Unconstrained Fuzzy C-Means Algorithm
Fuzzy C-Means algorithm (FCM) is one of the most commonly used fuzzy clustering algorithm, which uses the alternating optimization algorithm to update the membership matrix and the cluster center matrix. FCM achieves effective results in clustering tasks. However, due to many constraints, the object...
Uložené v:
| Vydané v: | IEEE transactions on pattern analysis and machine intelligence Ročník 47; číslo 5; s. 3440 - 3451 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.05.2025
|
| Predmet: | |
| ISSN: | 0162-8828, 1939-3539, 2160-9292, 1939-3539 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Fuzzy C-Means algorithm (FCM) is one of the most commonly used fuzzy clustering algorithm, which uses the alternating optimization algorithm to update the membership matrix and the cluster center matrix. FCM achieves effective results in clustering tasks. However, due to many constraints, the objective function is inconvenient to optimize directly and is prone to converges to a suboptimal local minimum, which affects the clustering performance. In this paper, we propose a minimization problem equivalent to FCM. Firstly, we use the optimal solution when fixing the cluster center matrix to replace the membership matrix, transforming the original constrained optimization problem into an unconstrained optimization problem, thus reducing the number of variables. We then use gradient descent instead of alternating optimization to solve the model, so we call this model UC-FCM. Extensive experimental results show that UC-FCM can obtain better local minimum and achieve superior clustering performance compared to FCM under the same initialization. Moreover, UC-FCM is also competitive compared with other advanced clustering algorithms. |
|---|---|
| AbstractList | Fuzzy C-Means algorithm (FCM) is one of the most commonly used fuzzy clustering algorithm, which uses the alternating optimization algorithm to update the membership matrix and the cluster center matrix. FCM achieves effective results in clustering tasks. However, due to many constraints, the objective function is inconvenient to optimize directly and is prone to converges to a suboptimal local minimum, which affects the clustering performance. In this paper, we propose a minimization problem equivalent to FCM. Firstly, we use the optimal solution when fixing the cluster center matrix to replace the membership matrix, transforming the original constrained optimization problem into an unconstrained optimization problem, thus reducing the number of variables. We then use gradient descent instead of alternating optimization to solve the model, so we call this model UC-FCM. Extensive experimental results show that UC-FCM can obtain better local minimum and achieve superior clustering performance compared to FCM under the same initialization. Moreover, UC-FCM is also competitive compared with other advanced clustering algorithms. Fuzzy C-Means algorithm (FCM) is one of the most commonly used fuzzy clustering algorithm, which uses the alternating optimization algorithm to update the membership matrix and the cluster center matrix. FCM achieves effective results in clustering tasks. However, due to many constraints, the objective function is inconvenient to optimize directly and is prone to converges to a suboptimal local minimum, which affects the clustering performance. In this paper, we propose a minimization problem equivalent to FCM. Firstly, we use the optimal solution when fixing the cluster center matrix to replace the membership matrix, transforming the original constrained optimization problem into an unconstrained optimization problem, thus reducing the number of variables. We then use gradient descent instead of alternating optimization to solve the model, so we call this model UC-FCM. Extensive experimental results show that UC-FCM can obtain better local minimum and achieve superior clustering performance compared to FCM under the same initialization. Moreover, UC-FCM is also competitive compared with other advanced clustering algorithms.Fuzzy C-Means algorithm (FCM) is one of the most commonly used fuzzy clustering algorithm, which uses the alternating optimization algorithm to update the membership matrix and the cluster center matrix. FCM achieves effective results in clustering tasks. However, due to many constraints, the objective function is inconvenient to optimize directly and is prone to converges to a suboptimal local minimum, which affects the clustering performance. In this paper, we propose a minimization problem equivalent to FCM. Firstly, we use the optimal solution when fixing the cluster center matrix to replace the membership matrix, transforming the original constrained optimization problem into an unconstrained optimization problem, thus reducing the number of variables. We then use gradient descent instead of alternating optimization to solve the model, so we call this model UC-FCM. Extensive experimental results show that UC-FCM can obtain better local minimum and achieve superior clustering performance compared to FCM under the same initialization. Moreover, UC-FCM is also competitive compared with other advanced clustering algorithms. |
| Author | Yu, Weizhong Li, Xuelong Zhang, Runxin Nie, Feiping |
| Author_xml | – sequence: 1 givenname: Feiping orcidid: 0000-0002-0871-6519 surname: Nie fullname: Nie, Feiping email: feipingnie@gmail.com organization: School of Artificial Intelligence, Optics and Electronics (iOPEN), Key Laboratory of Intelligent Interaction and Applications (Ministry of Industry and Information Technology), Northwestern Polytechnical University, Xi'an, Shaanxi, China – sequence: 2 givenname: Runxin orcidid: 0000-0001-6016-6895 surname: Zhang fullname: Zhang, Runxin email: zrunxin@mail.nwpu.edu.cn organization: School of Artificial Intelligence, Optics and Electronics (iOPEN), Key Laboratory of Intelligent Interaction and Applications (Ministry of Industry and Information Technology), Northwestern Polytechnical University, Xi'an, Shaanxi, China – sequence: 3 givenname: Weizhong orcidid: 0000-0003-2906-8191 surname: Yu fullname: Yu, Weizhong email: yuwz05@mail.xjtu.edu.cn organization: School of Artificial Intelligence, Optics and Electronics (iOPEN), Key Laboratory of Intelligent Interaction and Applications (Ministry of Industry and Information Technology), Northwestern Polytechnical University, Xi'an, Shaanxi, China – sequence: 4 givenname: Xuelong orcidid: 0000-0003-2924-946X surname: Li fullname: Li, Xuelong email: li@nwpu.edu.cn organization: Institute of Artificial Intelligence (TeleAI), China Telecom Corp. Ltd., Beijing, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40031209$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kD1PwzAQQC0Eoh_wBxBCXZBYUs52_JGxqihUagVDO1uOc4GgxClxOrS_npYWhBiYbnnvTvd65NTXHgm5ojCkFJL7xctoPh0yYGLIBWdcqBPSZVRClLCEnZIuUMkirZnukF4I7wA0FsDPSScG4JRB0iW3S-9qH9rGFh6zwWS93W4G42iO1ofBqHytm6J9qy7IWW7LgJfH2SfLycNi_BTNnh-n49EscjyRbaQZxzRF5CCZdSrPY2tjJjMQ2qUQK9QotVaYUuWsdCm1MlFCZo5RVNYi75O7w95VU3-sMbSmKoLDsrQe63UwnCoeA9eC79CbI7pOK8zMqikq22zM92s7gB0A19QhNJj_IBTMvp_56mf2_cyx307SfyRXtLYtar8vVP6vXh_UAhF_3dKx5rHgn5agfDU |
| CODEN | ITPIDJ |
| CitedBy_id | crossref_primary_10_1016_j_ins_2025_122356 crossref_primary_10_1109_TFUZZ_2025_3581679 |
| Cites_doi | 10.1609/aaai.v35i8.16854 10.1109/TKDE.2020.2995748 10.1007/978-3-642-96303-2_3 10.1007/BF00337288 10.1145/1273496.1273562 10.1109/TFUZZ.2012.2201485 10.1002/wics.101 10.1109/TPAMI.2014.2303095 10.1109/afgr.1998.670949 10.1016/j.asoc.2012.12.022 10.1109/TCYB.2021.3099503 10.1109/LSP.2003.821649 10.1109/TFUZZ.2013.2286993 10.1016/j.procs.2015.06.090 10.1016/0098-3004(84)90020-7 10.1109/TCYB.2016.2627686 10.1016/S0893-6080(98)00116-6 10.1109/TCYB.2024.3450474 10.1109/TKDE.2008.88 10.1016/j.patcog.2017.05.017 10.2139/ssrn.3900990 10.1016/S0019-9958(69)90591-9 10.1016/j.fss.2019.03.017 10.1109/TPAMI.2003.1240115 10.1109/TPDS.2020.2975189 10.1109/3477.809032 10.1007/978-0-387-73003-5_196 10.1109/TIP.2012.2219547 10.1109/TFUZZ.2017.2692203 10.1016/j.patcog.2009.11.015 10.1109/TFUZZ.2002.805901 10.1609/aaai.v35i10.17051 10.1016/j.patcog.2014.01.017 10.1109/TPAMI.1986.4767778 10.1109/JAS.2020.1003420 10.1609/aaai.v35i11.17128 10.1109/TCYB.2022.3217897 10.1145/3269206.3269237 10.1038/44565 10.1109/TFUZZ.2021.3081990 10.1007/978-94-009-8543-8_2 10.1145/235968.233324 10.1109/TFUZZ.2021.3074299 10.1109/PROC.1979.11327 10.1109/TFUZZ.2023.3262256 10.1007/s40815-019-00740-9 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
| DOI | 10.1109/TPAMI.2025.3532357 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 2160-9292 1939-3539 |
| EndPage | 3451 |
| ExternalDocumentID | 40031209 10_1109_TPAMI_2025_3532357 10848345 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62176212; 61936014; 61772427 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: G2019KY0501 funderid: 10.13039/501100012226 – fundername: Natural Science Basic Research Program of Shaanxi grantid: 2021JM-071 – fundername: National Key Research and Development Program of China grantid: 2018AAA0101902 |
| GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYXX CITATION NPM RIG 7X8 |
| ID | FETCH-LOGICAL-c396t-823ebbee3062ac7ff4aa426d058cb047e8e6887eb17ca6cb1a69756dc21e7aae3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001465416300019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0162-8828 1939-3539 |
| IngestDate | Thu Oct 02 21:06:49 EDT 2025 Mon Jul 21 05:20:23 EDT 2025 Tue Nov 18 22:34:45 EST 2025 Sat Nov 29 08:00:44 EST 2025 Wed Aug 27 02:04:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c396t-823ebbee3062ac7ff4aa426d058cb047e8e6887eb17ca6cb1a69756dc21e7aae3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-6016-6895 0000-0003-2924-946X 0000-0002-0871-6519 0000-0003-2906-8191 |
| PMID | 40031209 |
| PQID | 3173403853 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | pubmed_primary_40031209 ieee_primary_10848345 proquest_miscellaneous_3173403853 crossref_primary_10_1109_TPAMI_2025_3532357 crossref_citationtrail_10_1109_TPAMI_2025_3532357 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-01 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
| PublicationTitleAbbrev | TPAMI |
| PublicationTitleAlternate | IEEE Trans Pattern Anal Mach Intell |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref15 ref14 ref52 ref10 Zhang (ref35) ref17 ref16 ref18 ref51 ref50 Xu (ref37) ref46 ref45 ref48 ref42 ref41 ref44 ref43 ref49 ref8 ref7 Nie (ref19) ref4 ref3 ref6 MacQueen (ref11) ref5 ref40 ref34 Ester (ref9) ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Ruder (ref47) 2016 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref10 doi: 10.1609/aaai.v35i8.16854 – ident: ref39 doi: 10.1109/TKDE.2020.2995748 – ident: ref5 doi: 10.1007/978-3-642-96303-2_3 – ident: ref16 doi: 10.1007/BF00337288 – start-page: 1565 volume-title: Proc. Twenty-Third Int. Joint Conf. Artif. Intell. ident: ref19 article-title: Adaptive loss minimization for semi-supervised elastic embedding – ident: ref8 doi: 10.1145/1273496.1273562 – ident: ref27 doi: 10.1109/TFUZZ.2012.2201485 – ident: ref40 doi: 10.1002/wics.101 – ident: ref3 doi: 10.1109/TPAMI.2014.2303095 – ident: ref48 doi: 10.1109/afgr.1998.670949 – start-page: 122 volume-title: Proc. Int. Conf. Artif. Neural Netw. ident: ref35 article-title: Kernel-based fuzzy and possibilistic C-means clustering – ident: ref33 doi: 10.1016/j.asoc.2012.12.022 – ident: ref38 doi: 10.1109/TCYB.2021.3099503 – ident: ref46 doi: 10.1109/LSP.2003.821649 – ident: ref28 doi: 10.1109/TFUZZ.2013.2286993 – ident: ref2 doi: 10.1016/j.procs.2015.06.090 – ident: ref18 doi: 10.1016/0098-3004(84)90020-7 – ident: ref26 doi: 10.1109/TCYB.2016.2627686 – ident: ref44 doi: 10.1016/S0893-6080(98)00116-6 – ident: ref52 doi: 10.1109/TCYB.2024.3450474 – ident: ref31 doi: 10.1109/TKDE.2008.88 – ident: ref30 doi: 10.1016/j.patcog.2017.05.017 – ident: ref49 doi: 10.2139/ssrn.3900990 – ident: ref17 doi: 10.1016/S0019-9958(69)90591-9 – ident: ref43 doi: 10.1016/j.fss.2019.03.017 – ident: ref4 doi: 10.1109/TPAMI.2003.1240115 – ident: ref45 doi: 10.1109/TPDS.2020.2975189 – ident: ref7 doi: 10.1109/3477.809032 – ident: ref15 doi: 10.1007/978-0-387-73003-5_196 – ident: ref20 doi: 10.1109/TIP.2012.2219547 – ident: ref25 doi: 10.1109/TFUZZ.2017.2692203 – ident: ref34 doi: 10.1016/j.patcog.2009.11.015 – ident: ref32 doi: 10.1109/TFUZZ.2002.805901 – start-page: 281 volume-title: Proc. 5th Berkeley Symp. Math. Statist. Probability ident: ref11 article-title: Classification and analysis of multivariate observations – ident: ref14 doi: 10.1609/aaai.v35i10.17051 – ident: ref24 doi: 10.1016/j.patcog.2014.01.017 – ident: ref29 doi: 10.1109/TPAMI.1986.4767778 – start-page: 2224 volume-title: Proc. Int. Joint Conf. Artif. Intell. ident: ref37 article-title: Robust and sparse fuzzy K-means clustering – ident: ref36 doi: 10.1109/JAS.2020.1003420 – ident: ref12 doi: 10.1609/aaai.v35i11.17128 – ident: ref23 doi: 10.1109/TCYB.2022.3217897 – ident: ref21 doi: 10.1145/3269206.3269237 – ident: ref50 doi: 10.1038/44565 – ident: ref41 doi: 10.1109/TFUZZ.2021.3081990 – ident: ref6 doi: 10.1007/978-94-009-8543-8_2 – year: 2016 ident: ref47 article-title: An overview of gradient descent optimization algorithms – ident: ref13 doi: 10.1145/235968.233324 – ident: ref42 doi: 10.1109/TFUZZ.2021.3074299 – ident: ref1 doi: 10.1109/PROC.1979.11327 – volume-title: Proc. Int. Conf. Knowl. Discov. Data Mining ident: ref9 article-title: Density-based spatial clustering of applications with noise – ident: ref51 doi: 10.1109/TFUZZ.2023.3262256 – ident: ref22 doi: 10.1007/s40815-019-00740-9 |
| SSID | ssj0014503 |
| Score | 2.5099502 |
| Snippet | Fuzzy C-Means algorithm (FCM) is one of the most commonly used fuzzy clustering algorithm, which uses the alternating optimization algorithm to update the... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3440 |
| SubjectTerms | Clustering algorithms Convergence Fuzzy C-Means gradient descent Linear programming local minimum membership matrix Noise Optimization Sensitivity Symbols Time complexity Vectors |
| Title | Unconstrained Fuzzy C-Means Algorithm |
| URI | https://ieeexplore.ieee.org/document/10848345 https://www.ncbi.nlm.nih.gov/pubmed/40031209 https://www.proquest.com/docview/3173403853 |
| Volume | 47 |
| WOSCitedRecordID | wos001465416300019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2160-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014503 issn: 0162-8828 databaseCode: RIE dateStart: 19790101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_cENEHvz_mFxX0Saptkzbt4xgOBTf2MGFvJUlvOpidzE3Qv95L2o69TPCtD0kacne53-W-AK65j2yowtBlTHGX-0K5UnDpkm70BOHXzBvaROFn0e3Gg0HSK5PVbS4MItrgM7wzn9aXn0303DyVkYTH5u0rrEFNiKhI1lq4DHho2yAThCERJzuiypDxkvt-r9l5IlswCO9YyEyBl03Y4IafAxOIuKSQbIeV1WDTKp32zj-3uwvbJbp0mgU77MEa5vuwU3VucEpB3oetpTKEB3DzkmsDE023CMyc9vzn59tpuR0kNeY0x6-T6Wj29n4IL-2HfuvRLdsnuJol0cyNA4ZKIZJREEgthkMuJenjzAtjrTwuMMaIrhi6rIWWkVa-jBIRRpkOfBRSIjuCej7J8QQcpcgs4TwhNGMcqxhL7cmIEXwicabFGuBXZ5jqsra42fQ4tTaGl6SWBKkhQVqSoAG3izkfRWWNP0cfmgNeGlmcbQOuKlqlJBjG2yFznMw_UwJGjBu_J2vAcUHExeyK9qcrVj2DTfPzIrDxHOqz6RwvYF1_zUaf00vivkF8abnvFwXC0Is |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-NDkH3MDZg0PGxII2nKV0S23HyWFWrimgrHorEW2Q711GpS1FpJ8Ffz9lJqr6AxJsfbOt05_P9zue7A_jJQ2QTLYTPmOY-D6X2leTKJ9sYSMKveTBxicIDORold3fpTZWs7nJhENF9PsO2HbpYfj43K_tURhqe2LcvsQUfBedRUKZrrYMGXLhGyARiSMnJk6hzZIL09_imM7wibzASbSaYLfHShB1uT3RkvyJumCTXY-V1uOnMTm_vnQR_gc8VvvQ65YH4Ch-w2Ie9uneDV6nyPnzaKER4AJe3hbFA0faLwNzrrZ6fn7yuP0QyZF5n9ne-mC7v_x3Cbe_PuNv3qwYKvmFpvPSTiKHWiOQWRMrIyYQrRRY5D0RidMAlJhjTJUPXtTQqNjpUcSpFnJsoRKkUsm_QKOYFHoOnNTkmnKeEZ2xoFRNlAhUzAlCk0LRZC8Kah5mpqotbomeZ8zKCNHMiyKwIskoELfi1XvNQ1tZ4c_ahZfDGzJK3LbioZZWRath4hypwvnrMCBoxbiOfrAVHpRDXq2vZf39l1x-w2x8PB9nganR9Ak1LSPnN8RQay8UKz2Db_F9OHxfn7gy-ACGh0uo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unconstrained+Fuzzy+C-Means+Algorithm&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Nie%2C+Feiping&rft.au=Zhang%2C+Runxin&rft.au=Yu%2C+Weizhong&rft.au=Li%2C+Xuelong&rft.date=2025-05-01&rft.issn=1939-3539&rft.eissn=1939-3539&rft.volume=PP&rft_id=info:doi/10.1109%2FTPAMI.2025.3532357&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |