Alcohol consumption detection through behavioural analysis using intelligent systems

•We instrumented a realistic driving simulator and monitored users behaviour.•We generated features and associated those to various BAC values.•We were able to classify drunk and sober example from 1 subject.•With multiple subjects we could estimate the BAC.•The system is generic and should adapt we...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 41; no. 5; pp. 2574 - 2581
Main Authors: Robinel, Audrey, Puzenat, Didier
Format: Journal Article
Language:English
Published: Amsterdam Elsevier Ltd 01.04.2014
Elsevier
Subjects:
ISSN:0957-4174, 1873-6793
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •We instrumented a realistic driving simulator and monitored users behaviour.•We generated features and associated those to various BAC values.•We were able to classify drunk and sober example from 1 subject.•With multiple subjects we could estimate the BAC.•The system is generic and should adapt well to other problems. We describe in this paper a new methodology for blood alcohol content (BAC) estimation of a subject. Rather than using external devices to determine the BAC value of a subject, we perform a behaviour analysis of this subject using intelligent systems. We monitor the user’s actions in an ordinary task and label those data to various measured BAC values. The obtained data-set is then used to train learning systems to detect alcoholic consumption and perform BAC estimation. We obtain good results on a mono-user base, and lower results with multiple users. We improve the results by combining multiple classifiers and regression algorithms.
AbstractList We describe in this paper a new methodology for blood alcohol content (BAC) estimation of a subject. Rather than using external devices to determine the BAC value of a subject, we perform a behaviour analysis of this subject using intelligent systems. We monitor the user's actions in an ordinary task and label those data to various measured BAC values. The obtained data-set is then used to train learning systems to detect alcoholic consumption and perform BAC estimation. We obtain good results on a mono-user base, and lower results with multiple users. We improve the results by combining multiple classifiers and regression algorithms.
•We instrumented a realistic driving simulator and monitored users behaviour.•We generated features and associated those to various BAC values.•We were able to classify drunk and sober example from 1 subject.•With multiple subjects we could estimate the BAC.•The system is generic and should adapt well to other problems. We describe in this paper a new methodology for blood alcohol content (BAC) estimation of a subject. Rather than using external devices to determine the BAC value of a subject, we perform a behaviour analysis of this subject using intelligent systems. We monitor the user’s actions in an ordinary task and label those data to various measured BAC values. The obtained data-set is then used to train learning systems to detect alcoholic consumption and perform BAC estimation. We obtain good results on a mono-user base, and lower results with multiple users. We improve the results by combining multiple classifiers and regression algorithms.
Author Robinel, Audrey
Puzenat, Didier
Author_xml – sequence: 1
  givenname: Audrey
  surname: Robinel
  fullname: Robinel, Audrey
  email: arobinel@univ-ag.fr
– sequence: 2
  givenname: Didier
  surname: Puzenat
  fullname: Puzenat, Didier
  email: dpuzenat@univ-ag.fr
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28296160$$DView record in Pascal Francis
BookMark eNqFkU1rGzEQhkVJIE6aP5DTXgq9rCutVl_QSwj9gkAv6Vlo5VlbRpZcjTbF_767dXrpIT2NGN5nRsxzTS5STkDIHaNrRpn8sF8D_nLrjjI-N9aUijdkxbTirVSGX5AVNUK1PVP9FblG3FPKFKVqRZ7uo8-7HBufE06HYw05NRuo4P-86q7kabtrBti555Cn4mLjkosnDNhMGNK2CalCjGELqTZ4wgoHfEsuRxcRbl_qDfnx-dPTw9f28fuXbw_3j63nRtZW0Y02dOxG03szeBB6cFL3TgqhmdRMwyC0l9SB567ng2Cgxh5GIwQIOVB-Q96f5x5L_jkBVnsI6OffuAR5QsukYrIT3Oj_RwVnlPeGqjn67iXq0Ls4Fpd8QHss4eDKyXa6M5LJZbs-53zJiAVG60N1y9lqcSFaRu3ixu7t4sYubpbe7GZGu3_Qv9NfhT6eIZhP-hygWPQBkodNKLMuu8nhNfw3Z_mrgQ
CitedBy_id crossref_primary_10_1016_j_eswa_2015_04_061
crossref_primary_10_1016_j_jksuci_2021_01_004
Cites_doi 10.1109/ITW.2010.5593337
10.1109/TITS.2006.869598
10.1109/ACHI.2010.26
10.1016/j.patcog.2007.01.018
10.1006/rtim.2002.0279
10.1145/1656274.1656278
10.1109/ITSC.2004.1398919
10.17077/drivingassessment.1010
10.1145/1961189.1961199
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2013.10.005
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1873-6793
EndPage 2581
ExternalDocumentID 28296160
10_1016_j_eswa_2013_10_005
S0957417413008105
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c396t-70d890f2f94c9bce58ba684a655816818eb58c60aec3a43b51e7f4ef955e56b03
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000330600800046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Mon Sep 29 03:59:21 EDT 2025
Thu Oct 02 03:55:30 EDT 2025
Wed Apr 02 07:37:50 EDT 2025
Sat Nov 29 04:44:38 EST 2025
Tue Nov 18 21:47:17 EST 2025
Fri Feb 23 02:29:08 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Blood alcohol content
Instrumentation
Automated behavioural analysis
Intelligent systems
Human computer interface
Artificial neural networks
Consumption
Alcohol
Regression analysis
Neural network
Multiple regression
Aggregate model
Learning systems
Behavioral analysis
User interface
Alcoholemia
Automatic analysis
System analysis
Artificial intelligence
Intelligent system
Multiple classification
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c396t-70d890f2f94c9bce58ba684a655816818eb58c60aec3a43b51e7f4ef955e56b03
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1531034907
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1671625398
proquest_miscellaneous_1531034907
pascalfrancis_primary_28296160
crossref_citationtrail_10_1016_j_eswa_2013_10_005
crossref_primary_10_1016_j_eswa_2013_10_005
elsevier_sciencedirect_doi_10_1016_j_eswa_2013_10_005
PublicationCentury 2000
PublicationDate 2014-04-01
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Expert systems with applications
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Robinel, A., & Puzenat, D. (2013). Instrumentation and features selection using a realistic car simulator in order to perform single-user drunkenness analysis. In
Christy, T., & Kuncheva, L. I. (2013). A.m.b.e.r. shark-fin: An unobtrusive affective mouse. In
Renault. “R-link” tactile car computer.
Bogen (b0010) 1927; XXVI
(pp. 64–69) (August).
Robinel, A., & Puzenat, D. (2012). Real time drunkenness analysis in a realistic car simulation. In
Torkkola, K., Massey, N., & Wood, C. (2004). Driver inattention detection through intelligent analysis of readily available sensors. In
Nissen, S. (2003). Implementation of a fast artificial neural network library (FANN). Technical report, Department of Computer Science University of Copenhagen, October 2003.
(pp. 407–412) (February).
(pp. 321–328).
Chang, Lin (b0015) 2011; 2
Grace, R., & Steward, S. (2001). Drowsy driver monitor and warning system. In
Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (b0035) 2009; 11
(pp. 206–211) (February).
Puzenat, D., & Verlut, I. (2010). Behavior analysis through games using artificial neural networks. In
(pp. 431–436). I6doc.com publ., April. available from
Tognetti, S., Garbarino, M., Bonarini, A., & Matteucci, M. (2010). Modeling enjoyment preference from physiological responses in a car racing game. In
Bergasa, Nuevo, Sotelo, Barea, Lopez (b0005) 2006; 7
(pp. 488–495) (April).
Shimizu, S., Hiroaki, I., Hiroyuki, N., Noboru, T., Fumikazu, M., Nobuhide, H., et al. (2013). Basic study for new assistive system based on brain activity during car driving. In
(pp. 134–138) (February 2010).
Robinel, A., & Puzenat, D. (2011). Real time drunkenness analysis through games using artificial neural networks. In
.
(pp. 466–471) (February).
(pp. 326–331) (October).
Robinel, A., & Puzenat, D. (2013). Multi-user blood alcohol content estimation in a realistic simulator using artificial neural networks and support vector machines. In
D’Oratio, Leo, Guaragnella, Distante (b0025) 2007; 40
Qiang, Xiaojie (b0050) 2002; 8
(pp. 85–90). I6doc.com publ., April. available from
Hall (10.1016/j.eswa.2013.10.005_b0035) 2009; 11
10.1016/j.eswa.2013.10.005_b0045
10.1016/j.eswa.2013.10.005_b0055
10.1016/j.eswa.2013.10.005_b0065
Bogen (10.1016/j.eswa.2013.10.005_b0010) 1927; XXVI
10.1016/j.eswa.2013.10.005_b0060
Qiang (10.1016/j.eswa.2013.10.005_b0050) 2002; 8
10.1016/j.eswa.2013.10.005_b0070
10.1016/j.eswa.2013.10.005_b0080
10.1016/j.eswa.2013.10.005_b0090
Chang (10.1016/j.eswa.2013.10.005_b0015) 2011; 2
10.1016/j.eswa.2013.10.005_b0020
10.1016/j.eswa.2013.10.005_b0075
10.1016/j.eswa.2013.10.005_b0030
10.1016/j.eswa.2013.10.005_b0085
10.1016/j.eswa.2013.10.005_b0040
Bergasa (10.1016/j.eswa.2013.10.005_b0005) 2006; 7
D’Oratio (10.1016/j.eswa.2013.10.005_b0025) 2007; 40
References_xml – reference: Robinel, A., & Puzenat, D. (2012). Real time drunkenness analysis in a realistic car simulation. In
– reference: Renault. “R-link” tactile car computer.
– reference: (pp. 431–436). I6doc.com publ., April. available from
– volume: 8
  start-page: 357
  year: 2002
  end-page: 377
  ident: b0050
  article-title: real-time eye gaze and face pose tracking for monitoring driver vigilance
  publication-title: Real-Time Imaging
– reference: Shimizu, S., Hiroaki, I., Hiroyuki, N., Noboru, T., Fumikazu, M., Nobuhide, H., et al. (2013). Basic study for new assistive system based on brain activity during car driving. In
– volume: XXVI
  start-page: 778
  year: 1927
  end-page: 783
  ident: b0010
  article-title: Drunkenness, a quantitative study of acute alcoholic intoxication
  publication-title: California and Western Medicine
– reference: (pp. 326–331) (October).
– reference: (pp. 85–90). I6doc.com publ., April. available from:
– reference: Tognetti, S., Garbarino, M., Bonarini, A., & Matteucci, M. (2010). Modeling enjoyment preference from physiological responses in a car racing game. In
– reference: Christy, T., & Kuncheva, L. I. (2013). A.m.b.e.r. shark-fin: An unobtrusive affective mouse. In
– reference: Robinel, A., & Puzenat, D. (2013). Instrumentation and features selection using a realistic car simulator in order to perform single-user drunkenness analysis. In
– volume: 2
  start-page: 27:1
  year: 2011
  end-page: 27:27
  ident: b0015
  article-title: LIBSVM: A library for support vector machines
  publication-title: ACM Transactions on Intelligent Systems and Technology
– reference: (pp. 206–211) (February).
– reference: (pp. 321–328).
– reference: Torkkola, K., Massey, N., & Wood, C. (2004). Driver inattention detection through intelligent analysis of readily available sensors. In
– volume: 11
  start-page: 10
  year: 2009
  end-page: 18
  ident: b0035
  article-title: The weka data mining software: An update
  publication-title: SIGKDD Exploration Newsletter
– volume: 7
  start-page: 357
  year: 2006
  end-page: 377
  ident: b0005
  article-title: Real-time system for monitoring driver vigilance
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– reference: Grace, R., & Steward, S. (2001). Drowsy driver monitor and warning system. In
– reference: (pp. 64–69) (August).
– reference: Robinel, A., & Puzenat, D. (2013). Multi-user blood alcohol content estimation in a realistic simulator using artificial neural networks and support vector machines. In
– reference: Nissen, S. (2003). Implementation of a fast artificial neural network library (FANN). Technical report, Department of Computer Science University of Copenhagen, October 2003.
– reference: .
– volume: 40
  start-page: 2341
  year: 2007
  end-page: 2355
  ident: b0025
  article-title: A visual approach for driver inattention detection
  publication-title: Pattern Recognition
– reference: (pp. 407–412) (February).
– reference: Robinel, A., & Puzenat, D. (2011). Real time drunkenness analysis through games using artificial neural networks. In
– reference: (pp. 134–138) (February 2010).
– reference: (pp. 488–495) (April).
– reference: (pp. 466–471) (February).
– reference: Puzenat, D., & Verlut, I. (2010). Behavior analysis through games using artificial neural networks. In
– ident: 10.1016/j.eswa.2013.10.005_b0020
– ident: 10.1016/j.eswa.2013.10.005_b0080
– ident: 10.1016/j.eswa.2013.10.005_b0085
  doi: 10.1109/ITW.2010.5593337
– volume: 7
  start-page: 357
  year: 2006
  ident: 10.1016/j.eswa.2013.10.005_b0005
  article-title: Real-time system for monitoring driver vigilance
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2006.869598
– ident: 10.1016/j.eswa.2013.10.005_b0045
  doi: 10.1109/ACHI.2010.26
– ident: 10.1016/j.eswa.2013.10.005_b0065
– volume: 40
  start-page: 2341
  year: 2007
  ident: 10.1016/j.eswa.2013.10.005_b0025
  article-title: A visual approach for driver inattention detection
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2007.01.018
– volume: 8
  start-page: 357
  year: 2002
  ident: 10.1016/j.eswa.2013.10.005_b0050
  article-title: real-time eye gaze and face pose tracking for monitoring driver vigilance
  publication-title: Real-Time Imaging
  doi: 10.1006/rtim.2002.0279
– ident: 10.1016/j.eswa.2013.10.005_b0060
– volume: 11
  start-page: 10
  issue: 1
  year: 2009
  ident: 10.1016/j.eswa.2013.10.005_b0035
  article-title: The weka data mining software: An update
  publication-title: SIGKDD Exploration Newsletter
  doi: 10.1145/1656274.1656278
– ident: 10.1016/j.eswa.2013.10.005_b0040
– ident: 10.1016/j.eswa.2013.10.005_b0055
– ident: 10.1016/j.eswa.2013.10.005_b0090
  doi: 10.1109/ITSC.2004.1398919
– ident: 10.1016/j.eswa.2013.10.005_b0030
  doi: 10.17077/drivingassessment.1010
– volume: XXVI
  start-page: 778
  issue: 6
  year: 1927
  ident: 10.1016/j.eswa.2013.10.005_b0010
  article-title: Drunkenness, a quantitative study of acute alcoholic intoxication
  publication-title: California and Western Medicine
– volume: 2
  start-page: 27:1
  year: 2011
  ident: 10.1016/j.eswa.2013.10.005_b0015
  article-title: LIBSVM: A library for support vector machines
  publication-title: ACM Transactions on Intelligent Systems and Technology
  doi: 10.1145/1961189.1961199
– ident: 10.1016/j.eswa.2013.10.005_b0070
– ident: 10.1016/j.eswa.2013.10.005_b0075
SSID ssj0017007
Score 2.0997694
Snippet •We instrumented a realistic driving simulator and monitored users behaviour.•We generated features and associated those to various BAC values.•We were able to...
We describe in this paper a new methodology for blood alcohol content (BAC) estimation of a subject. Rather than using external devices to determine the BAC...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2574
SubjectTerms Alcohols
Applied sciences
Artificial intelligence
Artificial neural networks
Automated behavioural analysis
Behavioural
Blood
Blood alcohol content
Computer science; control theory; systems
Computer systems and distributed systems. User interface
Connectionism. Neural networks
Data processing. List processing. Character string processing
Exact sciences and technology
Expert systems
Human computer interface
Instrumentation
Intelligent systems
Memory organisation. Data processing
Monitors
Regression
Software
Tasks
Trains
Title Alcohol consumption detection through behavioural analysis using intelligent systems
URI https://dx.doi.org/10.1016/j.eswa.2013.10.005
https://www.proquest.com/docview/1531034907
https://www.proquest.com/docview/1671625398
Volume 41
WOSCitedRecordID wos000330600800046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZZuofB2H0suxQNxl6Gi2Xr-hi2lG2UrLAU8mZ8OYaU4max3Zb--kmW5LgrC93DXuxYkS2j8-lY0rl8CH2IS2582iMtARIFNA2zIKMF6BGvVz0FxKmILNmEmM_lcqmOR6OfPhbm4kxUlby6Uuv_KmpdpoVtQmf_Qdz9Q3WB_q2Fro9a7Pp4J8FPLemt8SfXzVqNUEADlhPc8_K48Pwu6UbqE5O0tY1w8Vk6G5foub6xf2-SI_f_uOC4gRl8a8LRi27nA9AWG-j37o_ba6jSTvl_WRUr5x7sdh7I0GHFbyGKgBLLsuO1KSUD1LChamSuIrhLS9VyS4Xb3YTTA6gvTV4oEh903nds-8HyRvr5j-Tw5OgoWcyWi4_rX4GhEjMmd8ercg_tRYIpOUZ702-z5ffeuCRCG0XvX9_FUlm3vz-b_dt85eE6rfUoKi39ya0veTc9WTxBj9y6Ak8tHp6iEVTP0GPP2YGdCn-OFg4eeAAP3MMDO3jgATywhwfu4IEH8MAOBC_QyeFs8flr4Jg1gjxWvAlEWEgVllGpaK6yHJjMUi5pyhkzPCxEQsZkzsMU8jilccYIiJJCqRgDxrMwfonG1XkFrxCWLA9zVQClKqNZKTMp9ZkXSqgoykFMEPH9l-Qu7bxhPzlLvH_haWL6PDF9bsp0n0_Qp_6etU26srM282JJ3LTRTgcTDamd9-3fkGHflHEu4ISHE_TeCzXRStdY0tIKzts60dMEYhI7hWJHHW6Ss7FYydd3eM4b9GA7xN6icbNp4R26n180q3qz7xD8Gwjutdc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alcohol+consumption+detection+through+behavioural+analysis+using+intelligent+systems&rft.jtitle=Expert+systems+with+applications&rft.au=Robinel%2C+Audrey&rft.au=Puzenat%2C+Didier&rft.date=2014-04-01&rft.issn=0957-4174&rft.volume=41&rft.issue=5&rft.spage=2574&rft.epage=2581&rft_id=info:doi/10.1016%2Fj.eswa.2013.10.005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon