Unconstrained Fuzzy C-Means Algorithm

Fuzzy C-Means algorithm (FCM) is one of the most commonly used fuzzy clustering algorithm, which uses the alternating optimization algorithm to update the membership matrix and the cluster center matrix. FCM achieves effective results in clustering tasks. However, due to many constraints, the object...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on pattern analysis and machine intelligence Vol. 47; no. 5; pp. 3440 - 3451
Main Authors: Nie, Feiping, Zhang, Runxin, Yu, Weizhong, Li, Xuelong
Format: Journal Article
Language:English
Published: United States IEEE 01.05.2025
Subjects:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Fuzzy C-Means algorithm (FCM) is one of the most commonly used fuzzy clustering algorithm, which uses the alternating optimization algorithm to update the membership matrix and the cluster center matrix. FCM achieves effective results in clustering tasks. However, due to many constraints, the objective function is inconvenient to optimize directly and is prone to converges to a suboptimal local minimum, which affects the clustering performance. In this paper, we propose a minimization problem equivalent to FCM. Firstly, we use the optimal solution when fixing the cluster center matrix to replace the membership matrix, transforming the original constrained optimization problem into an unconstrained optimization problem, thus reducing the number of variables. We then use gradient descent instead of alternating optimization to solve the model, so we call this model UC-FCM. Extensive experimental results show that UC-FCM can obtain better local minimum and achieve superior clustering performance compared to FCM under the same initialization. Moreover, UC-FCM is also competitive compared with other advanced clustering algorithms.
AbstractList Fuzzy C-Means algorithm (FCM) is one of the most commonly used fuzzy clustering algorithm, which uses the alternating optimization algorithm to update the membership matrix and the cluster center matrix. FCM achieves effective results in clustering tasks. However, due to many constraints, the objective function is inconvenient to optimize directly and is prone to converges to a suboptimal local minimum, which affects the clustering performance. In this paper, we propose a minimization problem equivalent to FCM. Firstly, we use the optimal solution when fixing the cluster center matrix to replace the membership matrix, transforming the original constrained optimization problem into an unconstrained optimization problem, thus reducing the number of variables. We then use gradient descent instead of alternating optimization to solve the model, so we call this model UC-FCM. Extensive experimental results show that UC-FCM can obtain better local minimum and achieve superior clustering performance compared to FCM under the same initialization. Moreover, UC-FCM is also competitive compared with other advanced clustering algorithms.
Fuzzy C-Means algorithm (FCM) is one of the most commonly used fuzzy clustering algorithm, which uses the alternating optimization algorithm to update the membership matrix and the cluster center matrix. FCM achieves effective results in clustering tasks. However, due to many constraints, the objective function is inconvenient to optimize directly and is prone to converges to a suboptimal local minimum, which affects the clustering performance. In this paper, we propose a minimization problem equivalent to FCM. Firstly, we use the optimal solution when fixing the cluster center matrix to replace the membership matrix, transforming the original constrained optimization problem into an unconstrained optimization problem, thus reducing the number of variables. We then use gradient descent instead of alternating optimization to solve the model, so we call this model UC-FCM. Extensive experimental results show that UC-FCM can obtain better local minimum and achieve superior clustering performance compared to FCM under the same initialization. Moreover, UC-FCM is also competitive compared with other advanced clustering algorithms.Fuzzy C-Means algorithm (FCM) is one of the most commonly used fuzzy clustering algorithm, which uses the alternating optimization algorithm to update the membership matrix and the cluster center matrix. FCM achieves effective results in clustering tasks. However, due to many constraints, the objective function is inconvenient to optimize directly and is prone to converges to a suboptimal local minimum, which affects the clustering performance. In this paper, we propose a minimization problem equivalent to FCM. Firstly, we use the optimal solution when fixing the cluster center matrix to replace the membership matrix, transforming the original constrained optimization problem into an unconstrained optimization problem, thus reducing the number of variables. We then use gradient descent instead of alternating optimization to solve the model, so we call this model UC-FCM. Extensive experimental results show that UC-FCM can obtain better local minimum and achieve superior clustering performance compared to FCM under the same initialization. Moreover, UC-FCM is also competitive compared with other advanced clustering algorithms.
Author Yu, Weizhong
Li, Xuelong
Zhang, Runxin
Nie, Feiping
Author_xml – sequence: 1
  givenname: Feiping
  orcidid: 0000-0002-0871-6519
  surname: Nie
  fullname: Nie, Feiping
  email: feipingnie@gmail.com
  organization: School of Artificial Intelligence, Optics and Electronics (iOPEN), Key Laboratory of Intelligent Interaction and Applications (Ministry of Industry and Information Technology), Northwestern Polytechnical University, Xi'an, Shaanxi, China
– sequence: 2
  givenname: Runxin
  orcidid: 0000-0001-6016-6895
  surname: Zhang
  fullname: Zhang, Runxin
  email: zrunxin@mail.nwpu.edu.cn
  organization: School of Artificial Intelligence, Optics and Electronics (iOPEN), Key Laboratory of Intelligent Interaction and Applications (Ministry of Industry and Information Technology), Northwestern Polytechnical University, Xi'an, Shaanxi, China
– sequence: 3
  givenname: Weizhong
  orcidid: 0000-0003-2906-8191
  surname: Yu
  fullname: Yu, Weizhong
  email: yuwz05@mail.xjtu.edu.cn
  organization: School of Artificial Intelligence, Optics and Electronics (iOPEN), Key Laboratory of Intelligent Interaction and Applications (Ministry of Industry and Information Technology), Northwestern Polytechnical University, Xi'an, Shaanxi, China
– sequence: 4
  givenname: Xuelong
  orcidid: 0000-0003-2924-946X
  surname: Li
  fullname: Li, Xuelong
  email: li@nwpu.edu.cn
  organization: Institute of Artificial Intelligence (TeleAI), China Telecom Corp. Ltd., Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40031209$$D View this record in MEDLINE/PubMed
BookMark eNp9kD1PwzAQQC0Eoh_wBxBCXZBYUs52_JGxqihUagVDO1uOc4GgxClxOrS_npYWhBiYbnnvTvd65NTXHgm5ojCkFJL7xctoPh0yYGLIBWdcqBPSZVRClLCEnZIuUMkirZnukF4I7wA0FsDPSScG4JRB0iW3S-9qH9rGFh6zwWS93W4G42iO1ofBqHytm6J9qy7IWW7LgJfH2SfLycNi_BTNnh-n49EscjyRbaQZxzRF5CCZdSrPY2tjJjMQ2qUQK9QotVaYUuWsdCm1MlFCZo5RVNYi75O7w95VU3-sMbSmKoLDsrQe63UwnCoeA9eC79CbI7pOK8zMqikq22zM92s7gB0A19QhNJj_IBTMvp_56mf2_cyx307SfyRXtLYtar8vVP6vXh_UAhF_3dKx5rHgn5agfDU
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_ins_2025_122356
crossref_primary_10_1109_TFUZZ_2025_3581679
Cites_doi 10.1609/aaai.v35i8.16854
10.1109/TKDE.2020.2995748
10.1007/978-3-642-96303-2_3
10.1007/BF00337288
10.1145/1273496.1273562
10.1109/TFUZZ.2012.2201485
10.1002/wics.101
10.1109/TPAMI.2014.2303095
10.1109/afgr.1998.670949
10.1016/j.asoc.2012.12.022
10.1109/TCYB.2021.3099503
10.1109/LSP.2003.821649
10.1109/TFUZZ.2013.2286993
10.1016/j.procs.2015.06.090
10.1016/0098-3004(84)90020-7
10.1109/TCYB.2016.2627686
10.1016/S0893-6080(98)00116-6
10.1109/TCYB.2024.3450474
10.1109/TKDE.2008.88
10.1016/j.patcog.2017.05.017
10.2139/ssrn.3900990
10.1016/S0019-9958(69)90591-9
10.1016/j.fss.2019.03.017
10.1109/TPAMI.2003.1240115
10.1109/TPDS.2020.2975189
10.1109/3477.809032
10.1007/978-0-387-73003-5_196
10.1109/TIP.2012.2219547
10.1109/TFUZZ.2017.2692203
10.1016/j.patcog.2009.11.015
10.1109/TFUZZ.2002.805901
10.1609/aaai.v35i10.17051
10.1016/j.patcog.2014.01.017
10.1109/TPAMI.1986.4767778
10.1109/JAS.2020.1003420
10.1609/aaai.v35i11.17128
10.1109/TCYB.2022.3217897
10.1145/3269206.3269237
10.1038/44565
10.1109/TFUZZ.2021.3081990
10.1007/978-94-009-8543-8_2
10.1145/235968.233324
10.1109/TFUZZ.2021.3074299
10.1109/PROC.1979.11327
10.1109/TFUZZ.2023.3262256
10.1007/s40815-019-00740-9
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TPAMI.2025.3532357
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 3451
ExternalDocumentID 40031209
10_1109_TPAMI_2025_3532357
10848345
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62176212; 61936014; 61772427
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: G2019KY0501
  funderid: 10.13039/501100012226
– fundername: Natural Science Basic Research Program of Shaanxi
  grantid: 2021JM-071
– fundername: National Key Research and Development Program of China
  grantid: 2018AAA0101902
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYXX
CITATION
NPM
RIG
7X8
ID FETCH-LOGICAL-c396t-823ebbee3062ac7ff4aa426d058cb047e8e6887eb17ca6cb1a69756dc21e7aae3
IEDL.DBID RIE
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001465416300019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Thu Oct 02 21:06:49 EDT 2025
Mon Jul 21 05:20:23 EDT 2025
Tue Nov 18 22:34:45 EST 2025
Sat Nov 29 08:00:44 EST 2025
Wed Aug 27 02:04:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-823ebbee3062ac7ff4aa426d058cb047e8e6887eb17ca6cb1a69756dc21e7aae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6016-6895
0000-0003-2924-946X
0000-0002-0871-6519
0000-0003-2906-8191
PMID 40031209
PQID 3173403853
PQPubID 23479
PageCount 12
ParticipantIDs pubmed_primary_40031209
ieee_primary_10848345
proquest_miscellaneous_3173403853
crossref_primary_10_1109_TPAMI_2025_3532357
crossref_citationtrail_10_1109_TPAMI_2025_3532357
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref52
ref10
Zhang (ref35)
ref17
ref16
ref18
ref51
ref50
Xu (ref37)
ref46
ref45
ref48
ref42
ref41
ref44
ref43
ref49
ref8
ref7
Nie (ref19)
ref4
ref3
ref6
MacQueen (ref11)
ref5
ref40
ref34
Ester (ref9)
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Ruder (ref47) 2016
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref10
  doi: 10.1609/aaai.v35i8.16854
– ident: ref39
  doi: 10.1109/TKDE.2020.2995748
– ident: ref5
  doi: 10.1007/978-3-642-96303-2_3
– ident: ref16
  doi: 10.1007/BF00337288
– start-page: 1565
  volume-title: Proc. Twenty-Third Int. Joint Conf. Artif. Intell.
  ident: ref19
  article-title: Adaptive loss minimization for semi-supervised elastic embedding
– ident: ref8
  doi: 10.1145/1273496.1273562
– ident: ref27
  doi: 10.1109/TFUZZ.2012.2201485
– ident: ref40
  doi: 10.1002/wics.101
– ident: ref3
  doi: 10.1109/TPAMI.2014.2303095
– ident: ref48
  doi: 10.1109/afgr.1998.670949
– start-page: 122
  volume-title: Proc. Int. Conf. Artif. Neural Netw.
  ident: ref35
  article-title: Kernel-based fuzzy and possibilistic C-means clustering
– ident: ref33
  doi: 10.1016/j.asoc.2012.12.022
– ident: ref38
  doi: 10.1109/TCYB.2021.3099503
– ident: ref46
  doi: 10.1109/LSP.2003.821649
– ident: ref28
  doi: 10.1109/TFUZZ.2013.2286993
– ident: ref2
  doi: 10.1016/j.procs.2015.06.090
– ident: ref18
  doi: 10.1016/0098-3004(84)90020-7
– ident: ref26
  doi: 10.1109/TCYB.2016.2627686
– ident: ref44
  doi: 10.1016/S0893-6080(98)00116-6
– ident: ref52
  doi: 10.1109/TCYB.2024.3450474
– ident: ref31
  doi: 10.1109/TKDE.2008.88
– ident: ref30
  doi: 10.1016/j.patcog.2017.05.017
– ident: ref49
  doi: 10.2139/ssrn.3900990
– ident: ref17
  doi: 10.1016/S0019-9958(69)90591-9
– ident: ref43
  doi: 10.1016/j.fss.2019.03.017
– ident: ref4
  doi: 10.1109/TPAMI.2003.1240115
– ident: ref45
  doi: 10.1109/TPDS.2020.2975189
– ident: ref7
  doi: 10.1109/3477.809032
– ident: ref15
  doi: 10.1007/978-0-387-73003-5_196
– ident: ref20
  doi: 10.1109/TIP.2012.2219547
– ident: ref25
  doi: 10.1109/TFUZZ.2017.2692203
– ident: ref34
  doi: 10.1016/j.patcog.2009.11.015
– ident: ref32
  doi: 10.1109/TFUZZ.2002.805901
– start-page: 281
  volume-title: Proc. 5th Berkeley Symp. Math. Statist. Probability
  ident: ref11
  article-title: Classification and analysis of multivariate observations
– ident: ref14
  doi: 10.1609/aaai.v35i10.17051
– ident: ref24
  doi: 10.1016/j.patcog.2014.01.017
– ident: ref29
  doi: 10.1109/TPAMI.1986.4767778
– start-page: 2224
  volume-title: Proc. Int. Joint Conf. Artif. Intell.
  ident: ref37
  article-title: Robust and sparse fuzzy K-means clustering
– ident: ref36
  doi: 10.1109/JAS.2020.1003420
– ident: ref12
  doi: 10.1609/aaai.v35i11.17128
– ident: ref23
  doi: 10.1109/TCYB.2022.3217897
– ident: ref21
  doi: 10.1145/3269206.3269237
– ident: ref50
  doi: 10.1038/44565
– ident: ref41
  doi: 10.1109/TFUZZ.2021.3081990
– ident: ref6
  doi: 10.1007/978-94-009-8543-8_2
– year: 2016
  ident: ref47
  article-title: An overview of gradient descent optimization algorithms
– ident: ref13
  doi: 10.1145/235968.233324
– ident: ref42
  doi: 10.1109/TFUZZ.2021.3074299
– ident: ref1
  doi: 10.1109/PROC.1979.11327
– volume-title: Proc. Int. Conf. Knowl. Discov. Data Mining
  ident: ref9
  article-title: Density-based spatial clustering of applications with noise
– ident: ref51
  doi: 10.1109/TFUZZ.2023.3262256
– ident: ref22
  doi: 10.1007/s40815-019-00740-9
SSID ssj0014503
Score 2.5098784
Snippet Fuzzy C-Means algorithm (FCM) is one of the most commonly used fuzzy clustering algorithm, which uses the alternating optimization algorithm to update the...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3440
SubjectTerms Clustering algorithms
Convergence
Fuzzy C-Means
gradient descent
Linear programming
local minimum
membership matrix
Noise
Optimization
Sensitivity
Symbols
Time complexity
Vectors
Title Unconstrained Fuzzy C-Means Algorithm
URI https://ieeexplore.ieee.org/document/10848345
https://www.ncbi.nlm.nih.gov/pubmed/40031209
https://www.proquest.com/docview/3173403853
Volume 47
WOSCitedRecordID wos001465416300019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5sEakHq_VVHyWCniTa5rGPYykWPSgeLPQWNpuJFmoqfQj217uzSUovFSSXHHaTZR473-zszABcYywTGaTSTUNUbpDGzDVSIlxEkSQqVQwxsM0m-MuLGA7la5GsbnNhENFePsM7erWx_GSiF3RUZjRc0NlXWIEK5yxP1lqFDILQtkE2EMaouPEjygyZtrx_e-0-Pxlf0Avv_NCnAi812AlInj26iLhmkGyHlc1g0xqdfv2fy92HvQJdOt1cHA5gC7MG1MvODU6hyA3YXStDeAg3g0wTTKRuEZg4_cVy-eP03Gc0Zszpjt8n09H84_MIBv2Ht96jW7RPcLUv2dwVno9xjGicAk9pnqaBUsYeJ-1Q6LgdcBTIzBZjNmuuFdNxRzHJQ5Zor4NcKfSPoZpNMjwFR6XMGHZJ6Mk8vlA81Jp5ghAX-YhN6JQ0jHRRW5wWPY6sj9GWkWVBRCyIChY04XY15yuvrPHn6CMi8NrInLZNuCp5FRnFoGiHynCymEUGGPkBxT39JpzkTFzNLnl_tuGr51Cjn-cXGy-gOp8u8BK29fd8NJu2jPQNRctK3y8Pr9Ga
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB584ePg-7E-K-hJqt02SZPjIi6K7uJhBW8lTacqaFfWXUF_vZm0XfaiIL30kISQmcl8k3kBnGCqMsVy5ecctc_yVPiWS6SPKLNM51ogMtdsIu525eOjuq-S1V0uDCK64DM8p1_ny8_6ZkRPZVbCJb198WmY5YyFQZmuNXYaMO4aIVsQY4XcWhJ1jkygLnr3rc6NtQZDfh7xiEq8LMI8I44OKRRxQiW5Hiu_w02ndtor_9zwKixX-NJrlQyxBlNYrMNK3bvBq0R5HZYmChFuwOlDYQgoUr8IzLz26Pv7y7v0O2gVmdd6feoPXobPb5vw0L7qXV77VQMF30RKDH0ZRpimiNYsCLWJ85xpbTVyFnBp0oDFKFHYS8Ze17HRwqRNLVTMRWbCJsZaY7QFM0W_wB3wdC6saleEn-wXSR1zY0QoCXORldiAZn2Giamqi9OmXxNnZQQqcSRIiARJRYIGnI3nvJe1Nf4cvUkHPDGyPNsGHNe0SqxokL9DF9gffSQWGkWMPJ9RA7ZLIo5n17Tf_WXVI1i47nXukrub7u0eLNJGyjDHfZgZDkZ4AHPmc_jyMTh0PPgDNSLT-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unconstrained+Fuzzy+C-Means+Algorithm&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Nie%2C+Feiping&rft.au=Zhang%2C+Runxin&rft.au=Yu%2C+Weizhong&rft.au=Li%2C+Xuelong&rft.date=2025-05-01&rft.issn=0162-8828&rft.eissn=2160-9292&rft.volume=47&rft.issue=5&rft.spage=3440&rft.epage=3451&rft_id=info:doi/10.1109%2FTPAMI.2025.3532357&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TPAMI_2025_3532357
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon