An alternative approach to estimating the parameters of a generalised Grey Verhulst model: An application to steel intensity of use in the UK

•A more reliable method for estimating the parameters of GM(n,m) models.•A diagnostic for deciding whether a chosen GM(n,m) is data compatible.•A generalisation of the Grey–Verhulst offering greater flexibility for data fitting.•Derivation of short to medium term predictions of steel intensity of us...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications Jg. 41; H. 4; S. 1236 - 1244
1. Verfasser: Evans, Mark
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier Ltd 01.03.2014
Elsevier
Schlagworte:
ISSN:0957-4174, 1873-6793
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A more reliable method for estimating the parameters of GM(n,m) models.•A diagnostic for deciding whether a chosen GM(n,m) is data compatible.•A generalisation of the Grey–Verhulst offering greater flexibility for data fitting.•Derivation of short to medium term predictions of steel intensity of use in the UK. Being able to forecast time series accurately has been quite a popular subject for researchers both in the past and at present. However, researchers have resorted to various forecasting models that have different mathematical backgrounds, such as statistical time series models, causal econometric models, artificial neural networks, fuzzy predictors, evolutionary and genetic algorithms. In this paper, a brief review of a relatively new approach, known as grey system theory is provided. The paper offers an alternative approach to estimating the unknown parameters of the well know GM(1,1) and it is shown that this alternative procedure provides more reliable parameter estimates together with a simple visual framework for assessing whether the properties of the chosen GM(1,1) model are consistent with the actual data. In this paper a flexible generalisation of the Grey–Verhulst model is put forward which when applied to UK steel intensity of use produces very reliable multi step ahead predictions.
AbstractList •A more reliable method for estimating the parameters of GM(n,m) models.•A diagnostic for deciding whether a chosen GM(n,m) is data compatible.•A generalisation of the Grey–Verhulst offering greater flexibility for data fitting.•Derivation of short to medium term predictions of steel intensity of use in the UK. Being able to forecast time series accurately has been quite a popular subject for researchers both in the past and at present. However, researchers have resorted to various forecasting models that have different mathematical backgrounds, such as statistical time series models, causal econometric models, artificial neural networks, fuzzy predictors, evolutionary and genetic algorithms. In this paper, a brief review of a relatively new approach, known as grey system theory is provided. The paper offers an alternative approach to estimating the unknown parameters of the well know GM(1,1) and it is shown that this alternative procedure provides more reliable parameter estimates together with a simple visual framework for assessing whether the properties of the chosen GM(1,1) model are consistent with the actual data. In this paper a flexible generalisation of the Grey–Verhulst model is put forward which when applied to UK steel intensity of use produces very reliable multi step ahead predictions.
Being able to forecast time series accurately has been quite a popular subject for researchers both in the past and at present. However, researchers have resorted to various forecasting models that have different mathematical backgrounds, such as statistical time series models, causal econometric models, artificial neural networks, fuzzy predictors, evolutionary and genetic algorithms. In this paper, a brief review of a relatively new approach, known as grey system theory is provided. The paper offers an alternative approach to estimating the unknown parameters of the well know GM(1,1) and it is shown that this alternative procedure provides more reliable parameter estimates together with a simple visual framework for assessing whether the properties of the chosen GM(1,1) model are consistent with the actual data. In this paper a flexible generalisation of the Grey-Verhulst model is put forward which when applied to UK steel intensity of use produces very reliable multi step ahead predictions.
Author Evans, Mark
Author_xml – sequence: 1
  givenname: Mark
  surname: Evans
  fullname: Evans, Mark
  email: m.evans@swansea.ac.uk
  organization: College of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, United Kingdom
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28302768$$DView record in Pascal Francis
BookMark eNqFkUFvEzEUhC1UJNLCH-DkCxKXXey1Y68Rl6qCFlGJS-FqvThvG0eOd7GdovwI_nO9SblwKCdLT_ONNTPn5CyOEQl5y1nLGVcfti3m39B2jIuW9S1j6gVZ8F6LRmkjzsiCmaVuJNfyFTnPecsY14zpBflzGSmEgilC8Q9IYZrSCG5Dy0gxF7-r53hPywbpBAl2WKWZjgMFeo8REwSfcU2vEx7oT0ybfciF7sY1ho90tp6m4F31GOPsmAtioD4WjNmXw-yzz1gPxw9-fHtNXg4QMr55ei_I3ZfPd1c3ze33669Xl7eNE0aVRjkju2UNMxjghpvOSbVaDUYyMygm5TCA0E51tZoOpQQhQCnhkMGqEwjigrw_2dasv_Y1pt357DAEiDjus-VKa8P0skL_lS4ll1Kwo_TdkxSygzAkiM5nO6VaYjrYrhes06qvuv6kc2nMOeFgnS_HikoCHyxndt7Ubu28qZ03tay3ddOKdv-gf92fhT6dIKyNPnhMNjuP0eHaJ3TFrkf_HP4ImR69xA
CitedBy_id crossref_primary_10_3390_ijerph17124582
crossref_primary_10_1016_j_energy_2024_130257
crossref_primary_10_1108_GS_09_2021_0143
crossref_primary_10_1108_GS_09_2021_0141
crossref_primary_10_1007_s00500_019_04248_0
crossref_primary_10_1177_0959651819887261
crossref_primary_10_1016_j_scitotenv_2023_165648
crossref_primary_10_1155_2017_7427131
crossref_primary_10_1142_S2196888822500129
crossref_primary_10_1016_j_resourpol_2022_102675
crossref_primary_10_1016_j_apm_2020_01_014
crossref_primary_10_1016_j_neucom_2015_11_032
crossref_primary_10_1016_j_eswa_2019_06_053
crossref_primary_10_1007_s00500_020_05040_1
crossref_primary_10_1016_j_eap_2017_12_003
crossref_primary_10_1080_01969722_2018_1448228
crossref_primary_10_1016_j_resourpol_2021_101995
crossref_primary_10_1007_s00170_018_1754_y
crossref_primary_10_1016_j_energy_2016_10_003
crossref_primary_10_1016_j_eswa_2025_127103
crossref_primary_10_1016_j_wasman_2023_07_015
crossref_primary_10_1108_GS_09_2015_0054
crossref_primary_10_1016_j_energy_2022_124935
crossref_primary_10_1155_2019_1878296
crossref_primary_10_1016_j_eswa_2014_09_058
crossref_primary_10_17093_alphanumeric_1507101
crossref_primary_10_3846_16111699_2017_1337045
crossref_primary_10_1016_j_engappai_2021_104441
crossref_primary_10_1108_GS_03_2022_0029
crossref_primary_10_1155_2016_9786107
crossref_primary_10_1007_s00500_022_07634_3
crossref_primary_10_1051_matecconf_201710002037
crossref_primary_10_1007_s11356_021_12736_w
crossref_primary_10_1016_j_chaos_2021_111657
crossref_primary_10_1016_j_jclepro_2023_138656
crossref_primary_10_1016_j_rser_2020_109945
crossref_primary_10_1080_00207543_2019_1566656
crossref_primary_10_1108_GS_04_2017_0008
crossref_primary_10_1016_j_apm_2021_09_008
crossref_primary_10_3390_en81012080
crossref_primary_10_1007_s00500_019_04276_w
crossref_primary_10_1007_s10588_016_9234_0
crossref_primary_10_1049_iet_pel_2015_0182
crossref_primary_10_1016_j_apm_2016_01_012
crossref_primary_10_1016_j_engappai_2020_103863
crossref_primary_10_1016_j_jclepro_2018_10_010
crossref_primary_10_13168_cs_2018_0036
crossref_primary_10_1016_j_amc_2019_05_012
crossref_primary_10_1016_j_energy_2019_03_056
crossref_primary_10_1016_j_cnsns_2022_106250
crossref_primary_10_3390_ijerph15030471
crossref_primary_10_1057_jors_2015_17
crossref_primary_10_1016_j_resconrec_2023_107063
crossref_primary_10_1108_GS_05_2019_0012
crossref_primary_10_1155_2015_606707
crossref_primary_10_1108_GS_06_2022_0059
Cites_doi 10.1006/jeem.1993.1039
10.1016/S0167-6911(82)80025-X
10.1016/S0196-8904(02)00248-0
10.1016/j.eswa.2008.06.103
10.1002/(SICI)1099-131X(199701)16:1<47::AID-FOR644>3.0.CO;2-0
10.1016/j.resourpol.2010.10.004
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2013.08.006
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Economics
Mathematics
Applied Sciences
Statistics
EISSN 1873-6793
EndPage 1244
ExternalDocumentID 28302768
10_1016_j_eswa_2013_08_006
S0957417413006179
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
7SC
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c396t-6c9425174f9a19192c46bbf9409f6044ffa37c621012e44a33a663ce0ab23ea3
ISICitedReferencesCount 76
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000330158700027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sun Sep 28 10:37:11 EDT 2025
Sun Sep 28 10:02:01 EDT 2025
Wed Apr 02 07:37:51 EDT 2025
Sat Nov 29 04:44:37 EST 2025
Tue Nov 18 22:25:29 EST 2025
Fri Feb 23 02:29:08 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Grey models
Model verification
Intensity of use
Estimation
Prediction
GM(1,1)
Parameter estimation
Grey system
Evolutionary algorithm
Time series
Econometric model
Systems theory
Use study
Neural network
Modeling
Forecasting
Fuzzy neural nets
Genetic algorithm
Statistical model
Iron steel industry
Causality
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c396t-6c9425174f9a19192c46bbf9409f6044ffa37c621012e44a33a663ce0ab23ea3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1541443066
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1677907566
proquest_miscellaneous_1541443066
pascalfrancis_primary_28302768
crossref_citationtrail_10_1016_j_eswa_2013_08_006
crossref_primary_10_1016_j_eswa_2013_08_006
elsevier_sciencedirect_doi_10_1016_j_eswa_2013_08_006
PublicationCentury 2000
PublicationDate 2014-03-01
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: 2014-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Expert systems with applications
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References (pp. 5007–5012), The Netherlands.
Hills, S., Thomas, R., & Dimsdale, N., (2010). The UK recession in context — what do three centuries of data tell us?
Hsu, Chen (b0035) 2003; 44
Deng (b0015) 1989; 1
Steel Intensity and G.N.P. Structure (1974). Brussels: International Iron and Steel Institute.
,
Labson, Crompton (b0045) 1993; 25
Projection 85 (1972). Brussels: International Iron and Steel Institute.
Steel Statistical Yearbook, (2012). Brussels: World Steel Organisation, Economics Committee.
Wilshire, Homer, Cooke (b0085) 1983
Huang, Jane (b0040) 2009; 36
Deng (b0005) 1982; 1
Evans (b0025) 2011; 36
Deng (b0010) 1982
Tilton (b0070) 1990
Wen, K. L., & Huang, Y. F., (2004). The development of grey Verhulst toolbox and the analysis of population saturation state in Taiwan–Fukien. In
Wen (b0080) 2004
Evans, Walton (b0020) 1998; 16
Q4, Bank of England.
Malenbaum (b0050) 1978
Hsu (10.1016/j.eswa.2013.08.006_b0035) 2003; 44
10.1016/j.eswa.2013.08.006_b0060
Huang (10.1016/j.eswa.2013.08.006_b0040) 2009; 36
Wilshire (10.1016/j.eswa.2013.08.006_b0085) 1983
Deng (10.1016/j.eswa.2013.08.006_b0005) 1982; 1
Labson (10.1016/j.eswa.2013.08.006_b0045) 1993; 25
Wen (10.1016/j.eswa.2013.08.006_b0080) 2004
Tilton (10.1016/j.eswa.2013.08.006_b0070) 1990
10.1016/j.eswa.2013.08.006_b0075
10.1016/j.eswa.2013.08.006_b0030
10.1016/j.eswa.2013.08.006_b0055
10.1016/j.eswa.2013.08.006_b0065
Deng (10.1016/j.eswa.2013.08.006_b0010) 1982
Evans (10.1016/j.eswa.2013.08.006_b0020) 1998; 16
Deng (10.1016/j.eswa.2013.08.006_b0015) 1989; 1
Malenbaum (10.1016/j.eswa.2013.08.006_b0050) 1978
Evans (10.1016/j.eswa.2013.08.006_b0025) 2011; 36
References_xml – volume: 36
  start-page: 97
  year: 2011
  end-page: 106
  ident: b0025
  article-title: Steel consumption and economic activity in the UK: The integration and cointegration debate
  publication-title: Resource Policy
– volume: 44
  start-page: 2241
  year: 2003
  end-page: 2249
  ident: b0035
  article-title: Applications of improved grey prediction model for power demand forecasting
  publication-title: Energy Conversion and Management
– reference: Q4, Bank of England.
– volume: 36
  start-page: 5387
  year: 2009
  end-page: 5392
  ident: b0040
  article-title: A hybrid model for stock market forecasting and portfolio selection based on ARX, grey system and RS theories
  publication-title: Expert Systems with Applications
– reference: Steel Statistical Yearbook, (2012). Brussels: World Steel Organisation, Economics Committee.
– year: 2004
  ident: b0080
  article-title: Grey systems
– reference: ,
– volume: 1
  start-page: 1
  year: 1989
  end-page: 24
  ident: b0015
  article-title: Introduction to grey system theory
  publication-title: The Journal of Grey System
– reference: Projection 85 (1972). Brussels: International Iron and Steel Institute.
– year: 1990
  ident: b0070
  article-title: World metals demand: Trends and prospects
– reference: Wen, K. L., & Huang, Y. F., (2004). The development of grey Verhulst toolbox and the analysis of population saturation state in Taiwan–Fukien. In
– year: 1982
  ident: b0010
  article-title: Grey system fundamental method
– year: 1978
  ident: b0050
  article-title: World demand for raw materials in 1985 and 2000
– reference: Steel Intensity and G.N.P. Structure (1974). Brussels: International Iron and Steel Institute.
– reference: (pp. 5007–5012), The Netherlands.
– volume: 16
  start-page: 47
  year: 1998
  end-page: 63
  ident: b0020
  article-title: Time-series properties and forecasts of crude steel consumption in the UK
  publication-title: Journal of Forecasting
– volume: 1
  start-page: 288
  year: 1982
  end-page: 294
  ident: b0005
  article-title: Control problems of grey system
  publication-title: Systems & Control Letters
– volume: 25
  start-page: 147
  year: 1993
  end-page: 161
  ident: b0045
  article-title: Common trends in economic activity and metals demand: Cointegration and the intensity of use debate
  publication-title: Journal of Environmental Economics and Management
– year: 1983
  ident: b0085
  article-title: Technological and economic trends in the steel Industry
– reference: Hills, S., Thomas, R., & Dimsdale, N., (2010). The UK recession in context — what do three centuries of data tell us?
– year: 1978
  ident: 10.1016/j.eswa.2013.08.006_b0050
– year: 1983
  ident: 10.1016/j.eswa.2013.08.006_b0085
– ident: 10.1016/j.eswa.2013.08.006_b0065
– year: 2004
  ident: 10.1016/j.eswa.2013.08.006_b0080
– volume: 25
  start-page: 147
  year: 1993
  ident: 10.1016/j.eswa.2013.08.006_b0045
  article-title: Common trends in economic activity and metals demand: Cointegration and the intensity of use debate
  publication-title: Journal of Environmental Economics and Management
  doi: 10.1006/jeem.1993.1039
– volume: 1
  start-page: 288
  year: 1982
  ident: 10.1016/j.eswa.2013.08.006_b0005
  article-title: Control problems of grey system
  publication-title: Systems & Control Letters
  doi: 10.1016/S0167-6911(82)80025-X
– volume: 44
  start-page: 2241
  year: 2003
  ident: 10.1016/j.eswa.2013.08.006_b0035
  article-title: Applications of improved grey prediction model for power demand forecasting
  publication-title: Energy Conversion and Management
  doi: 10.1016/S0196-8904(02)00248-0
– ident: 10.1016/j.eswa.2013.08.006_b0075
– volume: 36
  start-page: 5387
  year: 2009
  ident: 10.1016/j.eswa.2013.08.006_b0040
  article-title: A hybrid model for stock market forecasting and portfolio selection based on ARX, grey system and RS theories
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.06.103
– volume: 16
  start-page: 47
  issue: 1
  year: 1998
  ident: 10.1016/j.eswa.2013.08.006_b0020
  article-title: Time-series properties and forecasts of crude steel consumption in the UK
  publication-title: Journal of Forecasting
  doi: 10.1002/(SICI)1099-131X(199701)16:1<47::AID-FOR644>3.0.CO;2-0
– ident: 10.1016/j.eswa.2013.08.006_b0055
– volume: 36
  start-page: 97
  issue: 2
  year: 2011
  ident: 10.1016/j.eswa.2013.08.006_b0025
  article-title: Steel consumption and economic activity in the UK: The integration and cointegration debate
  publication-title: Resource Policy
  doi: 10.1016/j.resourpol.2010.10.004
– ident: 10.1016/j.eswa.2013.08.006_b0060
– year: 1982
  ident: 10.1016/j.eswa.2013.08.006_b0010
– ident: 10.1016/j.eswa.2013.08.006_b0030
– year: 1990
  ident: 10.1016/j.eswa.2013.08.006_b0070
– volume: 1
  start-page: 1
  year: 1989
  ident: 10.1016/j.eswa.2013.08.006_b0015
  article-title: Introduction to grey system theory
  publication-title: The Journal of Grey System
SSID ssj0017007
Score 2.3870053
Snippet •A more reliable method for estimating the parameters of GM(n,m) models.•A diagnostic for deciding whether a chosen GM(n,m) is data compatible.•A...
Being able to forecast time series accurately has been quite a popular subject for researchers both in the past and at present. However, researchers have...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1236
SubjectTerms Applied sciences
Artificial intelligence
Computer science; control theory; systems
Connectionism. Neural networks
Economics
Estimating
Estimation
Exact sciences and technology
Expert systems
Fuzzy logic
General aspects
GM(1,1)
Grey models
Inference from stochastic processes; time series analysis
Intensity of use
Iron and steel making
Mathematical models
Mathematics
Metals. Metallurgy
Model verification
Neural networks
Prediction
Probability and statistics
Production of metals
Sciences and techniques of general use
Statistics
Steels
Time series
Title An alternative approach to estimating the parameters of a generalised Grey Verhulst model: An application to steel intensity of use in the UK
URI https://dx.doi.org/10.1016/j.eswa.2013.08.006
https://www.proquest.com/docview/1541443066
https://www.proquest.com/docview/1677907566
Volume 41
WOSCitedRecordID wos000330158700027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKh8QQ4mOAVj4mI3GbgpLGTWJuERoCJiokuqm3yEltYKrcqkm33TnzP_NebCfpGAUOXKLWTexK7xe_D7_3e4S8FKNCxaDqPC7CmceiGfeSROUegCmWw0QWyhd1s4l4PE6mU_6p1_vuamHO57HWyeUlX_5XUcMYCBtLZ_9B3M2kMACfQehwBbHD9a8En-rD-ghcG0pvRxqORiYyaqCF6iqkBGZmIb2mqZL8Yiiov5USg1SwWZzK1df1vKxMvxwbQ-wceeOcgBI5r1kntEvvWJfSpU-eHG-E_pFXubLs0a6urnOC3pj3p-n480YlkY1LBKxNzDLBMqvZNyKOsccC05THbb6G9cqCjHV2UmSF6WhlNEOu3fFN8OHslSwvkEYqCGtGVv8aeu0raq9JRqwp0MDrukF2hvGIJ32yk74_mn5oDqNi31Tdu_9va69MmuDVdX9n39xZihLeOmXapfyi-WtzZnKf3LV-CE0Nfh6QntR75J71Sajd8UsYcm0_3NgeueWK2eHn2x8b2l_4touui2H-fkh-pJp2gEgdEGm1oC0QKTxOWyDShaKCdoBIEYjUAZHWQHxNceoWNzhjDUPawBDnARjCQL3AyfEjMnl7NHnzzrPNP7wi5FHlRQVnSKfHFBcBBz-kYFGeK858riKfMaVEGBfREPnpJGMiDAUYz4X0RT4MpQgfk75eaLlPqAiVTMCOlUoplkiRK1BEM6FUHvMZ6KABCZzEssIS42N_lnnmMiDPMpRyhlLOsGmrHw3IYfPM0tDCbL175ICQWcPWGKwZoHjrcwcbqGmWcpAdkBcORhmoBTzrE1ou1mUGnlHAWAgOxZZ7IiQbjcGhe_KnhZ6S3fYdf0b61Wotn5ObxTmAanVgX5ifkmDppQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+alternative+approach+to+estimating+the+parameters+of+a+generalised+Grey+Verhulst+model%3A+An+application+to+steel+intensity+of+use+in+the+UK&rft.jtitle=Expert+systems+with+applications&rft.au=EVANS%2C+Mark&rft.date=2014-03-01&rft.pub=Elsevier&rft.issn=0957-4174&rft.volume=41&rft.issue=4&rft.spage=1236&rft.epage=1244&rft_id=info:doi/10.1016%2Fj.eswa.2013.08.006&rft.externalDBID=n%2Fa&rft.externalDocID=28302768
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon