Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems

We consider initial value/boundary value problems for fractional diffusion-wave equation: ∂ t α u ( x , t ) = L u ( x , t ) , where 0 < α ⩽ 2 , where L is a symmetric uniformly elliptic operator with t-independent smooth coefficients. First we establish the unique existence of the weak solution a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of mathematical analysis and applications Ročník 382; číslo 1; s. 426 - 447
Hlavní autoři: Sakamoto, Kenichi, Yamamoto, Masahiro
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier Inc 01.10.2011
Elsevier
Témata:
ISSN:0022-247X, 1096-0813
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider initial value/boundary value problems for fractional diffusion-wave equation: ∂ t α u ( x , t ) = L u ( x , t ) , where 0 < α ⩽ 2 , where L is a symmetric uniformly elliptic operator with t-independent smooth coefficients. First we establish the unique existence of the weak solution and the asymptotic behavior as the time t goes to ∞ and the proofs are based on the eigenfunction expansions. Second for α ∈ ( 0 , 1 ) , we apply the eigenfunction expansions and prove (i) stability in the backward problem in time, (ii) the uniqueness in determining an initial value and (iii) the uniqueness of solution by the decay rate as t → ∞ , (iv) stability in an inverse source problem of determining t-dependent factor in the source by observation at one point over ( 0 , T ) .
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2011.04.058