General Self-Motivation and Strategy Identification: Case Studies Based on Sokoban and Pac-Man
In this paper, we use empowerment, a recently introduced biologically inspired measure, to allow an AI player to assign utility values to potential future states within a previously unencountered game without requiring explicit specification of goal states. We further introduce strategic affinity, a...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on computational intelligence and AI in games. Jg. 6; H. 1; S. 1 - 17 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.03.2014
|
| Schlagworte: | |
| ISSN: | 1943-068X, 1943-0698 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper, we use empowerment, a recently introduced biologically inspired measure, to allow an AI player to assign utility values to potential future states within a previously unencountered game without requiring explicit specification of goal states. We further introduce strategic affinity, a method of grouping action sequences together to form "strategies," by examining the overlap in the sets of potential future states following each such action sequence. We also demonstrate an information-theoretic method of predicting future utility. Combining these methods, we extend empowerment to soft-horizon empowerment which enables the player to select a repertoire of action sequences that aim to maintain anticipated utility. We show how this method provides a proto-heuristic for nonterminal states prior to specifying concrete game goals, and propose it as a principled candidate model for "intuitive" strategy selection, in line with other recent work on "self-motivated agent behavior." We demonstrate that the technique, despite being generically defined independently of scenario, performs quite well in relatively disparate scenarios, such as a Sokoban-inspired box-pushing scenario and in a Pac-Man-inspired predator game, suggesting novel and principle-based candidate routes toward more general game-playing algorithms. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1943-068X 1943-0698 |
| DOI: | 10.1109/TCIAIG.2013.2295372 |