28 Barstad (10.1016/j.mvr.2018.03.001_bb0050) 1994; 14 Bellidenty (10.1016/j.mvr.2018.03.001_bb0060) 2014; 59 Chernichenko (10.1016/j.mvr.2018.03.001_bb0090) 2008; 138 (10.1016/j.mvr.2018.03.001_bb0030) 2015 Jesty (10.1016/j.mvr.2018.03.001_bb0125) 2003; 14 Mustard (10.1016/j.mvr.2018.03.001_bb0195) 1962; 33 Pivkin (10.1016/j.mvr.2018.03.001_bb0220) 2006; 103 Barstad (10.1016/j.mvr.2018.03.001_bb0045) 1996; 75 Sakariassen (10.1016/j.mvr.2018.03.001_bb0240) 1983; 102 Wain (10.1016/j.mvr.2018.03.001_bb0305) 2014; 67 Sexl (10.1016/j.mvr.2018.03.001_bb0260) 1930; 61 Bossavy (10.1016/j.mvr.2018.03.001_bb0080) 1998; 79 Lowe (10.1016/j.mvr.2018.03.001_bb0170) 2003; 33 Avril (10.1016/j.mvr.2018.03.001_bb0035) 2009; 18 Rickard (10.1016/j.mvr.2018.03.001_bb0225) 2009; 153 Ahn (10.1016/j.mvr.2018.03.001_bb0005) 1994; 93 Sakariassen (10.1016/j.mvr.2018.03.001_bb0255) 2015; 1 Wain (10.1016/j.mvr.2018.03.001_bb0300) 2016; 105 Taylor (10.1016/j.mvr.2018.03.001_bb0285) 2010; 38 Ku (10.1016/j.mvr.2018.03.001_bb0165) 1985; 5 Perktold (10.1016/j.mvr.2018.03.001_bb0215) 1991; 24 Spector (10.1016/j.mvr.2018.03.001_bb0275) 2006; 56 Friedman (10.1016/j.mvr.2018.03.001_bb0100) 1981; 39 Jandali (10.1016/j.mvr.2018.03.001_bb0120) 2010; 125 Shadden (10.1016/j.mvr.2018.03.001_bb0265) 2013; 12 Gijsen (10.1016/j.mvr.2018.03.001_bb0105) 2014; 47 Grabowski (10.1016/j.mvr.2018.03.001_bb0110) 1990; 75 Kanaris (10.1016/j.mvr.2018.03.001_bb0135) 2012; 71 Beugels (10.1016/j.mvr.2018.03.001_bb0075) 2016; 69 Berti (10.1016/j.mvr.2018.03.001_bb0070) 2010 Tenekecioglu (10.1016/j.mvr.2018.03.001_bb0295) 2017; 00 Sakariassen (10.1016/j.mvr.2018.03.001_bb0245) 1990; 10 Aletti (10.1016/j.mvr.2018.03.001_bb0020) 2015; 1 Alghoul (10.1016/j.mvr.2018.03.001_bb0025) 2011; 31 Karmonik (10.1016/j.mvr.2018.03.001_bb0145) 2009; 5 Rozen (10.1016/j.mvr.2018.03.001_bb0235) 2010; 30 Kroll (10.1016/j.mvr.2018.03.001_bb0160) 1996; 98 Kroll (10.1016/j.mvr.2018.03.001_bb0155) 1996; 88 Weiss (10.1016/j.mvr.2018.03.001_bb0310) 1986; 78 White (10.1016/j.mvr.2018.03.001_bb0315) 2005 White (10.1016/j.mvr.2018.03.001_bb0320) 2009 Shen (10.1016/j.mvr.2018.03.001_bb0270) 2008; 28 Nesbitt (10.1016/j.mvr.2018.03.001_bb0200) 2009; 15 Al-Sukhun (10.1016/j.mvr.2018.03.001_bb0015) 2011; 22 Al-Sukhun (10.1016/j.mvr.2018.03.001_bb0010) 2007; 45 Martin (10.1016/j.mvr.2018.03.001_bb0175) 2014; 36 Steinman (10.1016/j.mvr.2018.03.001_bb0280) 2012 Karanasiou (10.1016/j.mvr.2018.03.001_bb0140) 2015 |
| References_xml | – volume: 47 start-page: 39 year: 2014 end-page: 43 ident: bb0105 article-title: 3d reconstruction techniques of human coronary bifurcations for shear stress computations publication-title: J. Biomech. – volume: 75 start-page: 390 year: 1990 end-page: 398 ident: bb0110 article-title: Platelet aggregation in flowing blood at a site of injury to an endothelial cell monolayer: quantitation and real-time imaging with the TAB monoclonal antibody publication-title: Blood – volume: 78 start-page: 1072 year: 1986 end-page: 1082 ident: bb0310 article-title: Role of shear rate and platelets in promoting fibrin formation on rabbit subendothelium. Studies utilizing patients with quantitative and qualitative platelet defects publication-title: J. Clin. Invest. – volume: 143 start-page: 931 year: 2002 end-page: 939 ident: bb0095 article-title: Determination of in vivo velocity and endothelial shear stress patterns with phasic flow in human coronary arteries: a methodology to predict progression of coronary atherosclerosis publication-title: Am. Heart J. – volume: 9 start-page: 46 year: 1987 end-page: 53 ident: bb0210 article-title: Analysis of pulsatile blood flow: a carotid siphon model publication-title: J. Biomech. Eng. – volume: 1 year: 2015 ident: bb0020 article-title: Modeling autoregulation in three-dimensional simulations of retinal hemodynamics publication-title: J. Model. Ophthalmol. – volume: 33 start-page: 621 year: 1962 end-page: 647 ident: bb0195 article-title: Factors influencing thrombus formation in vivo publication-title: Am. J. Med. – volume: 00 start-page: 1 year: 2017 end-page: 8 ident: bb0295 article-title: Hemodynamic analysis of a novel bioresorbable scaffold in porcine coronary artery model publication-title: Catheter. Cardiovasc. Interv. – volume: 18 start-page: 9 year: 2009 end-page: 20 ident: bb0035 article-title: In vivo measurements of blood viscosity and wall stiffness in the carotid using PC-MRI publication-title: Rev. Eur. Mech. Numer. – volume: 26 start-page: 140 year: 2010 end-page: 156 ident: bb0085 article-title: Computational study of pulsatile blood flow in prototype vessel geometries of coronary segments publication-title: Phys. Med. – volume: 39 start-page: 425 year: 1981 end-page: 436 ident: bb0100 article-title: Correlation between intimal thickness and fluid shear in human arteries publication-title: Atherosclerosis – volume: 22 start-page: 883 year: 2011 end-page: 887 ident: bb0015 article-title: Microvascular stress analysis: Part II. Effects of vascular wall compliance on blood flow at the graft/recipient vessel junction publication-title: J. Craniofac. Surg. – volume: 103 start-page: 17164 year: 2006 end-page: 17169 ident: bb0220 article-title: Blood flow velocity effects and role of activation delay time on growth and form of platelet thrombi publication-title: Proc. Natl. Acad. Sci. – volume: 63 start-page: 681 year: 1986 end-page: 691 ident: bb0250 article-title: The role of platelet membrane glycoproteins Ib and IIb-IIIa in platelet adherence to human artery subendothelium publication-title: Br. J. Haematol. – start-page: 1 year: 2012 end-page: 18 ident: bb0280 article-title: Assumptions in modelling of large artery hemodynamics publication-title: Modeling of Physiological Flows – volume: 79 start-page: 162 year: 1998 end-page: 168 ident: bb0080 article-title: A new method for quantifying platelet deposition in flowing native blood in an ex vivo model of human thrombogenesis publication-title: Thromb. Haemost. – volume: 31 start-page: 72 year: 2011 end-page: 80 ident: bb0025 article-title: From simple interrupted to complex spiral: a systematic review of various suture techniques for microvascular anastomoses publication-title: Microsurgery – volume: 12 start-page: 1296 year: 2016 ident: bb0290 article-title: Preclinical assessment of the endothelial shear stress in porcine-based models following implantation of two different bioresorbable scaffolds: effect of scaffold design on the local haemodynamic micro-environment publication-title: EuroIntervention – volume: 71 start-page: 202 year: 2012 end-page: 211 ident: bb0135 article-title: Modeling the effect of blood viscosity on hemodynamic factors in a small bifurcated artery publication-title: Chem. Eng. Sci. – volume: 5 start-page: 293 year: 1985 end-page: 302 ident: bb0165 article-title: Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress publication-title: Arteriosclerosis – volume: 109 start-page: 566 year: 2007 end-page: 576 ident: bb0180 article-title: Identification of a 2-stage platelet aggregation process mediating shear-dependent thrombus formation publication-title: Blood – volume: 454 start-page: 162 year: 1985 end-page: 177 ident: bb0055 article-title: Factors controlling thrombus formation on arterial lesions publication-title: Ann. N. Y. Acad. Sci. – volume: 24 start-page: 409 year: 1991 end-page: 420 ident: bb0215 article-title: Three-dimensional numerical analysis of pulsatile flow and wall shear stress in the carotid artery bifurcation publication-title: J. Biomech. – volume: 98 start-page: 459 year: 1996 end-page: 463 ident: bb0160 article-title: Choice of flap and incidence of free flap success publication-title: Plast. Reconstr. Surg. – volume: 61 start-page: 349 year: 1930 end-page: 362 ident: bb0260 article-title: Über den von EG Richardson entdeckten “Annulareffekt” publication-title: Z. Phys. – volume: 33 start-page: 455 year: 2003 end-page: 457 ident: bb0170 article-title: Virchow's triad revisited: abnormal flow publication-title: Pathophysiol. Haemost. Thromb. – volume: 1 start-page: 103 year: 2016 ident: bb0325 article-title: Computational Non-Newtonian Hemodynamics of Small Vessels publication-title: J. Bioinforma. Comput. Sys. Biol. – volume: 45 start-page: 130 year: 2007 end-page: 137 ident: bb0010 article-title: Microvascular stress analysis. Part I: simulation of microvascular anastomoses using finite element analysis publication-title: Br. J. Oral Maxillofac. Surg. – volume: 153 start-page: 1 year: 2009 end-page: 11 ident: bb0225 article-title: Computational modeling of microarterial anastomoses with size discrepancy (small-to-large) publication-title: J. Surg. Res. – volume: 102 start-page: 711 year: 1998 end-page: 721 ident: bb0150 article-title: A prospective study of microvascular free-flap surgery and outcome publication-title: Plast. Reconstr. Surg. – volume: 69 start-page: 1291 year: 2016 end-page: 1298 ident: bb0075 article-title: Complications in unilateral versus bilateral deep inferior epigastric artery perforator flap breast reconstructions: a multicentre study publication-title: J. Plast. Reconstr. Aesthet. Surg. – volume: 28 start-page: 2035 year: 2008 end-page: 2041 ident: bb0270 article-title: Threshold response of initiation of blood coagulation by tissue factor in patterned microfluidic capillaries is controlled by shear rate publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 37 start-page: 1483 year: 2009 ident: bb0130 article-title: Hemodynamically driven stent strut design publication-title: Ann. Biomed. Eng. – volume: 88 start-page: 1525 year: 1996 end-page: 1541 ident: bb0155 article-title: Platelets and shear stress publication-title: Blood – volume: 102 start-page: 522 year: 1983 end-page: 535 ident: bb0240 article-title: A perfusion chamber developed to investigate platelet interaction in flowing blood with human vessel wall cells, their extracellular matrix, and purified components publication-title: J. Lab. Clin. Med. – volume: 10 start-page: 276 year: 1990 end-page: 284 ident: bb0245 article-title: Collagen type III induced ex vivo thrombogenesis in humans. Role of platelets and leukocytes in deposition of fibrin publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 3 start-page: 235 year: 2005 end-page: 250 ident: bb0185 article-title: Computational modeling of vascular anastomoses publication-title: Biomech. Model. Mechanobiol. – volume: 40 start-page: 408 year: 2010 end-page: 418 ident: bb0190 article-title: Predicting neointimal hyperplasia in stented arteries using time-dependant computational fluid dynamics: a review publication-title: Comput. Biol. Med. – volume: 36 start-page: 1047 year: 2014 end-page: 1056 ident: bb0175 article-title: Computational fluid dynamics analysis of balloon-expandable coronary stents: influence of stent and vessel deformation publication-title: Med. Eng. Phys. – volume: 105 start-page: 141 year: 2016 end-page: 148 ident: bb0300 article-title: Microarterial anastomoses: a parameterised computational study examining the effect of suture position on intravascular blood flow publication-title: Microvasc. Res. – volume: 59 start-page: 35 year: 2014 end-page: 41 ident: bb0060 article-title: Emergency free flap in reconstruction of the lower limb. Thirty-five years of experience publication-title: Ann. Chir. Plast. Esthet. – start-page: 104 year: 2005 end-page: 211 ident: bb0315 article-title: Viscous Fluid Flow – volume: 75 start-page: 685 year: 1996 end-page: 692 ident: bb0045 article-title: Collagen induced thrombus formation at the apex of eccentric stenoses-a time course study with non-anticoagulated human blood publication-title: Thromb. Haemost. – volume: 28 start-page: 021304 year: 2016 ident: bb0205 article-title: Multiscale modeling and simulation of brain blood flow publication-title: Phys. Fluids – volume: 26 start-page: 1729 year: 2006 end-page: 1737 ident: bb0115 article-title: Flow effects on coagulation and thrombosis publication-title: Arterioscler. Thromb. Vasc. Biol. – year: 2015 ident: bb0030 article-title: Introduction to ANSYS CFX 16.0 - Lecture 4: Domains, Boundary Conditions and Sources publication-title: Tech. rep. – volume: 138 start-page: 614 year: 2008 end-page: 618 ident: bb0090 article-title: Arterial coupling for microvascular free tissue transfer publication-title: Otolaryngol. Head Neck Surg. – volume: 56 start-page: 365 year: 2006 end-page: 368 ident: bb0275 article-title: Routine use of microvascular coupling device for arterial anastomosis in breast reconstruction publication-title: Ann. Plast. Surg. – volume: 38 start-page: 1188 year: 2010 end-page: 1203 ident: bb0285 article-title: Image-based modeling of blood flow and vessel wall dynamics: applications, methods and future directions: Sixth International Bio-Fluid Mechanics Symposium and Workshop, March 28–30, 2008 Pasadena, California publication-title: Ann. Biomed. Eng. – volume: 93 start-page: 1481 year: 1994 end-page: 1484 ident: bb0005 article-title: Clinical experience with the 3M microvascular coupling anastomotic device in 100 free-tissue transfers publication-title: Plast. Reconstr. Surg. – volume: 14 start-page: 1984 year: 1994 end-page: 1991 ident: bb0050 article-title: A perfusion chamber developed to investigate thrombus formation and shear profiles in flowing native human blood at the apex of well-defined stenoses publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 125 start-page: 792 year: 2010 end-page: 798 ident: bb0120 article-title: 1000 consecutive venous anastomoses using the microvascular anastomotic coupler in breast reconstruction publication-title: Plast. Reconstr. Surg. – start-page: 1877 year: 2015 end-page: 1880 ident: bb0140 article-title: Modeling of blood flow through sutured micro-vascular anastomoses publication-title: Engineering in Medicine and Biology Society, 2015 37th Annual International Conference of the IEEE – volume: 15 start-page: 665 year: 2009 end-page: 673 ident: bb0200 article-title: A shear gradient–dependent platelet aggregation mechanism drives thrombus formation publication-title: Nat. Med. – volume: 14 start-page: 143 year: 2003 end-page: 149 ident: bb0125 article-title: Platelet activation in a circulating flow loop: combined effects of shear stress and exposure time publication-title: Platelets – volume: 5 start-page: 26 year: 2009 end-page: 33 ident: bb0145 article-title: Computational fluid dynamics as a tool for visualizing hemodynamic flow patterns publication-title: Methodist Debakey Cardiovasc. J. – volume: 1 year: 2015 ident: bb0255 article-title: The impact of blood shear rate on arterial thrombus formation publication-title: Future Sci. – volume: 12 start-page: 467 year: 2013 end-page: 474 ident: bb0265 article-title: Potential fluid mechanic pathways of platelet activation publication-title: Biomech. Model. Mechanobiol. – volume: 105 start-page: 502 year: 2013 end-page: 511 ident: bb0040 article-title: Platelet transport rates and binding kinetics at high shear over a thrombus publication-title: Biophys. J. – volume: 30 start-page: 1293 year: 2010 end-page: 1294 ident: bb0235 article-title: Venous coupler for free-flap anastomosis: outcomes of 1,000 cases publication-title: Anticancer Res. – year: 2010 ident: bb0070 article-title: Aneurist D23v2 - Analysis Protocols Version 2 publication-title: Tech. Rep. v1.2 – start-page: 3 year: 2009 end-page: 48 ident: bb0320 article-title: Fluid Mechanics – volume: 67 start-page: 951 year: 2014 end-page: 959 ident: bb0305 article-title: Blood flow through sutured and coupled microvascular anastomoses: a comparative computational study publication-title: J. Plast. Reconstr. Aesthet. Surg. – volume: 77 start-page: 5 year: 1991 end-page: 19 ident: bb0230 article-title: Developing relationships: arterial platelet adhesion, glycoprotein Ib, and leucine-rich glycoproteins publication-title: Blood – volume: 69 start-page: 888 year: 2016 end-page: 893 ident: bb0065 article-title: Success of free flap anastomoses performed within the zone of trauma in acute lower limb reconstruction publication-title: J. Plast. Reconstr. Aesthet. Surg. – volume: 143 start-page: 931 issue: 6 year: 2002 ident: 10.1016/j.mvr.2018.03.001_bb0095 article-title: Determination of in vivo velocity and endothelial shear stress patterns with phasic flow in human coronary arteries: a methodology to predict progression of coronary atherosclerosis publication-title: Am. Heart J. doi: 10.1067/mhj.2002.123118 – volume: 15 start-page: 665 issue: 6 year: 2009 ident: 10.1016/j.mvr.2018.03.001_bb0200 article-title: A shear gradient–dependent platelet aggregation mechanism drives thrombus formation publication-title: Nat. Med. doi: 10.1038/nm.1955 – volume: 77 start-page: 5 issue: 1 year: 1991 ident: 10.1016/j.mvr.2018.03.001_bb0230 article-title: Developing relationships: arterial platelet adhesion, glycoprotein Ib, and leucine-rich glycoproteins publication-title: Blood doi: 10.1182/blood.V77.1.5.5 – volume: 69 start-page: 888 issue: 7 year: 2016 ident: 10.1016/j.mvr.2018.03.001_bb0065 article-title: Success of free flap anastomoses performed within the zone of trauma in acute lower limb reconstruction publication-title: J. Plast. Reconstr. Aesthet. Surg. doi: 10.1016/j.bjps.2016.02.017 – volume: 125 start-page: 792 issue: 3 year: 2010 ident: 10.1016/j.mvr.2018.03.001_bb0120 article-title: 1000 consecutive venous anastomoses using the microvascular anastomotic coupler in breast reconstruction publication-title: Plast. Reconstr. Surg. doi: 10.1097/PRS.0b013e3181cb636d – start-page: 1 year: 2012 ident: 10.1016/j.mvr.2018.03.001_bb0280 article-title: Assumptions in modelling of large artery hemodynamics – volume: 00 start-page: 1 year: 2017 ident: 10.1016/j.mvr.2018.03.001_bb0295 article-title: Hemodynamic analysis of a novel bioresorbable scaffold in porcine coronary artery model publication-title: Catheter. Cardiovasc. Interv. – volume: 98 start-page: 459 issue: 3 year: 1996 ident: 10.1016/j.mvr.2018.03.001_bb0160 article-title: Choice of flap and incidence of free flap success publication-title: Plast. Reconstr. Surg. doi: 10.1097/00006534-199609000-00015 – volume: 47 start-page: 39 issue: 1 year: 2014 ident: 10.1016/j.mvr.2018.03.001_bb0105 article-title: 3d reconstruction techniques of human coronary bifurcations for shear stress computations publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.10.021 – volume: 5 start-page: 26 issue: 3 year: 2009 ident: 10.1016/j.mvr.2018.03.001_bb0145 article-title: Computational fluid dynamics as a tool for visualizing hemodynamic flow patterns publication-title: Methodist Debakey Cardiovasc. J. doi: 10.14797/mdcj-5-3-26 – volume: 26 start-page: 140 issue: 3 year: 2010 ident: 10.1016/j.mvr.2018.03.001_bb0085 article-title: Computational study of pulsatile blood flow in prototype vessel geometries of coronary segments publication-title: Phys. Med. doi: 10.1016/j.ejmp.2009.03.004 – volume: 26 start-page: 1729 issue: 8 year: 2006 ident: 10.1016/j.mvr.2018.03.001_bb0115 article-title: Flow effects on coagulation and thrombosis publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/01.ATV.0000229658.76797.30 – volume: 37 start-page: 1483 issue: 8 year: 2009 ident: 10.1016/j.mvr.2018.03.001_bb0130 article-title: Hemodynamically driven stent strut design publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-009-9719-9 – volume: 12 start-page: 1296 issue: 10 year: 2016 ident: 10.1016/j.mvr.2018.03.001_bb0290 article-title: Preclinical assessment of the endothelial shear stress in porcine-based models following implantation of two different bioresorbable scaffolds: effect of scaffold design on the local haemodynamic micro-environment publication-title: EuroIntervention doi: 10.4244/EIJY16M05_01 – volume: 79 start-page: 162 issue: 1 year: 1998 ident: 10.1016/j.mvr.2018.03.001_bb0080 article-title: A new method for quantifying platelet deposition in flowing native blood in an ex vivo model of human thrombogenesis publication-title: Thromb. Haemost. doi: 10.1055/s-0037-1614237 – volume: 93 start-page: 1481 issue: 7 year: 1994 ident: 10.1016/j.mvr.2018.03.001_bb0005 article-title: Clinical experience with the 3M microvascular coupling anastomotic device in 100 free-tissue transfers publication-title: Plast. Reconstr. Surg. doi: 10.1097/00006534-199406000-00022 – volume: 1 start-page: 103 issue: 1 year: 2016 ident: 10.1016/j.mvr.2018.03.001_bb0325 article-title: Computational Non-Newtonian Hemodynamics of Small Vessels publication-title: J. Bioinforma. Comput. Sys. Biol. – volume: 102 start-page: 711 issue: 3 year: 1998 ident: 10.1016/j.mvr.2018.03.001_bb0150 article-title: A prospective study of microvascular free-flap surgery and outcome publication-title: Plast. Reconstr. Surg. doi: 10.1097/00006534-199809010-00015 – volume: 28 start-page: 021304 issue: 2 year: 2016 ident: 10.1016/j.mvr.2018.03.001_bb0205 article-title: Multiscale modeling and simulation of brain blood flow publication-title: Phys. Fluids doi: 10.1063/1.4941315 – volume: 40 start-page: 408 issue: 4 year: 2010 ident: 10.1016/j.mvr.2018.03.001_bb0190 article-title: Predicting neointimal hyperplasia in stented arteries using time-dependant computational fluid dynamics: a review publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2010.02.005 – volume: 39 start-page: 425 issue: 3 year: 1981 ident: 10.1016/j.mvr.2018.03.001_bb0100 article-title: Correlation between intimal thickness and fluid shear in human arteries publication-title: Atherosclerosis doi: 10.1016/0021-9150(81)90027-7 – volume: 3 start-page: 235 issue: 4 year: 2005 ident: 10.1016/j.mvr.2018.03.001_bb0185 article-title: Computational modeling of vascular anastomoses publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-005-0070-2 – volume: 9 start-page: 46 issue: 1 year: 1987 ident: 10.1016/j.mvr.2018.03.001_bb0210 article-title: Analysis of pulsatile blood flow: a carotid siphon model publication-title: J. Biomech. Eng. doi: 10.1016/0141-5425(87)90099-9 – volume: 75 start-page: 390 issue: 2 year: 1990 ident: 10.1016/j.mvr.2018.03.001_bb0110 article-title: Platelet aggregation in flowing blood at a site of injury to an endothelial cell monolayer: quantitation and real-time imaging with the TAB monoclonal antibody publication-title: Blood doi: 10.1182/blood.V75.2.390.390 – volume: 105 start-page: 502 issue: 2 year: 2013 ident: 10.1016/j.mvr.2018.03.001_bb0040 article-title: Platelet transport rates and binding kinetics at high shear over a thrombus publication-title: Biophys. J. doi: 10.1016/j.bpj.2013.05.049 – volume: 33 start-page: 621 issue: 5 year: 1962 ident: 10.1016/j.mvr.2018.03.001_bb0195 article-title: Factors influencing thrombus formation in vivo publication-title: Am. J. Med. doi: 10.1016/0002-9343(62)90243-7 – volume: 78 start-page: 1072 issue: 4 year: 1986 ident: 10.1016/j.mvr.2018.03.001_bb0310 article-title: Role of shear rate and platelets in promoting fibrin formation on rabbit subendothelium. Studies utilizing patients with quantitative and qualitative platelet defects publication-title: J. Clin. Invest. doi: 10.1172/JCI112663 – volume: 30 start-page: 1293 issue: 4 year: 2010 ident: 10.1016/j.mvr.2018.03.001_bb0235 article-title: Venous coupler for free-flap anastomosis: outcomes of 1,000 cases publication-title: Anticancer Res. – volume: 18 start-page: 9 issue: 1 year: 2009 ident: 10.1016/j.mvr.2018.03.001_bb0035 article-title: In vivo measurements of blood viscosity and wall stiffness in the carotid using PC-MRI publication-title: Rev. Eur. Mech. Numer. – volume: 61 start-page: 349 issue: 5 year: 1930 ident: 10.1016/j.mvr.2018.03.001_bb0260 article-title: Über den von EG Richardson entdeckten “Annulareffekt” publication-title: Z. Phys. doi: 10.1007/BF01340631 – volume: 36 start-page: 1047 issue: 8 year: 2014 ident: 10.1016/j.mvr.2018.03.001_bb0175 article-title: Computational fluid dynamics analysis of balloon-expandable coronary stents: influence of stent and vessel deformation publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2014.05.011 – volume: 12 start-page: 467 issue: 3 year: 2013 ident: 10.1016/j.mvr.2018.03.001_bb0265 article-title: Potential fluid mechanic pathways of platelet activation publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-012-0417-4 – volume: 56 start-page: 365 issue: 4 year: 2006 ident: 10.1016/j.mvr.2018.03.001_bb0275 article-title: Routine use of microvascular coupling device for arterial anastomosis in breast reconstruction publication-title: Ann. Plast. Surg. doi: 10.1097/01.sap.0000202614.45743.34 – year: 2010 ident: 10.1016/j.mvr.2018.03.001_bb0070 article-title: Aneurist D23v2 - Analysis Protocols Version 2 – volume: 14 start-page: 143 issue: 3 year: 2003 ident: 10.1016/j.mvr.2018.03.001_bb0125 article-title: Platelet activation in a circulating flow loop: combined effects of shear stress and exposure time publication-title: Platelets doi: 10.1080/0953710031000092839 – volume: 5 start-page: 293 issue: 3 year: 1985 ident: 10.1016/j.mvr.2018.03.001_bb0165 article-title: Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress publication-title: Arteriosclerosis doi: 10.1161/01.ATV.5.3.293 – volume: 88 start-page: 1525 issue: 5 year: 1996 ident: 10.1016/j.mvr.2018.03.001_bb0155 article-title: Platelets and shear stress publication-title: Blood doi: 10.1182/blood.V88.5.1525.1525 – volume: 75 start-page: 685 issue: 4 year: 1996 ident: 10.1016/j.mvr.2018.03.001_bb0045 article-title: Collagen induced thrombus formation at the apex of eccentric stenoses-a time course study with non-anticoagulated human blood publication-title: Thromb. Haemost. doi: 10.1055/s-0038-1650343 – volume: 109 start-page: 566 issue: 2 year: 2007 ident: 10.1016/j.mvr.2018.03.001_bb0180 article-title: Identification of a 2-stage platelet aggregation process mediating shear-dependent thrombus formation publication-title: Blood doi: 10.1182/blood-2006-07-028282 – volume: 138 start-page: 614 issue: 5 year: 2008 ident: 10.1016/j.mvr.2018.03.001_bb0090 article-title: Arterial coupling for microvascular free tissue transfer publication-title: Otolaryngol. Head Neck Surg. doi: 10.1016/j.otohns.2007.12.029 – volume: 31 start-page: 72 issue: 1 year: 2011 ident: 10.1016/j.mvr.2018.03.001_bb0025 article-title: From simple interrupted to complex spiral: a systematic review of various suture techniques for microvascular anastomoses publication-title: Microsurgery doi: 10.1002/micr.20813 – volume: 59 start-page: 35 issue: 1 year: 2014 ident: 10.1016/j.mvr.2018.03.001_bb0060 article-title: Emergency free flap in reconstruction of the lower limb. Thirty-five years of experience publication-title: Ann. Chir. Plast. Esthet. doi: 10.1016/j.anplas.2013.08.004 – volume: 71 start-page: 202 year: 2012 ident: 10.1016/j.mvr.2018.03.001_bb0135 article-title: Modeling the effect of blood viscosity on hemodynamic factors in a small bifurcated artery publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2011.12.015 – volume: 153 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.mvr.2018.03.001_bb0225 article-title: Computational modeling of microarterial anastomoses with size discrepancy (small-to-large) publication-title: J. Surg. Res. doi: 10.1016/j.jss.2008.02.038 – volume: 24 start-page: 409 issue: 6 year: 1991 ident: 10.1016/j.mvr.2018.03.001_bb0215 article-title: Three-dimensional numerical analysis of pulsatile flow and wall shear stress in the carotid artery bifurcation publication-title: J. Biomech. doi: 10.1016/0021-9290(91)90029-M – volume: 105 start-page: 141 year: 2016 ident: 10.1016/j.mvr.2018.03.001_bb0300 article-title: Microarterial anastomoses: a parameterised computational study examining the effect of suture position on intravascular blood flow publication-title: Microvasc. Res. doi: 10.1016/j.mvr.2016.02.003 – volume: 22 start-page: 883 issue: 3 year: 2011 ident: 10.1016/j.mvr.2018.03.001_bb0015 article-title: Microvascular stress analysis: Part II. Effects of vascular wall compliance on blood flow at the graft/recipient vessel junction publication-title: J. Craniofac. Surg. doi: 10.1097/SCS.0b013e31820f8004 – volume: 103 start-page: 17164 issue: 46 year: 2006 ident: 10.1016/j.mvr.2018.03.001_bb0220 article-title: Blood flow velocity effects and role of activation delay time on growth and form of platelet thrombi publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0608546103 – volume: 454 start-page: 162 issue: 1 year: 1985 ident: 10.1016/j.mvr.2018.03.001_bb0055 article-title: Factors controlling thrombus formation on arterial lesions publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.1985.tb11855.x – volume: 1 issue: 4 year: 2015 ident: 10.1016/j.mvr.2018.03.001_bb0255 article-title: The impact of blood shear rate on arterial thrombus formation publication-title: Future Sci. – volume: 14 start-page: 1984 issue: 12 year: 1994 ident: 10.1016/j.mvr.2018.03.001_bb0050 article-title: A perfusion chamber developed to investigate thrombus formation and shear profiles in flowing native human blood at the apex of well-defined stenoses publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/01.ATV.14.12.1984 – volume: 67 start-page: 951 issue: 7 year: 2014 ident: 10.1016/j.mvr.2018.03.001_bb0305 article-title: Blood flow through sutured and coupled microvascular anastomoses: a comparative computational study publication-title: J. Plast. Reconstr. Aesthet. Surg. doi: 10.1016/j.bjps.2014.03.016 – start-page: 1877 year: 2015 ident: 10.1016/j.mvr.2018.03.001_bb0140 article-title: Modeling of blood flow through sutured micro-vascular anastomoses – start-page: 104 year: 2005 ident: 10.1016/j.mvr.2018.03.001_bb0315 – volume: 33 start-page: 455 issue: 5-6 year: 2003 ident: 10.1016/j.mvr.2018.03.001_bb0170 article-title: Virchow's triad revisited: abnormal flow publication-title: Pathophysiol. Haemost. Thromb. doi: 10.1159/000083845 – volume: 28 start-page: 2035 issue: 11 year: 2008 ident: 10.1016/j.mvr.2018.03.001_bb0270 article-title: Threshold response of initiation of blood coagulation by tissue factor in patterned microfluidic capillaries is controlled by shear rate publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.108.173930 – start-page: 3 year: 2009 ident: 10.1016/j.mvr.2018.03.001_bb0320 – volume: 69 start-page: 1291 issue: 9 year: 2016 ident: 10.1016/j.mvr.2018.03.001_bb0075 article-title: Complications in unilateral versus bilateral deep inferior epigastric artery perforator flap breast reconstructions: a multicentre study publication-title: J. Plast. Reconstr. Aesthet. Surg. doi: 10.1016/j.bjps.2016.04.010 – volume: 63 start-page: 681 issue: 4 year: 1986 ident: 10.1016/j.mvr.2018.03.001_bb0250 article-title: The role of platelet membrane glycoproteins Ib and IIb-IIIa in platelet adherence to human artery subendothelium publication-title: Br. J. Haematol. doi: 10.1111/j.1365-2141.1986.tb07552.x – year: 2015 ident: 10.1016/j.mvr.2018.03.001_bb0030 article-title: Introduction to ANSYS CFX 16.0 - Lecture 4: Domains, Boundary Conditions and Sources – volume: 1 year: 2015 ident: 10.1016/j.mvr.2018.03.001_bb0020 article-title: Modeling autoregulation in three-dimensional simulations of retinal hemodynamics publication-title: J. Model. Ophthalmol. – volume: 38 start-page: 1188 issue: 3 year: 2010 ident: 10.1016/j.mvr.2018.03.001_bb0285 article-title: Image-based modeling of blood flow and vessel wall dynamics: applications, methods and future directions: Sixth International Bio-Fluid Mechanics Symposium and Workshop, March 28–30, 2008 Pasadena, California publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-010-9901-0 – volume: 10 start-page: 276 issue: 2 year: 1990 ident: 10.1016/j.mvr.2018.03.001_bb0245 article-title: Collagen type III induced ex vivo thrombogenesis in humans. Role of platelets and leukocytes in deposition of fibrin publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/01.ATV.10.2.276 – volume: 102 start-page: 522 issue: 4 year: 1983 ident: 10.1016/j.mvr.2018.03.001_bb0240 article-title: A perfusion chamber developed to investigate platelet interaction in flowing blood with human vessel wall cells, their extracellular matrix, and purified components publication-title: J. Lab. Clin. Med. – volume: 45 start-page: 130 issue: 2 year: 2007 ident: 10.1016/j.mvr.2018.03.001_bb0010 article-title: Microvascular stress analysis. Part I: simulation of microvascular anastomoses using finite element analysis publication-title: Br. J. Oral Maxillofac. Surg. doi: 10.1016/j.bjoms.2005.11.022 |
| SSID | ssj0011592 |
| Score | 2.2299151 |
| Snippet | Arterial thrombus formation is directly related to the mechanical shear experienced by platelets within flow. High shear strain rates (SSRs) and large shear... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 69 |
| SubjectTerms | Anastomosis Anastomosis, Surgical Animals Arterial Occlusive Diseases - blood Arterial Occlusive Diseases - diagnostic imaging Arterial Occlusive Diseases - etiology Arterial Occlusive Diseases - physiopathology Blood Flow Velocity Chickens Computational Fluid Dynamics (CFD) Computer Simulation Female Femoral Artery - diagnostic imaging Femoral Artery - physiopathology Femoral Artery - surgery Humans Hydrodynamics Laser-Doppler Flowmetry Microvascular Models, Cardiovascular Platelet Aggregation Pulsatile Pulsatile Flow Regional Blood Flow Risk Factors Shear strain rate Stress, Mechanical Suture Techniques - adverse effects Suture Techniques - instrumentation Sutures Sutures - adverse effects Thrombosis - blood Thrombosis - diagnostic imaging Thrombosis - etiology Thrombosis - physiopathology Time Factors |
| Title | Influence of microvascular sutures on shear strain rate in realistic pulsatile flow |
| URI | https://dx.doi.org/10.1016/j.mvr.2018.03.001 https://www.ncbi.nlm.nih.gov/pubmed/29522755 https://www.proquest.com/docview/2012911717 |
| Volume | 118 |
| WOSCitedRecordID | wos000433400400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-9319 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011592 issn: 0026-2862 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DSFeJq6jAyYj8QRKFOdSO48VG2IVnaYxoG9RLra0KSTVemEP_HjOiS9tgU2AxEtSWbnJ5-vxZ_uc7xDyKkSNtTQuPRi6lBeXIvDyKKm8oKxkxWWh8k5L7_MHfnIiJpP0tNf7bnNhljVvGnF9nU7_q6mhDYyNqbN_YW73UGiA32B0OILZ4fhHhj-2ZUe6rXOMt3PRprNOQKTbIJhhJWvMFMkxoQUIp05sQTlElHCdLmoM86nlG1W339YZ7HjjiUYryK0pf8m1JsGZP_RH_i_LN4drjbhmbmoaH_pn_mp0uJjrQgUj_9Qf--vLEky4EFazVmbzZTbCOXHGB6gw_ldqlxtgtcjIOE7rk41T1l5VF3Ox4zP7refXixCX_tclqrwyoaVr2WqYc8GHuD-NCbkwGYuQ8fAtshPyJAWfuDM8PpqM3C4UUD2jNq-_2u6Kd_GBP73oJl5z07yl4y_n98mumXjQoQbMA9KTzUNyd2xCKx6Rjw43tFV0AzfU4Ia2De1wQzVuKOKG4tnihjrcUMTNY_Lp3dH52_eeqbjhlVE6mHtFoCqupIiZGuQwkS4qwWOVQzeppAygsZQqKEIVpoHirCiiPGYVFwNWVXFeyiR6QrabtpFPCR0Ale8IbyjTOFeVQG1CpEMsBbIUFH0S2P7KSiNHj99eZzbu8DKDLs6wi7MgwtjLPnntbplqLZbbLo6tETJDJjVJzAAxt9320hosA0eLu2d5I9vFDC8KgRlwxvtkT1vSfUWYwjSGJ8n-v730Gbm3-gs9J9vzq4V8Qe6Uy_nF7OqAbPGJODDY_AHQkqt_ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+microvascular+sutures+on+shear+strain+rate+in+realistic+pulsatile+flow&rft.jtitle=Microvascular+research&rft.au=Wain%2C+R.A.J.&rft.au=Smith%2C+D.J.&rft.au=Hammond%2C+D.R.&rft.au=Whitty%2C+J.P.M.&rft.date=2018-07-01&rft.pub=Elsevier+Inc&rft.issn=0026-2862&rft.eissn=1095-9319&rft.volume=118&rft.spage=69&rft.epage=81&rft_id=info:doi/10.1016%2Fj.mvr.2018.03.001&rft.externalDocID=S0026286217302157 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-2862&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-2862&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-2862&client=summon |