Alcohol consumption detection through behavioural analysis using intelligent systems
•We instrumented a realistic driving simulator and monitored users behaviour.•We generated features and associated those to various BAC values.•We were able to classify drunk and sober example from 1 subject.•With multiple subjects we could estimate the BAC.•The system is generic and should adapt we...
Saved in:
| Published in: | Expert systems with applications Vol. 41; no. 5; pp. 2574 - 2581 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier Ltd
01.04.2014
Elsevier |
| Subjects: | |
| ISSN: | 0957-4174, 1873-6793 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •We instrumented a realistic driving simulator and monitored users behaviour.•We generated features and associated those to various BAC values.•We were able to classify drunk and sober example from 1 subject.•With multiple subjects we could estimate the BAC.•The system is generic and should adapt well to other problems.
We describe in this paper a new methodology for blood alcohol content (BAC) estimation of a subject. Rather than using external devices to determine the BAC value of a subject, we perform a behaviour analysis of this subject using intelligent systems. We monitor the user’s actions in an ordinary task and label those data to various measured BAC values. The obtained data-set is then used to train learning systems to detect alcoholic consumption and perform BAC estimation. We obtain good results on a mono-user base, and lower results with multiple users. We improve the results by combining multiple classifiers and regression algorithms. |
|---|---|
| AbstractList | We describe in this paper a new methodology for blood alcohol content (BAC) estimation of a subject. Rather than using external devices to determine the BAC value of a subject, we perform a behaviour analysis of this subject using intelligent systems. We monitor the user's actions in an ordinary task and label those data to various measured BAC values. The obtained data-set is then used to train learning systems to detect alcoholic consumption and perform BAC estimation. We obtain good results on a mono-user base, and lower results with multiple users. We improve the results by combining multiple classifiers and regression algorithms. •We instrumented a realistic driving simulator and monitored users behaviour.•We generated features and associated those to various BAC values.•We were able to classify drunk and sober example from 1 subject.•With multiple subjects we could estimate the BAC.•The system is generic and should adapt well to other problems. We describe in this paper a new methodology for blood alcohol content (BAC) estimation of a subject. Rather than using external devices to determine the BAC value of a subject, we perform a behaviour analysis of this subject using intelligent systems. We monitor the user’s actions in an ordinary task and label those data to various measured BAC values. The obtained data-set is then used to train learning systems to detect alcoholic consumption and perform BAC estimation. We obtain good results on a mono-user base, and lower results with multiple users. We improve the results by combining multiple classifiers and regression algorithms. |
| Author | Robinel, Audrey Puzenat, Didier |
| Author_xml | – sequence: 1 givenname: Audrey surname: Robinel fullname: Robinel, Audrey email: arobinel@univ-ag.fr – sequence: 2 givenname: Didier surname: Puzenat fullname: Puzenat, Didier email: dpuzenat@univ-ag.fr |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28296160$$DView record in Pascal Francis |
| BookMark | eNqFkU1rGzEQhkVJIE6aP5DTXgq9rCutVl_QSwj9gkAv6Vlo5VlbRpZcjTbF_767dXrpIT2NGN5nRsxzTS5STkDIHaNrRpn8sF8D_nLrjjI-N9aUijdkxbTirVSGX5AVNUK1PVP9FblG3FPKFKVqRZ7uo8-7HBufE06HYw05NRuo4P-86q7kabtrBti555Cn4mLjkosnDNhMGNK2CalCjGELqTZ4wgoHfEsuRxcRbl_qDfnx-dPTw9f28fuXbw_3j63nRtZW0Y02dOxG03szeBB6cFL3TgqhmdRMwyC0l9SB567ng2Cgxh5GIwQIOVB-Q96f5x5L_jkBVnsI6OffuAR5QsukYrIT3Oj_RwVnlPeGqjn67iXq0Ls4Fpd8QHss4eDKyXa6M5LJZbs-53zJiAVG60N1y9lqcSFaRu3ixu7t4sYubpbe7GZGu3_Qv9NfhT6eIZhP-hygWPQBkodNKLMuu8nhNfw3Z_mrgQ |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2015_04_061 crossref_primary_10_1016_j_jksuci_2021_01_004 |
| Cites_doi | 10.1109/ITW.2010.5593337 10.1109/TITS.2006.869598 10.1109/ACHI.2010.26 10.1016/j.patcog.2007.01.018 10.1006/rtim.2002.0279 10.1145/1656274.1656278 10.1109/ITSC.2004.1398919 10.17077/drivingassessment.1010 10.1145/1961189.1961199 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier Ltd 2015 INIST-CNRS |
| Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2013.10.005 |
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences |
| EISSN | 1873-6793 |
| EndPage | 2581 |
| ExternalDocumentID | 28296160 10_1016_j_eswa_2013_10_005 S0957417413008105 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABFNM ABKBG ABMAC ABMVD ABUCO ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNNM ACNTT ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD BNPGV IQODW SSH 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c396t-70d890f2f94c9bce58ba684a655816818eb58c60aec3a43b51e7f4ef955e56b03 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000330600800046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Mon Sep 29 03:59:21 EDT 2025 Thu Oct 02 03:55:30 EDT 2025 Wed Apr 02 07:37:50 EDT 2025 Sat Nov 29 04:44:38 EST 2025 Tue Nov 18 21:47:17 EST 2025 Fri Feb 23 02:29:08 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Blood alcohol content Instrumentation Automated behavioural analysis Intelligent systems Human computer interface Artificial neural networks Consumption Alcohol Regression analysis Neural network Multiple regression Aggregate model Learning systems Behavioral analysis User interface Alcoholemia Automatic analysis System analysis Artificial intelligence Intelligent system Multiple classification |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c396t-70d890f2f94c9bce58ba684a655816818eb58c60aec3a43b51e7f4ef955e56b03 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| PQID | 1531034907 |
| PQPubID | 23500 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_1671625398 proquest_miscellaneous_1531034907 pascalfrancis_primary_28296160 crossref_citationtrail_10_1016_j_eswa_2013_10_005 crossref_primary_10_1016_j_eswa_2013_10_005 elsevier_sciencedirect_doi_10_1016_j_eswa_2013_10_005 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-04-01 |
| PublicationDateYYYYMMDD | 2014-04-01 |
| PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2014 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Robinel, A., & Puzenat, D. (2013). Instrumentation and features selection using a realistic car simulator in order to perform single-user drunkenness analysis. In Christy, T., & Kuncheva, L. I. (2013). A.m.b.e.r. shark-fin: An unobtrusive affective mouse. In Renault. “R-link” tactile car computer. Bogen (b0010) 1927; XXVI (pp. 64–69) (August). Robinel, A., & Puzenat, D. (2012). Real time drunkenness analysis in a realistic car simulation. In Torkkola, K., Massey, N., & Wood, C. (2004). Driver inattention detection through intelligent analysis of readily available sensors. In Nissen, S. (2003). Implementation of a fast artificial neural network library (FANN). Technical report, Department of Computer Science University of Copenhagen, October 2003. (pp. 407–412) (February). (pp. 321–328). Chang, Lin (b0015) 2011; 2 Grace, R., & Steward, S. (2001). Drowsy driver monitor and warning system. In Hall, Frank, Holmes, Pfahringer, Reutemann, Witten (b0035) 2009; 11 (pp. 206–211) (February). Puzenat, D., & Verlut, I. (2010). Behavior analysis through games using artificial neural networks. In (pp. 431–436). I6doc.com publ., April. available from Tognetti, S., Garbarino, M., Bonarini, A., & Matteucci, M. (2010). Modeling enjoyment preference from physiological responses in a car racing game. In Bergasa, Nuevo, Sotelo, Barea, Lopez (b0005) 2006; 7 (pp. 488–495) (April). Shimizu, S., Hiroaki, I., Hiroyuki, N., Noboru, T., Fumikazu, M., Nobuhide, H., et al. (2013). Basic study for new assistive system based on brain activity during car driving. In (pp. 134–138) (February 2010). Robinel, A., & Puzenat, D. (2011). Real time drunkenness analysis through games using artificial neural networks. In . (pp. 466–471) (February). (pp. 326–331) (October). Robinel, A., & Puzenat, D. (2013). Multi-user blood alcohol content estimation in a realistic simulator using artificial neural networks and support vector machines. In D’Oratio, Leo, Guaragnella, Distante (b0025) 2007; 40 Qiang, Xiaojie (b0050) 2002; 8 (pp. 85–90). I6doc.com publ., April. available from Hall (10.1016/j.eswa.2013.10.005_b0035) 2009; 11 10.1016/j.eswa.2013.10.005_b0045 10.1016/j.eswa.2013.10.005_b0055 10.1016/j.eswa.2013.10.005_b0065 Bogen (10.1016/j.eswa.2013.10.005_b0010) 1927; XXVI 10.1016/j.eswa.2013.10.005_b0060 Qiang (10.1016/j.eswa.2013.10.005_b0050) 2002; 8 10.1016/j.eswa.2013.10.005_b0070 10.1016/j.eswa.2013.10.005_b0080 10.1016/j.eswa.2013.10.005_b0090 Chang (10.1016/j.eswa.2013.10.005_b0015) 2011; 2 10.1016/j.eswa.2013.10.005_b0020 10.1016/j.eswa.2013.10.005_b0075 10.1016/j.eswa.2013.10.005_b0030 10.1016/j.eswa.2013.10.005_b0085 10.1016/j.eswa.2013.10.005_b0040 Bergasa (10.1016/j.eswa.2013.10.005_b0005) 2006; 7 D’Oratio (10.1016/j.eswa.2013.10.005_b0025) 2007; 40 |
| References_xml | – reference: Robinel, A., & Puzenat, D. (2012). Real time drunkenness analysis in a realistic car simulation. In – reference: Renault. “R-link” tactile car computer. – reference: (pp. 431–436). I6doc.com publ., April. available from – volume: 8 start-page: 357 year: 2002 end-page: 377 ident: b0050 article-title: real-time eye gaze and face pose tracking for monitoring driver vigilance publication-title: Real-Time Imaging – reference: Shimizu, S., Hiroaki, I., Hiroyuki, N., Noboru, T., Fumikazu, M., Nobuhide, H., et al. (2013). Basic study for new assistive system based on brain activity during car driving. In – volume: XXVI start-page: 778 year: 1927 end-page: 783 ident: b0010 article-title: Drunkenness, a quantitative study of acute alcoholic intoxication publication-title: California and Western Medicine – reference: (pp. 326–331) (October). – reference: (pp. 85–90). I6doc.com publ., April. available from: – reference: Tognetti, S., Garbarino, M., Bonarini, A., & Matteucci, M. (2010). Modeling enjoyment preference from physiological responses in a car racing game. In – reference: Christy, T., & Kuncheva, L. I. (2013). A.m.b.e.r. shark-fin: An unobtrusive affective mouse. In – reference: Robinel, A., & Puzenat, D. (2013). Instrumentation and features selection using a realistic car simulator in order to perform single-user drunkenness analysis. In – volume: 2 start-page: 27:1 year: 2011 end-page: 27:27 ident: b0015 article-title: LIBSVM: A library for support vector machines publication-title: ACM Transactions on Intelligent Systems and Technology – reference: (pp. 206–211) (February). – reference: (pp. 321–328). – reference: Torkkola, K., Massey, N., & Wood, C. (2004). Driver inattention detection through intelligent analysis of readily available sensors. In – volume: 11 start-page: 10 year: 2009 end-page: 18 ident: b0035 article-title: The weka data mining software: An update publication-title: SIGKDD Exploration Newsletter – volume: 7 start-page: 357 year: 2006 end-page: 377 ident: b0005 article-title: Real-time system for monitoring driver vigilance publication-title: IEEE Transactions on Intelligent Transportation Systems – reference: Grace, R., & Steward, S. (2001). Drowsy driver monitor and warning system. In – reference: (pp. 64–69) (August). – reference: Robinel, A., & Puzenat, D. (2013). Multi-user blood alcohol content estimation in a realistic simulator using artificial neural networks and support vector machines. In – reference: Nissen, S. (2003). Implementation of a fast artificial neural network library (FANN). Technical report, Department of Computer Science University of Copenhagen, October 2003. – reference: . – volume: 40 start-page: 2341 year: 2007 end-page: 2355 ident: b0025 article-title: A visual approach for driver inattention detection publication-title: Pattern Recognition – reference: (pp. 407–412) (February). – reference: Robinel, A., & Puzenat, D. (2011). Real time drunkenness analysis through games using artificial neural networks. In – reference: (pp. 134–138) (February 2010). – reference: (pp. 488–495) (April). – reference: (pp. 466–471) (February). – reference: Puzenat, D., & Verlut, I. (2010). Behavior analysis through games using artificial neural networks. In – ident: 10.1016/j.eswa.2013.10.005_b0020 – ident: 10.1016/j.eswa.2013.10.005_b0080 – ident: 10.1016/j.eswa.2013.10.005_b0085 doi: 10.1109/ITW.2010.5593337 – volume: 7 start-page: 357 year: 2006 ident: 10.1016/j.eswa.2013.10.005_b0005 article-title: Real-time system for monitoring driver vigilance publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2006.869598 – ident: 10.1016/j.eswa.2013.10.005_b0045 doi: 10.1109/ACHI.2010.26 – ident: 10.1016/j.eswa.2013.10.005_b0065 – volume: 40 start-page: 2341 year: 2007 ident: 10.1016/j.eswa.2013.10.005_b0025 article-title: A visual approach for driver inattention detection publication-title: Pattern Recognition doi: 10.1016/j.patcog.2007.01.018 – volume: 8 start-page: 357 year: 2002 ident: 10.1016/j.eswa.2013.10.005_b0050 article-title: real-time eye gaze and face pose tracking for monitoring driver vigilance publication-title: Real-Time Imaging doi: 10.1006/rtim.2002.0279 – ident: 10.1016/j.eswa.2013.10.005_b0060 – volume: 11 start-page: 10 issue: 1 year: 2009 ident: 10.1016/j.eswa.2013.10.005_b0035 article-title: The weka data mining software: An update publication-title: SIGKDD Exploration Newsletter doi: 10.1145/1656274.1656278 – ident: 10.1016/j.eswa.2013.10.005_b0040 – ident: 10.1016/j.eswa.2013.10.005_b0055 – ident: 10.1016/j.eswa.2013.10.005_b0090 doi: 10.1109/ITSC.2004.1398919 – ident: 10.1016/j.eswa.2013.10.005_b0030 doi: 10.17077/drivingassessment.1010 – volume: XXVI start-page: 778 issue: 6 year: 1927 ident: 10.1016/j.eswa.2013.10.005_b0010 article-title: Drunkenness, a quantitative study of acute alcoholic intoxication publication-title: California and Western Medicine – volume: 2 start-page: 27:1 year: 2011 ident: 10.1016/j.eswa.2013.10.005_b0015 article-title: LIBSVM: A library for support vector machines publication-title: ACM Transactions on Intelligent Systems and Technology doi: 10.1145/1961189.1961199 – ident: 10.1016/j.eswa.2013.10.005_b0070 – ident: 10.1016/j.eswa.2013.10.005_b0075 |
| SSID | ssj0017007 |
| Score | 2.0997694 |
| Snippet | •We instrumented a realistic driving simulator and monitored users behaviour.•We generated features and associated those to various BAC values.•We were able to... We describe in this paper a new methodology for blood alcohol content (BAC) estimation of a subject. Rather than using external devices to determine the BAC... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2574 |
| SubjectTerms | Alcohols Applied sciences Artificial intelligence Artificial neural networks Automated behavioural analysis Behavioural Blood Blood alcohol content Computer science; control theory; systems Computer systems and distributed systems. User interface Connectionism. Neural networks Data processing. List processing. Character string processing Exact sciences and technology Expert systems Human computer interface Instrumentation Intelligent systems Memory organisation. Data processing Monitors Regression Software Tasks Trains |
| Title | Alcohol consumption detection through behavioural analysis using intelligent systems |
| URI | https://dx.doi.org/10.1016/j.eswa.2013.10.005 https://www.proquest.com/docview/1531034907 https://www.proquest.com/docview/1671625398 |
| Volume | 41 |
| WOSCitedRecordID | wos000330600800046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZZuofB2H0suxQNxl6Gi2Xr-hi2lG2UrLAU8mZ8OYaU4max3Zb--kmW5LgrC93DXuxYkS2j8-lY0rl8CH2IS2582iMtARIFNA2zIKMF6BGvVz0FxKmILNmEmM_lcqmOR6OfPhbm4kxUlby6Uuv_KmpdpoVtQmf_Qdz9Q3WB_q2Fro9a7Pp4J8FPLemt8SfXzVqNUEADlhPc8_K48Pwu6UbqE5O0tY1w8Vk6G5foub6xf2-SI_f_uOC4gRl8a8LRi27nA9AWG-j37o_ba6jSTvl_WRUr5x7sdh7I0GHFbyGKgBLLsuO1KSUD1LChamSuIrhLS9VyS4Xb3YTTA6gvTV4oEh903nds-8HyRvr5j-Tw5OgoWcyWi4_rX4GhEjMmd8ercg_tRYIpOUZ702-z5ffeuCRCG0XvX9_FUlm3vz-b_dt85eE6rfUoKi39ya0veTc9WTxBj9y6Ak8tHp6iEVTP0GPP2YGdCn-OFg4eeAAP3MMDO3jgATywhwfu4IEH8MAOBC_QyeFs8flr4Jg1gjxWvAlEWEgVllGpaK6yHJjMUi5pyhkzPCxEQsZkzsMU8jilccYIiJJCqRgDxrMwfonG1XkFrxCWLA9zVQClKqNZKTMp9ZkXSqgoykFMEPH9l-Qu7bxhPzlLvH_haWL6PDF9bsp0n0_Qp_6etU26srM282JJ3LTRTgcTDamd9-3fkGHflHEu4ISHE_TeCzXRStdY0tIKzts60dMEYhI7hWJHHW6Ss7FYydd3eM4b9GA7xN6icbNp4R26n180q3qz7xD8Gwjutdc |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alcohol+consumption+detection+through+behavioural+analysis+using+intelligent+systems&rft.jtitle=Expert+systems+with+applications&rft.au=Robinel%2C+Audrey&rft.au=Puzenat%2C+Didier&rft.date=2014-04-01&rft.issn=0957-4174&rft.volume=41&rft.issue=5&rft.spage=2574&rft.epage=2581&rft_id=info:doi/10.1016%2Fj.eswa.2013.10.005&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |