Validation of the USGS Landsat Burned Area Essential Climate Variable (BAECV) across the conterminous United States

The Landsat Burned Area Essential Climate Variable (BAECV), developed by the U.S. Geological Survey (USGS), capitalizes on the long temporal availability of Landsat imagery to identify burned areas across the conterminous United States (CONUS) (1984–2015). Adequate validation of such products is cri...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Remote sensing of environment Ročník 198; s. 393 - 406
Hlavní autori: Vanderhoof, Melanie K., Fairaux, Nicole, Beal, Yen-Ju G., Hawbaker, Todd J.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.09.2017
Predmet:
ISSN:0034-4257, 1879-0704
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The Landsat Burned Area Essential Climate Variable (BAECV), developed by the U.S. Geological Survey (USGS), capitalizes on the long temporal availability of Landsat imagery to identify burned areas across the conterminous United States (CONUS) (1984–2015). Adequate validation of such products is critical for their proper usage and interpretation. Validation of coarse-resolution products often relies on independent data derived from moderate-resolution sensors (e.g., Landsat). Validation of Landsat products, in turn, is challenging because there is no corresponding source of high-resolution, multispectral imagery that has been systematically collected in space and time over the entire temporal extent of the Landsat archive. Because of this, comparison between high-resolution images and Landsat science products can help increase user's confidence in the Landsat science products, but may not, alone, be adequate. In this paper, we demonstrate an approach to systematically validate the Landsat-derived BAECV product. Burned area extent was mapped for Landsat image pairs using a manually trained semi-automated algorithm that was manually edited across 28 path/rows and five different years (1988, 1993, 1998, 2003, 2008). Three datasets were independently developed by three analysts and the datasets were integrated on a pixel by pixel basis in which at least one to all three analysts were required to agree a pixel was burned. We found that errors within our Landsat reference dataset could be minimized by using the rendition of the dataset in which pixels were mapped as burned if at least two of the three analysts agreed. BAECV errors of omission and commission for the detection of burned pixels averaged 42% and 33%, respectively for CONUS across all five validation years. Errors of omission and commission were lowest across the western CONUS, for example in the shrub and scrublands of the Arid West (31% and 24%, respectively), and highest in the grasslands and agricultural lands of the Great Plains in central CONUS (62% and 57%, respectively). The BAECV product detected most (>65%) fire events >10ha across the western CONUS (Arid and Mountain West ecoregions). Our approach and results demonstrate that a thorough validation of Landsat science products can be completed with independent Landsat-derived reference data, but could be strengthened by the use of complementary sources of high-resolution data. •Creating multiple versions of a reference dataset can help bound error uncertainty.•The Landsat BAECV does not show temporal trends in accuracy.•Accuracy of the BAECV was strongest in regions dominated by shrub/scrub and forest.•Accuracy of the BAECV was weakest in agricultural land cover.•Most burned areas >10ha were detected for all ecoregions except the eastern U.S.
AbstractList The Landsat Burned Area Essential Climate Variable (BAECV), developed by the U.S. Geological Survey (USGS), capitalizes on the long temporal availability of Landsat imagery to identify burned areas across the conterminous United States (CONUS) (1984–2015). Adequate validation of such products is critical for their proper usage and interpretation. Validation of coarse-resolution products often relies on independent data derived from moderate-resolution sensors (e.g., Landsat). Validation of Landsat products, in turn, is challenging because there is no corresponding source of high-resolution, multispectral imagery that has been systematically collected in space and time over the entire temporal extent of the Landsat archive. Because of this, comparison between high-resolution images and Landsat science products can help increase user's confidence in the Landsat science products, but may not, alone, be adequate. In this paper, we demonstrate an approach to systematically validate the Landsat-derived BAECV product. Burned area extent was mapped for Landsat image pairs using a manually trained semi-automated algorithm that was manually edited across 28 path/rows and five different years (1988, 1993, 1998, 2003, 2008). Three datasets were independently developed by three analysts and the datasets were integrated on a pixel by pixel basis in which at least one to all three analysts were required to agree a pixel was burned. We found that errors within our Landsat reference dataset could be minimized by using the rendition of the dataset in which pixels were mapped as burned if at least two of the three analysts agreed. BAECV errors of omission and commission for the detection of burned pixels averaged 42% and 33%, respectively for CONUS across all five validation years. Errors of omission and commission were lowest across the western CONUS, for example in the shrub and scrublands of the Arid West (31% and 24%, respectively), and highest in the grasslands and agricultural lands of the Great Plains in central CONUS (62% and 57%, respectively). The BAECV product detected most (>65%) fire events >10ha across the western CONUS (Arid and Mountain West ecoregions). Our approach and results demonstrate that a thorough validation of Landsat science products can be completed with independent Landsat-derived reference data, but could be strengthened by the use of complementary sources of high-resolution data.
The Landsat Burned Area Essential Climate Variable (BAECV), developed by the U.S. Geological Survey (USGS), capitalizes on the long temporal availability of Landsat imagery to identify burned areas across the conterminous United States (CONUS) (1984–2015). Adequate validation of such products is critical for their proper usage and interpretation. Validation of coarse-resolution products often relies on independent data derived from moderate-resolution sensors (e.g., Landsat). Validation of Landsat products, in turn, is challenging because there is no corresponding source of high-resolution, multispectral imagery that has been systematically collected in space and time over the entire temporal extent of the Landsat archive. Because of this, comparison between high-resolution images and Landsat science products can help increase user's confidence in the Landsat science products, but may not, alone, be adequate. In this paper, we demonstrate an approach to systematically validate the Landsat-derived BAECV product. Burned area extent was mapped for Landsat image pairs using a manually trained semi-automated algorithm that was manually edited across 28 path/rows and five different years (1988, 1993, 1998, 2003, 2008). Three datasets were independently developed by three analysts and the datasets were integrated on a pixel by pixel basis in which at least one to all three analysts were required to agree a pixel was burned. We found that errors within our Landsat reference dataset could be minimized by using the rendition of the dataset in which pixels were mapped as burned if at least two of the three analysts agreed. BAECV errors of omission and commission for the detection of burned pixels averaged 42% and 33%, respectively for CONUS across all five validation years. Errors of omission and commission were lowest across the western CONUS, for example in the shrub and scrublands of the Arid West (31% and 24%, respectively), and highest in the grasslands and agricultural lands of the Great Plains in central CONUS (62% and 57%, respectively). The BAECV product detected most (>65%) fire events >10ha across the western CONUS (Arid and Mountain West ecoregions). Our approach and results demonstrate that a thorough validation of Landsat science products can be completed with independent Landsat-derived reference data, but could be strengthened by the use of complementary sources of high-resolution data. •Creating multiple versions of a reference dataset can help bound error uncertainty.•The Landsat BAECV does not show temporal trends in accuracy.•Accuracy of the BAECV was strongest in regions dominated by shrub/scrub and forest.•Accuracy of the BAECV was weakest in agricultural land cover.•Most burned areas >10ha were detected for all ecoregions except the eastern U.S.
Author Beal, Yen-Ju G.
Hawbaker, Todd J.
Vanderhoof, Melanie K.
Fairaux, Nicole
Author_xml – sequence: 1
  givenname: Melanie K.
  orcidid: 0000-0002-0101-5533
  surname: Vanderhoof
  fullname: Vanderhoof, Melanie K.
  email: mvanderhoof@usgs.gov
– sequence: 2
  givenname: Nicole
  surname: Fairaux
  fullname: Fairaux, Nicole
– sequence: 3
  givenname: Yen-Ju G.
  surname: Beal
  fullname: Beal, Yen-Ju G.
– sequence: 4
  givenname: Todd J.
  surname: Hawbaker
  fullname: Hawbaker, Todd J.
BookMark eNp9kMFO4zAQhq0VSFtYHoCbj3BIGCexnYhTqQqLVGkPpb1ajj3RukodsF0k3h7T7mkPnEYjzffrn--CnPnJIyHXDEoGTNztyhCxrIDJEkQJFf9BZqyVXQESmjMyA6iboqm4_EkuYtwBMN5KNiNxq0dndXKTp9NA01-km_XTmq60t1En-nAIHi2dB9R0GSP65PRIF6Pb64R0q4PT_Yj05mG-XGxvqTZhivEYYyafMOydnw6RbrxLOWadMhV_kfNBjxGv_s1Lsnlcvix-F6s_T8-L-aowdSdSwXsDbTdI3Q1DKy1UNepec2TI2972bY9tnRdmsRNcaNP0HASrEbEerERbX5KbU-5rmN4OGJPau2hwHLXHXEpVANAI0XCZT-Xp9Ng_4KCMS0crKWg3KgbqS7PaqaxZfWlWIFTWnEn2H_kaspzw8S1zf2Iwf__uMKhoHHqD1gU0SdnJfUN_AlCYmPo
CitedBy_id crossref_primary_10_1109_TGRS_2021_3110280
crossref_primary_10_1016_j_isprsjprs_2024_02_014
crossref_primary_10_1002_eap_2237
crossref_primary_10_1071_WF20072
crossref_primary_10_1080_01431161_2020_1809741
crossref_primary_10_3390_rs13040816
crossref_primary_10_3390_rs11050489
crossref_primary_10_3390_rs14174354
crossref_primary_10_1016_j_rse_2018_12_011
crossref_primary_10_1016_j_foreco_2021_119635
crossref_primary_10_3390_f10050363
crossref_primary_10_3390_rs12040674
crossref_primary_10_1080_01431161_2024_2380543
crossref_primary_10_3390_rs16132500
crossref_primary_10_3390_fire4020026
crossref_primary_10_1016_j_rse_2020_111801
crossref_primary_10_1111_geb_13058
crossref_primary_10_1016_j_rse_2019_02_013
crossref_primary_10_1080_10106049_2022_2060323
crossref_primary_10_1186_s42408_020_00076_y
crossref_primary_10_5194_essd_12_3229_2020
crossref_primary_10_5194_essd_15_5227_2023
crossref_primary_10_1016_j_rse_2021_112823
crossref_primary_10_22209_rt_ve2020n2a02
crossref_primary_10_1088_2752_5295_acb079
crossref_primary_10_3390_rs9111131
crossref_primary_10_1007_s12145_023_00933_9
crossref_primary_10_3390_rs13245131
crossref_primary_10_3390_rs11030328
crossref_primary_10_1071_WF19201
crossref_primary_10_1109_TGRS_2022_3174651
crossref_primary_10_1016_j_isprsjprs_2024_08_019
crossref_primary_10_3390_s20092454
crossref_primary_10_1071_WF18075
crossref_primary_10_3390_rs9070743
crossref_primary_10_3390_rs15061489
crossref_primary_10_1016_j_rse_2017_06_027
crossref_primary_10_1016_j_rse_2022_113214
crossref_primary_10_3390_rs13214298
Cites_doi 10.1038/nature06272
10.1016/j.rse.2017.06.027
10.1126/science.250.4988.1669
10.1071/WF07106
10.1080/01431160110053185
10.1080/01431160500113096
10.1007/s10021-013-9669-9
10.1109/TGRS.2006.877436
10.1016/j.jag.2013.05.014
10.1016/j.rse.2010.07.010
10.1007/s10021-008-9201-9
10.1046/j.1466-822X.2001.00175.x
10.1016/j.rse.2008.05.013
10.1016/S0034-4257(96)00176-9
10.1016/j.rse.2010.12.005
10.1016/j.rse.2010.07.008
10.1007/s10661-005-1611-y
10.1139/x01-183
10.1111/jbi.12533
10.5194/bg-7-1171-2010
10.1007/s00267-014-0364-1
10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
10.1016/j.rse.2014.01.008
10.1109/TGRS.2008.2009000
10.1016/j.rse.2015.01.022
10.1016/j.isprsjprs.2012.03.001
10.4996/fireecology.0301003
10.1016/j.rse.2012.12.003
10.1016/j.rse.2014.06.012
10.1016/j.rse.2012.12.001
10.1016/j.rse.2008.10.006
10.1073/pnas.0506179102
10.1002/sim.4780040112
10.1080/10106049109354290
10.1007/BF00031911
10.1071/WF05085
10.1016/j.rse.2015.01.005
10.14358/PERS.73.2.165
10.1016/j.jag.2010.06.008
10.1080/17538940902801614
10.14358/PERS.74.7.881
10.1016/j.rse.2016.08.022
10.1029/2004GB002366
10.1016/j.rse.2010.07.009
10.3390/rs61212360
10.1080/01431161.2011.648284
10.1071/WF03079
10.1016/j.rse.2014.03.021
10.1093/auk/117.2.393
10.1016/j.geoderma.2010.03.015
10.1016/j.rse.2008.02.010
10.1016/0034-4257(79)90013-0
10.1111/geb.12440
10.1016/j.rse.2011.08.024
10.1007/BF01617722
10.1023/A:1020207710195
10.1080/01431160903131000
10.3390/rs6032050
10.1016/0378-1127(92)90274-D
ContentType Journal Article
Copyright 2017
Copyright_xml – notice: 2017
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.rse.2017.06.025
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
EndPage 406
ExternalDocumentID 10_1016_j_rse_2017_06_025
S0034425717302845
GeographicLocations Great Plains region
United States
GeographicLocations_xml – name: Great Plains region
– name: United States
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
WH7
ZCA
ZMT
~02
~G-
~KM
29P
41~
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABUFD
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FA8
FEDTE
FGOYB
G-2
HMA
HMC
HVGLF
HZ~
H~9
OHT
R2-
SEN
SEP
SEW
VOH
WUQ
XOL
~HD
7S9
L.6
ID FETCH-LOGICAL-c396t-5bc089f7a9ff87d023eaba5e1e58bdb8be83e1e1de9656ac4b50613eee3fd7ed3
ISICitedReferencesCount 43
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000406818500032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0034-4257
IngestDate Sun Nov 09 13:29:31 EST 2025
Tue Nov 18 21:50:23 EST 2025
Sat Nov 29 02:51:21 EST 2025
Fri Feb 23 02:30:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Validation
Wildfire
Burned area
Essential climate variable
Fire
Landsat
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c396t-5bc089f7a9ff87d023eaba5e1e58bdb8be83e1e1de9656ac4b50613eee3fd7ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0101-5533
PQID 2000466457
PQPubID 24069
PageCount 14
ParticipantIDs proquest_miscellaneous_2000466457
crossref_citationtrail_10_1016_j_rse_2017_06_025
crossref_primary_10_1016_j_rse_2017_06_025
elsevier_sciencedirect_doi_10_1016_j_rse_2017_06_025
PublicationCentury 2000
PublicationDate 2017-09-01
2017-09-00
20170901
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Remote sensing of environment
PublicationYear 2017
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Zhang, Roy (bb0375) 2016; 186
Eidenshink, Schwind, Brewer, Zhu, Quayle, Howard (bb0080) 2007; 3
Cuzick (bb0070) 1985; 4
Goodwin, Collett (bb0125) 2014; 148
Mallinis, Koutsias (bb0185) 2012; 33
Trigg, Flasse (bb0340) 2001; 22
Miller, Safford, Crimmins, Thode (bb0205) 2009; 12
Roy, Boschetti (bb0290) 2009; 47
(bb0040) 1997
Whitman, Battlori, Parisien, Miller, Coop, Krawchuk, Chong, Haire (bb0365) 2015; 42
Pinty, Verstraete (bb0270) 1992; 101
Waldrop, van Lear, Lloyd, Harms (bb0350) 1987
Strahler, Boschetti, Foody, Friedl, Hansen, Herold, Mayaux, Morisette, Stehman, Woodcock (bb0320) 2006
Olson, Dinerstein, Wikramanayake, Burgess, Powell, Underwood, D'Amico, Itoua, Strand, Morrison, Loucks, Allnutt, Ricketts, Kura, Lamoreux, Wettengel, Hedao, Kassem (bb0235) 2001; 51
Podur, Martell, Knight (bb0275) 2002; 32
Zimmerman, Zumbo (bb0385) 1993
Richter, Schläpfer (bb0285) 2016
Bastarrika, Chuvieco, Martin (bb0005) 2011; 115
Giglio, Lobada, Roy, Quayle, Justice (bb0100) 2009; 113
Omernik, Griffith (bb0240) 2014; 54
Thomas, Huang, Goward, Powell, Rishmawi, Schleeweis, Hinds (bb0330) 2011; 115
Hansen, Loveland (bb0135) 2012; 122
Hawbaker, Vanderhoof, Beal, Takacs, Schmidt, Falgout, Williams, Fairaux, Caldwell, Picotte, Howard, Stitt, Dwyer (bb0145) 2017; 198
Kovalskyy, Roy (bb0180) 2013; 130
Tucker (bb0345) 1979; 8
Fleiss (bb0085) 1981
Stroppiana, Bordogna, Carrara, Boschetti, Boschetti, Brivio (bb0325) 2012; 69
Morisette, Baret, Liang (bb0220) 2006; 44
Goward, Huang, Zhao, Schleeweis, Rishmawi, Lindsey, Dungan, Michaelis (bb0130) 2016
Padilla, Stehman, Hantson, Oliva, AlonsoCanas, Bradley, Tansey, Mota, Pereira, Chuvieco (bb0255) 2015; 160
Cohen, Yang, Kennedy (bb0055) 2010; 114
Holden, Morgan, Smith, Vierling (bb0155) 2010; 19
Roy, Frost, Justice, Landmann, Le Roux, Gumbo, Makungwa, Dunham, Du Toit, Mhwandagara, Zacarias, Tacheba, Dube, Pereira, Mushove, Morisette, Santhana Vannan, Davies (bb0295) 2005; 26
Conard, Sukhinin, Stocks, Cahoon, Davidenko, Ivanova (bb0060) 2002; 55
Key, Benson (bb0175) 2006
Forbes (bb0090) 1995; 11
Homer, Dewitz, Yang, Jin, Danielson, Xian, Coulston, Herold, Wickham, Megown (bb0160) 2015; 81
Masek, Goward, Kennedy, Cohen, Moisen, Schleeweis, Haung (bb0195) 2013; 16
Palacios-Orueta, Chuvieco, Parra, Carmona-Moreno (bb0260) 2005; 104
Global Climate Observing System (bb0110) 2004
Breiman, Freiedman, Olshen, Stone (bb0035) 1984
Padilla, Stehman, Litago, Chuvieco (bb0250) 2014; 6
Zhu, Woodcock (bb0380) 2014; 152
Padilla, Stehman, Chuvieco (bb0245) 2014; 144
Mouillot, Schultz, Yue, Cadule, Tansey, Ciais, Chuvieco (bb0225) 2014; 26
Cochran (bb0050) 1977
Henry (bb0150) 2008; 74
Chuvieco, Yue, Heil, Mouillot, Alonso-Canas, Padilla, Pereira, Oom, Tansey (bb0045) 2016; 25
Baveye, Laba, Otten, Bouckaert, Sterpaio, Goswami, Grinev, Huston, Hu, Liu, Mooney, Pajor, Sleutel, Tarquis, Wang, Wei, Sezgin (bb0015) 2010; 157
Stehman (bb0305) 1997; 60
Hastie, Tibshirani, Friedman (bb0140) 2009
Mitri, Gitas (bb0215) 2006; 15
Boschetti, Roy, Justice, Humber (bb0030) 2015; 161
García, Caselles (bb0095) 1991; 6
Stehman (bb0310) 2009; 30
Waldrop, White, Jones (bb0355) 1992; 47
Kennedy, Yang, Cohen (bb0170) 2010; 114
Thonicke, Venevsky, Sitch, Cramer (bb0335) 2001; 10
Randerson, van der Werf, Collatz, Giglio, Still, Kasibhatla, Miller, White, DeFries, Kasischke (bb0280) 2005; 19
Crutzen, Andreae (bb0065) 1990; 250
Huang, Goward, Masek, Gao, Vermote, Thomas, Schleeweis, Kennedy, Zhu, Eidenshink, Townshend (bb0165) 2009; 2
Bastarrika, Alvarado, Artano, Martinez, Mesanza, Torre, Ramo, Chuvieco (bb0010) 2014; 6
Wickham, Stehman, Gass, Dewitz, Fry, Wade (bb0370) 2013; 130
Mazz (bb0200) 1996; 2743
Giglio, Randerson, van der Werf, Kasibhatla, Collatz, Morton (bb0105) 2010; 7
Nichols, Hines, Sauer, Fallon, Fallon, Heglund (bb0230) 2000; 117
Petropoulos, Kontoes, Keramitsoglou (bb0265) 2011; 13
Masek, Huang, Wolfe, Cohen, Hall, Kutler, Nelson (bb0190) 2008; 112
Walters, Schneider, Guthrie (bb0360) 2011
Bond-Lamberty, Peckham, Ahl, Gower (bb0020) 2007; 450
Goetz, Bunn, Fiske, Houghton (bb0120) 2005; 102
Stehman, Arora, Kasetkasem, Varshney (bb0315) 2007; 73
Mitri, Gitas (bb0210) 2004; 13
Roy, Boschetti, Justice, Ju (bb0300) 2008; 112
Padilla (10.1016/j.rse.2017.06.025_bb0255) 2015; 160
Masek (10.1016/j.rse.2017.06.025_bb0195) 2013; 16
Bastarrika (10.1016/j.rse.2017.06.025_bb0010) 2014; 6
Stehman (10.1016/j.rse.2017.06.025_bb0310) 2009; 30
Wickham (10.1016/j.rse.2017.06.025_bb0370) 2013; 130
García (10.1016/j.rse.2017.06.025_bb0095) 1991; 6
Goward (10.1016/j.rse.2017.06.025_bb0130) 2016
Crutzen (10.1016/j.rse.2017.06.025_bb0065) 1990; 250
Masek (10.1016/j.rse.2017.06.025_bb0190) 2008; 112
Mitri (10.1016/j.rse.2017.06.025_bb0210) 2004; 13
Huang (10.1016/j.rse.2017.06.025_bb0165) 2009; 2
Stehman (10.1016/j.rse.2017.06.025_bb0305) 1997; 60
Cuzick (10.1016/j.rse.2017.06.025_bb0070) 1985; 4
Eidenshink (10.1016/j.rse.2017.06.025_bb0080) 2007; 3
Strahler (10.1016/j.rse.2017.06.025_bb0320) 2006
Whitman (10.1016/j.rse.2017.06.025_bb0365) 2015; 42
Padilla (10.1016/j.rse.2017.06.025_bb0245) 2014; 144
Miller (10.1016/j.rse.2017.06.025_bb0205) 2009; 12
Giglio (10.1016/j.rse.2017.06.025_bb0105) 2010; 7
Henry (10.1016/j.rse.2017.06.025_bb0150) 2008; 74
Mouillot (10.1016/j.rse.2017.06.025_bb0225) 2014; 26
Roy (10.1016/j.rse.2017.06.025_bb0295) 2005; 26
Cochran (10.1016/j.rse.2017.06.025_bb0050) 1977
Roy (10.1016/j.rse.2017.06.025_bb0300) 2008; 112
Bond-Lamberty (10.1016/j.rse.2017.06.025_bb0020) 2007; 450
Giglio (10.1016/j.rse.2017.06.025_bb0100) 2009; 113
Tucker (10.1016/j.rse.2017.06.025_bb0345) 1979; 8
Goetz (10.1016/j.rse.2017.06.025_bb0120) 2005; 102
Nichols (10.1016/j.rse.2017.06.025_bb0230) 2000; 117
Bastarrika (10.1016/j.rse.2017.06.025_bb0005) 2011; 115
Stehman (10.1016/j.rse.2017.06.025_bb0315) 2007; 73
Zimmerman (10.1016/j.rse.2017.06.025_bb0385) 1993
Podur (10.1016/j.rse.2017.06.025_bb0275) 2002; 32
Global Climate Observing System (10.1016/j.rse.2017.06.025_bb0110)
Petropoulos (10.1016/j.rse.2017.06.025_bb0265) 2011; 13
Trigg (10.1016/j.rse.2017.06.025_bb0340) 2001; 22
Hawbaker (10.1016/j.rse.2017.06.025_bb0145) 2017; 198
Thonicke (10.1016/j.rse.2017.06.025_bb0335) 2001; 10
Padilla (10.1016/j.rse.2017.06.025_bb0250) 2014; 6
(10.1016/j.rse.2017.06.025_bb0040) 1997
Kennedy (10.1016/j.rse.2017.06.025_bb0170) 2010; 114
Baveye (10.1016/j.rse.2017.06.025_bb0015) 2010; 157
Mallinis (10.1016/j.rse.2017.06.025_bb0185) 2012; 33
Richter (10.1016/j.rse.2017.06.025_bb0285)
Fleiss (10.1016/j.rse.2017.06.025_bb0085) 1981
Thomas (10.1016/j.rse.2017.06.025_bb0330) 2011; 115
Homer (10.1016/j.rse.2017.06.025_bb0160) 2015; 81
Cohen (10.1016/j.rse.2017.06.025_bb0055) 2010; 114
Holden (10.1016/j.rse.2017.06.025_bb0155) 2010; 19
Key (10.1016/j.rse.2017.06.025_bb0175) 2006
Zhu (10.1016/j.rse.2017.06.025_bb0380) 2014; 152
Roy (10.1016/j.rse.2017.06.025_bb0290) 2009; 47
Chuvieco (10.1016/j.rse.2017.06.025_bb0045) 2016; 25
Goodwin (10.1016/j.rse.2017.06.025_bb0125) 2014; 148
Breiman (10.1016/j.rse.2017.06.025_bb0035) 1984
Hansen (10.1016/j.rse.2017.06.025_bb0135) 2012; 122
Omernik (10.1016/j.rse.2017.06.025_bb0240) 2014; 54
Pinty (10.1016/j.rse.2017.06.025_bb0270) 1992; 101
Kovalskyy (10.1016/j.rse.2017.06.025_bb0180) 2013; 130
Waldrop (10.1016/j.rse.2017.06.025_bb0355) 1992; 47
Boschetti (10.1016/j.rse.2017.06.025_bb0030) 2015; 161
Randerson (10.1016/j.rse.2017.06.025_bb0280) 2005; 19
Waldrop (10.1016/j.rse.2017.06.025_bb0350) 1987
Palacios-Orueta (10.1016/j.rse.2017.06.025_bb0260) 2005; 104
Olson (10.1016/j.rse.2017.06.025_bb0235) 2001; 51
Morisette (10.1016/j.rse.2017.06.025_bb0220) 2006; 44
Conard (10.1016/j.rse.2017.06.025_bb0060) 2002; 55
Mitri (10.1016/j.rse.2017.06.025_bb0215) 2006; 15
Zhang (10.1016/j.rse.2017.06.025_bb0375) 2016; 186
Forbes (10.1016/j.rse.2017.06.025_bb0090) 1995; 11
Hastie (10.1016/j.rse.2017.06.025_bb0140) 2009
Mazz (10.1016/j.rse.2017.06.025_bb0200) 1996; 2743
Stroppiana (10.1016/j.rse.2017.06.025_bb0325) 2012; 69
Walters (10.1016/j.rse.2017.06.025_bb0360) 2011
References_xml – year: 1997
  ident: bb0040
  publication-title: Remote Sensing of Large Wildfires in the European Mediterranean Basin
– volume: 32
  start-page: 195
  year: 2002
  end-page: 205
  ident: bb0275
  article-title: Statistical quality control analysis of forest fire activity in Canada
  publication-title: Can. J. For. Res.
– volume: 47
  start-page: 1032
  year: 2009
  end-page: 1044
  ident: bb0290
  article-title: Southern Africa validation of the MODIS, L3JRC, and GlobCarbon burned-area products
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 115
  start-page: 19
  year: 2011
  end-page: 32
  ident: bb0330
  article-title: Validation of North American forest disturbance dynamics derived from Landsat time series stacks
  publication-title: Remote Sens. Environ.
– volume: 148
  start-page: 206
  year: 2014
  end-page: 221
  ident: bb0125
  article-title: Development of an automated method for mapping fire history captured in Landsat TM and ETM
  publication-title: Remote Sens. Environ.
– volume: 161
  start-page: 27
  year: 2015
  end-page: 42
  ident: bb0030
  article-title: MODIS-Landsat fusion for large area 30
  publication-title: Remote Sens. Environ.
– volume: 144
  start-page: 187
  year: 2014
  end-page: 196
  ident: bb0245
  article-title: Validation of the 2008 MODIS-MCD45 global burned area product using stratified random sampling
  publication-title: Remote Sens. Environ.
– volume: 186
  start-page: 217
  year: 2016
  end-page: 233
  ident: bb0375
  article-title: Landsat 5 thematic mapper reflectance and NDVI 27-year time series inconsistencies due to satellite orbit change
  publication-title: Remote Sens. Environ.
– volume: 10
  start-page: 661
  year: 2001
  end-page: 677
  ident: bb0335
  article-title: The role of fire disturbance for global vegetation dynamics: coupling fire into a dynamic global vegetation model
  publication-title: Glob. Ecol. Biogeogr.
– volume: 11
  start-page: 189
  year: 1995
  end-page: 206
  ident: bb0090
  article-title: Classification-algorithm evaluation: five performance measures based on confusion matrices
  publication-title: J. Clin. Monit.
– volume: 130
  start-page: 294
  year: 2013
  end-page: 304
  ident: bb0370
  article-title: Accuracy assessment of NLCD 2006 land cover and impervious surface
  publication-title: Remote Sens. Environ.
– volume: 115
  start-page: 1003
  year: 2011
  end-page: 1012
  ident: bb0005
  article-title: Mapping burned areas from Landsat TM/ETM
  publication-title: Remote Sens. Environ.
– volume: 33
  start-page: 4408
  year: 2012
  end-page: 4433
  ident: bb0185
  article-title: Comparing ten classification methods for burned area mapping in a Mediterranean environment using Landsat TM satellite data
  publication-title: Int. J. Remote Sens.
– volume: 26
  start-page: 64
  year: 2014
  end-page: 79
  ident: bb0225
  article-title: Ten years of global burned area products from spaceborne remote sensing – a review: analysis of user needs and recommendations for future developments
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 51
  start-page: 933
  year: 2001
  end-page: 938
  ident: bb0235
  article-title: Terrestrial ecoregions of the world: a new map of life on earth
  publication-title: Bioscience
– volume: 73
  start-page: 165
  year: 2007
  end-page: 174
  ident: bb0315
  article-title: Estimation of fuzzy error matrix accuracy measures under stratified random sampling
  publication-title: Photogramm. Eng. Remote. Sens.
– volume: 112
  start-page: 3690
  year: 2008
  end-page: 3707
  ident: bb0300
  article-title: The collection 5 MODIS burned area product – global evaluation by comparison with the MODIS active fire product
  publication-title: Remote Sens. Environ.
– volume: 44
  start-page: 1695
  year: 2006
  end-page: 1697
  ident: bb0220
  article-title: Special issue on global land product validation
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 81
  start-page: 345
  year: 2015
  end-page: 354
  ident: bb0160
  article-title: Completion of the 2011 National Land Cover Database for the conterminous United States – representing a decade of land cover change information
  publication-title: Photogramm. Eng. Remote. Sens.
– volume: 450
  start-page: 89
  year: 2007
  end-page: 92
  ident: bb0020
  article-title: Fire as the dominant driver of central Canadian boreal forest carbon balance
  publication-title: Nature
– year: 1993
  ident: bb0385
  article-title: Relative Power of the Wilcoxon Test, the Friedman Test, and Repeated-measures ANOVA on Ranks
– volume: 2743
  year: 1996
  ident: bb0200
  article-title: Analysis of observer variability in the assessment of FLIR performance
  publication-title: Proceedings of the International Society for Optical Engineering
– volume: 16
  start-page: 1087
  year: 2013
  end-page: 1104
  ident: bb0195
  article-title: United States forest disturbance trends observed using Landsat time series
  publication-title: Ecosystems
– volume: 19
  start-page: 1
  year: 2005
  end-page: 13
  ident: bb0280
  article-title: Fire emissions from C3 and C4 vegetation and their influence on interannual variability of atmospheric CO
  publication-title: Glob. Biogeochem. Cycles
– volume: 8
  start-page: 127
  year: 1979
  end-page: 150
  ident: bb0345
  article-title: Red and photographic infrared linear combinations for monitoring vegetation
  publication-title: Remote Sens. Environ.
– year: 2009
  ident: bb0140
  article-title: The Elements of Statistical Learning; Data Mining, Inference, and Prediction
– volume: 3
  start-page: 3
  year: 2007
  end-page: 21
  ident: bb0080
  article-title: A project for monitoring trends in burn severity
  publication-title: Fire Ecol.
– volume: 130
  start-page: 280
  year: 2013
  end-page: 293
  ident: bb0180
  article-title: The global availability of Landsat 5 TM and Landsat ETM
  publication-title: Remote Sens. Environ.
– volume: 113
  start-page: 408
  year: 2009
  end-page: 420
  ident: bb0100
  article-title: An active-fire based burned area mapping algorithm for the MODIS sensor
  publication-title: Remote Sens. Environ.
– volume: 74
  start-page: 881
  year: 2008
  end-page: 891
  ident: bb0150
  article-title: Comparison of single- and multi-date Landsat data for mapping wildfire scares in Ocala National Forest, Florida
  publication-title: Photogramm. Eng. Remote. Sens.
– volume: 15
  start-page: 457
  year: 2006
  end-page: 462
  ident: bb0215
  article-title: Fire type mapping using object-based classification of Ikonos imagery
  publication-title: Int. J. Wildland Fire
– volume: 13
  start-page: 367
  year: 2004
  end-page: 376
  ident: bb0210
  article-title: A semi-automated object-oriented model for burned area mapping in the Mediterranean region using Landsat-TM imagery
  publication-title: Int. J. Wildland Fire
– volume: 250
  start-page: 1669
  year: 1990
  end-page: 1678
  ident: bb0065
  article-title: Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles
  publication-title: Science
– volume: 6
  start-page: 2050
  year: 2014
  end-page: 2068
  ident: bb0250
  article-title: Assessing the temporal stability of the accuracy of a time series of burned area products
  publication-title: Remote Sens.
– volume: 122
  start-page: 66
  year: 2012
  end-page: 74
  ident: bb0135
  article-title: A review of large area monitoring of land cover change using Landsat data
  publication-title: Remote Sens. Environ.
– volume: 112
  start-page: 2914
  year: 2008
  end-page: 2926
  ident: bb0190
  article-title: North American forest disturbance from a decadal Landsat record
  publication-title: Remote Sens. Environ.
– volume: 30
  start-page: 5243
  year: 2009
  end-page: 5272
  ident: bb0310
  article-title: Sampling designs for accuracy assessment of land cover
  publication-title: Int. J. Remote Sens.
– volume: 6
  start-page: 31
  year: 1991
  end-page: 37
  ident: bb0095
  article-title: Mapping burns and natural reforestation using thematic mapper data
  publication-title: Geocarto Int.
– volume: 6
  start-page: 12360
  year: 2014
  end-page: 12380
  ident: bb0010
  article-title: BAMS: a tool for supervised burned area mapping using Landsat data
  publication-title: Remote Sens.
– volume: 26
  start-page: 4265
  year: 2005
  end-page: 4292
  ident: bb0295
  article-title: The Southern Africa fire network (SAFNet) regional burned-area product-validation protocol
  publication-title: Int. J. Remote Sens.
– volume: 60
  start-page: 258
  year: 1997
  end-page: 269
  ident: bb0305
  article-title: Estimating standard errors of accuracy assessment statistics under cluster sampling
  publication-title: Remote Sens. Environ.
– volume: 55
  start-page: 197
  year: 2002
  end-page: 211
  ident: bb0060
  article-title: Determining effects of area burned and fire severity on carbon cycling and emissions in Siberia
  publication-title: Clim. Chang.
– volume: 160
  start-page: 114
  year: 2015
  end-page: 121
  ident: bb0255
  article-title: Comparing the accuracies of remote sensing global burned area products using stratified random sampling and estimation
  publication-title: Remote Sens. Environ.
– volume: 152
  start-page: 217
  year: 2014
  end-page: 234
  ident: bb0380
  article-title: Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: an algorithm designed specifically for monitoring land cover change
  publication-title: Remote Sens. Environ.
– volume: 2
  start-page: 195
  year: 2009
  end-page: 218
  ident: bb0165
  article-title: Development of time series stacks of Landsat images for reconstructing forest disturbance history
  publication-title: Int. J. Digital Earth
– volume: 101
  start-page: 15
  year: 1992
  end-page: 20
  ident: bb0270
  article-title: GEMI: a non-linear index to monitor global vegetation from satellites
  publication-title: Vegetatio
– volume: 4
  start-page: 87
  year: 1985
  end-page: 90
  ident: bb0070
  article-title: A Wilcoxon-type test for trend
  publication-title: Stat. Med.
– volume: 42
  start-page: 1736
  year: 2015
  end-page: 1749
  ident: bb0365
  article-title: The climate space of fire regimes in north-western North America
  publication-title: J. Biogeogr.
– volume: 198
  start-page: 504
  year: 2017
  end-page: 522
  ident: bb0145
  article-title: Mapping burned areas using dense time-series of Landsat data
  publication-title: Remote Sens. Environ.
– year: 1981
  ident: bb0085
  article-title: Statistical Methods for Rates and Proportions
– volume: 7
  start-page: 1171
  year: 2010
  ident: bb0105
  article-title: Assessing variability and long-term trends in burned area by merging multiple satellite fire products
  publication-title: Biogeosci. Discuss.
– volume: 25
  start-page: 619
  year: 2016
  end-page: 629
  ident: bb0045
  article-title: A new global burned area product for climate assessment of fire impacts
  publication-title: Glob. Ecol. Biogeogr.
– volume: 13
  start-page: 70
  year: 2011
  end-page: 80
  ident: bb0265
  article-title: Burnt area delineation from a uni-temporal perspective based on Landsat TM imagery classification using support vector machines
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 22
  start-page: 2641
  year: 2001
  end-page: 2647
  ident: bb0340
  article-title: An evaluation of different bi-spectral spaces for discriminating burned shrub-savannah
  publication-title: Int. J. Remote Sens.
– volume: 114
  start-page: 2897
  year: 2010
  end-page: 2910
  ident: bb0170
  article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr – temporal segmentation algorithms
  publication-title: Remote Sens. Environ.
– volume: 117
  start-page: 393
  year: 2000
  end-page: 408
  ident: bb0230
  article-title: A double-observer approach for estimating detection probability and abundance from point counts
  publication-title: Auk
– year: 2011
  ident: bb0360
  article-title: Geospatial Multi-agency Coordination (GeoMAC) Wildland Fire Perimeters, 2008 (Data Series 612)
– volume: 102
  start-page: 13521
  year: 2005
  end-page: 13525
  ident: bb0120
  article-title: Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– year: 2016
  ident: bb0285
  article-title: Atmospheric/Topographic correction for satellite imagery: ATCOR-2/3 User Guide
– year: 2004
  ident: bb0110
  article-title: Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC
– volume: 19
  start-page: 449
  year: 2010
  end-page: 458
  ident: bb0155
  article-title: Beyond Landsat: a comparison of four satellite sensors for detecting burn severity in ponderosa pine forests of the Gila Wilderness, NM, USA
  publication-title: Int. J. Wildland Fire
– volume: 69
  start-page: 88
  year: 2012
  end-page: 102
  ident: bb0325
  article-title: A method for extracting burned areas from Landsat TM/ETM
  publication-title: ISPRS J. Photogramm. Remote Sens.
– year: 2016
  ident: bb0130
  article-title: NACP NAFD Project: Forest Disturbance History from Landsat, 1986–2010
– volume: 104
  start-page: 189
  year: 2005
  end-page: 209
  ident: bb0260
  article-title: Biomass burning emissions: a review of models using remote-sensing data
  publication-title: Environ. Monit. Assess.
– year: 1987
  ident: bb0350
  article-title: Long-Term Studies of Prescribed Burning in Loblolly Pine Forests of the Southeastern Coastal Plain. (General Technical Preport SE-45)
– year: 2006
  ident: bb0320
  article-title: Global Land Cover Validation: Recommendations for evaluation and accuracy assessment of global land cover maps (GOFC-GOLD Report No. 25)
– year: 1984
  ident: bb0035
  article-title: Classification and Regression Trees
– year: 1977
  ident: bb0050
  article-title: Sampling Techniques
– volume: 114
  start-page: 2911
  year: 2010
  end-page: 2924
  ident: bb0055
  article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync–Tools for calibration and validation
  publication-title: Remote Sens. Environ.
– volume: 47
  start-page: 195
  year: 1992
  end-page: 210
  ident: bb0355
  article-title: Fire regimes for pine-grassland communities in the southeastern United States
  publication-title: For. Ecol. Manag.
– volume: 54
  start-page: 1249
  year: 2014
  end-page: 1266
  ident: bb0240
  article-title: Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework
  publication-title: Environ. Manag.
– volume: 157
  start-page: 51
  year: 2010
  end-page: 63
  ident: bb0015
  article-title: Observer-dependent variability of the thresholding step in the quantitative analysis of soil images and X-ray microtomography data
  publication-title: Geoderma
– year: 2006
  ident: bb0175
  article-title: Landscape assessment: sampling and analysis methods
  publication-title: FIREMON: Fire Effects Monitoring and Inventory System (General Technical Report RMRS-GTR-164-CD)
– volume: 12
  start-page: 16
  year: 2009
  end-page: 32
  ident: bb0205
  article-title: Quantitative evidence for increasing forest fire severity in the Sierra Nevada and Southern Cascade Mountains, California and Nevada, USA
  publication-title: Ecosystems
– volume: 450
  start-page: 89
  year: 2007
  ident: 10.1016/j.rse.2017.06.025_bb0020
  article-title: Fire as the dominant driver of central Canadian boreal forest carbon balance
  publication-title: Nature
  doi: 10.1038/nature06272
– volume: 198
  start-page: 504
  year: 2017
  ident: 10.1016/j.rse.2017.06.025_bb0145
  article-title: Mapping burned areas using dense time-series of Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.027
– year: 1987
  ident: 10.1016/j.rse.2017.06.025_bb0350
– year: 1997
  ident: 10.1016/j.rse.2017.06.025_bb0040
– volume: 81
  start-page: 345
  year: 2015
  ident: 10.1016/j.rse.2017.06.025_bb0160
  article-title: Completion of the 2011 National Land Cover Database for the conterminous United States – representing a decade of land cover change information
  publication-title: Photogramm. Eng. Remote. Sens.
– volume: 250
  start-page: 1669
  issue: 4988
  year: 1990
  ident: 10.1016/j.rse.2017.06.025_bb0065
  article-title: Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles
  publication-title: Science
  doi: 10.1126/science.250.4988.1669
– volume: 19
  start-page: 449
  year: 2010
  ident: 10.1016/j.rse.2017.06.025_bb0155
  article-title: Beyond Landsat: a comparison of four satellite sensors for detecting burn severity in ponderosa pine forests of the Gila Wilderness, NM, USA
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF07106
– volume: 22
  start-page: 2641
  issue: 13
  year: 2001
  ident: 10.1016/j.rse.2017.06.025_bb0340
  article-title: An evaluation of different bi-spectral spaces for discriminating burned shrub-savannah
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160110053185
– volume: 26
  start-page: 4265
  issue: 19
  year: 2005
  ident: 10.1016/j.rse.2017.06.025_bb0295
  article-title: The Southern Africa fire network (SAFNet) regional burned-area product-validation protocol
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160500113096
– volume: 16
  start-page: 1087
  issue: 6
  year: 2013
  ident: 10.1016/j.rse.2017.06.025_bb0195
  article-title: United States forest disturbance trends observed using Landsat time series
  publication-title: Ecosystems
  doi: 10.1007/s10021-013-9669-9
– volume: 44
  start-page: 1695
  issue: 7
  year: 2006
  ident: 10.1016/j.rse.2017.06.025_bb0220
  article-title: Special issue on global land product validation
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.877436
– year: 1984
  ident: 10.1016/j.rse.2017.06.025_bb0035
– volume: 26
  start-page: 64
  year: 2014
  ident: 10.1016/j.rse.2017.06.025_bb0225
  article-title: Ten years of global burned area products from spaceborne remote sensing – a review: analysis of user needs and recommendations for future developments
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2013.05.014
– volume: 114
  start-page: 2911
  year: 2010
  ident: 10.1016/j.rse.2017.06.025_bb0055
  article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync–Tools for calibration and validation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.07.010
– volume: 12
  start-page: 16
  issue: 1
  year: 2009
  ident: 10.1016/j.rse.2017.06.025_bb0205
  article-title: Quantitative evidence for increasing forest fire severity in the Sierra Nevada and Southern Cascade Mountains, California and Nevada, USA
  publication-title: Ecosystems
  doi: 10.1007/s10021-008-9201-9
– year: 1977
  ident: 10.1016/j.rse.2017.06.025_bb0050
– volume: 10
  start-page: 661
  issue: 6
  year: 2001
  ident: 10.1016/j.rse.2017.06.025_bb0335
  article-title: The role of fire disturbance for global vegetation dynamics: coupling fire into a dynamic global vegetation model
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1046/j.1466-822X.2001.00175.x
– volume: 112
  start-page: 3690
  year: 2008
  ident: 10.1016/j.rse.2017.06.025_bb0300
  article-title: The collection 5 MODIS burned area product – global evaluation by comparison with the MODIS active fire product
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.05.013
– volume: 60
  start-page: 258
  year: 1997
  ident: 10.1016/j.rse.2017.06.025_bb0305
  article-title: Estimating standard errors of accuracy assessment statistics under cluster sampling
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(96)00176-9
– volume: 115
  start-page: 1003
  year: 2011
  ident: 10.1016/j.rse.2017.06.025_bb0005
  article-title: Mapping burned areas from Landsat TM/ETM+ data with a two-phase algorithm: balancing omission and commission errors
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.12.005
– volume: 114
  start-page: 2897
  issue: 12
  year: 2010
  ident: 10.1016/j.rse.2017.06.025_bb0170
  article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr – temporal segmentation algorithms
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.07.008
– volume: 104
  start-page: 189
  issue: 1–3
  year: 2005
  ident: 10.1016/j.rse.2017.06.025_bb0260
  article-title: Biomass burning emissions: a review of models using remote-sensing data
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-005-1611-y
– volume: 32
  start-page: 195
  issue: 2
  year: 2002
  ident: 10.1016/j.rse.2017.06.025_bb0275
  article-title: Statistical quality control analysis of forest fire activity in Canada
  publication-title: Can. J. For. Res.
  doi: 10.1139/x01-183
– ident: 10.1016/j.rse.2017.06.025_bb0110
– volume: 42
  start-page: 1736
  issue: 9
  year: 2015
  ident: 10.1016/j.rse.2017.06.025_bb0365
  article-title: The climate space of fire regimes in north-western North America
  publication-title: J. Biogeogr.
  doi: 10.1111/jbi.12533
– volume: 7
  start-page: 1171
  year: 2010
  ident: 10.1016/j.rse.2017.06.025_bb0105
  article-title: Assessing variability and long-term trends in burned area by merging multiple satellite fire products
  publication-title: Biogeosci. Discuss.
  doi: 10.5194/bg-7-1171-2010
– volume: 54
  start-page: 1249
  issue: 6
  year: 2014
  ident: 10.1016/j.rse.2017.06.025_bb0240
  article-title: Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework
  publication-title: Environ. Manag.
  doi: 10.1007/s00267-014-0364-1
– volume: 51
  start-page: 933
  year: 2001
  ident: 10.1016/j.rse.2017.06.025_bb0235
  article-title: Terrestrial ecoregions of the world: a new map of life on earth
  publication-title: Bioscience
  doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
– volume: 144
  start-page: 187
  year: 2014
  ident: 10.1016/j.rse.2017.06.025_bb0245
  article-title: Validation of the 2008 MODIS-MCD45 global burned area product using stratified random sampling
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.01.008
– volume: 47
  start-page: 1032
  issue: 4
  year: 2009
  ident: 10.1016/j.rse.2017.06.025_bb0290
  article-title: Southern Africa validation of the MODIS, L3JRC, and GlobCarbon burned-area products
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.2009000
– volume: 161
  start-page: 27
  year: 2015
  ident: 10.1016/j.rse.2017.06.025_bb0030
  article-title: MODIS-Landsat fusion for large area 30m burned area mapping
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.01.022
– volume: 69
  start-page: 88
  year: 2012
  ident: 10.1016/j.rse.2017.06.025_bb0325
  article-title: A method for extracting burned areas from Landsat TM/ETM+ images by soft aggregation of multiple spectral indices and a region growing algorithm
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2012.03.001
– volume: 3
  start-page: 3
  issue: 1
  year: 2007
  ident: 10.1016/j.rse.2017.06.025_bb0080
  article-title: A project for monitoring trends in burn severity
  publication-title: Fire Ecol.
  doi: 10.4996/fireecology.0301003
– volume: 130
  start-page: 280
  year: 2013
  ident: 10.1016/j.rse.2017.06.025_bb0180
  article-title: The global availability of Landsat 5 TM and Landsat ETM+ land surface observations and implications for global 30m Landsat data product generation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.12.003
– volume: 152
  start-page: 217
  year: 2014
  ident: 10.1016/j.rse.2017.06.025_bb0380
  article-title: Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: an algorithm designed specifically for monitoring land cover change
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.06.012
– volume: 130
  start-page: 294
  year: 2013
  ident: 10.1016/j.rse.2017.06.025_bb0370
  article-title: Accuracy assessment of NLCD 2006 land cover and impervious surface
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.12.001
– year: 2006
  ident: 10.1016/j.rse.2017.06.025_bb0175
  article-title: Landscape assessment: sampling and analysis methods
– volume: 113
  start-page: 408
  year: 2009
  ident: 10.1016/j.rse.2017.06.025_bb0100
  article-title: An active-fire based burned area mapping algorithm for the MODIS sensor
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.10.006
– volume: 102
  start-page: 13521
  issue: 38
  year: 2005
  ident: 10.1016/j.rse.2017.06.025_bb0120
  article-title: Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0506179102
– year: 2016
  ident: 10.1016/j.rse.2017.06.025_bb0130
– volume: 2743
  year: 1996
  ident: 10.1016/j.rse.2017.06.025_bb0200
  article-title: Analysis of observer variability in the assessment of FLIR performance
– year: 2006
  ident: 10.1016/j.rse.2017.06.025_bb0320
– volume: 4
  start-page: 87
  issue: 1
  year: 1985
  ident: 10.1016/j.rse.2017.06.025_bb0070
  article-title: A Wilcoxon-type test for trend
  publication-title: Stat. Med.
  doi: 10.1002/sim.4780040112
– volume: 6
  start-page: 31
  year: 1991
  ident: 10.1016/j.rse.2017.06.025_bb0095
  article-title: Mapping burns and natural reforestation using thematic mapper data
  publication-title: Geocarto Int.
  doi: 10.1080/10106049109354290
– volume: 101
  start-page: 15
  issue: 1
  year: 1992
  ident: 10.1016/j.rse.2017.06.025_bb0270
  article-title: GEMI: a non-linear index to monitor global vegetation from satellites
  publication-title: Vegetatio
  doi: 10.1007/BF00031911
– volume: 15
  start-page: 457
  year: 2006
  ident: 10.1016/j.rse.2017.06.025_bb0215
  article-title: Fire type mapping using object-based classification of Ikonos imagery
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF05085
– volume: 160
  start-page: 114
  year: 2015
  ident: 10.1016/j.rse.2017.06.025_bb0255
  article-title: Comparing the accuracies of remote sensing global burned area products using stratified random sampling and estimation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.01.005
– volume: 73
  start-page: 165
  year: 2007
  ident: 10.1016/j.rse.2017.06.025_bb0315
  article-title: Estimation of fuzzy error matrix accuracy measures under stratified random sampling
  publication-title: Photogramm. Eng. Remote. Sens.
  doi: 10.14358/PERS.73.2.165
– volume: 13
  start-page: 70
  issue: 1
  year: 2011
  ident: 10.1016/j.rse.2017.06.025_bb0265
  article-title: Burnt area delineation from a uni-temporal perspective based on Landsat TM imagery classification using support vector machines
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2010.06.008
– volume: 2
  start-page: 195
  issue: 3
  year: 2009
  ident: 10.1016/j.rse.2017.06.025_bb0165
  article-title: Development of time series stacks of Landsat images for reconstructing forest disturbance history
  publication-title: Int. J. Digital Earth
  doi: 10.1080/17538940902801614
– volume: 74
  start-page: 881
  issue: 7
  year: 2008
  ident: 10.1016/j.rse.2017.06.025_bb0150
  article-title: Comparison of single- and multi-date Landsat data for mapping wildfire scares in Ocala National Forest, Florida
  publication-title: Photogramm. Eng. Remote. Sens.
  doi: 10.14358/PERS.74.7.881
– volume: 186
  start-page: 217
  year: 2016
  ident: 10.1016/j.rse.2017.06.025_bb0375
  article-title: Landsat 5 thematic mapper reflectance and NDVI 27-year time series inconsistencies due to satellite orbit change
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.08.022
– volume: 19
  start-page: 1
  year: 2005
  ident: 10.1016/j.rse.2017.06.025_bb0280
  article-title: Fire emissions from C3 and C4 vegetation and their influence on interannual variability of atmospheric CO2 and δ13CO2
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1029/2004GB002366
– ident: 10.1016/j.rse.2017.06.025_bb0285
– volume: 115
  start-page: 19
  year: 2011
  ident: 10.1016/j.rse.2017.06.025_bb0330
  article-title: Validation of North American forest disturbance dynamics derived from Landsat time series stacks
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.07.009
– year: 1993
  ident: 10.1016/j.rse.2017.06.025_bb0385
– volume: 6
  start-page: 12360
  issue: 12
  year: 2014
  ident: 10.1016/j.rse.2017.06.025_bb0010
  article-title: BAMS: a tool for supervised burned area mapping using Landsat data
  publication-title: Remote Sens.
  doi: 10.3390/rs61212360
– volume: 33
  start-page: 4408
  issue: 14
  year: 2012
  ident: 10.1016/j.rse.2017.06.025_bb0185
  article-title: Comparing ten classification methods for burned area mapping in a Mediterranean environment using Landsat TM satellite data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2011.648284
– volume: 13
  start-page: 367
  issue: 3
  year: 2004
  ident: 10.1016/j.rse.2017.06.025_bb0210
  article-title: A semi-automated object-oriented model for burned area mapping in the Mediterranean region using Landsat-TM imagery
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF03079
– volume: 148
  start-page: 206
  year: 2014
  ident: 10.1016/j.rse.2017.06.025_bb0125
  article-title: Development of an automated method for mapping fire history captured in Landsat TM and ETM+ time series across Queensland, Australia
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.03.021
– volume: 117
  start-page: 393
  issue: 2
  year: 2000
  ident: 10.1016/j.rse.2017.06.025_bb0230
  article-title: A double-observer approach for estimating detection probability and abundance from point counts
  publication-title: Auk
  doi: 10.1093/auk/117.2.393
– volume: 157
  start-page: 51
  issue: 1–2
  year: 2010
  ident: 10.1016/j.rse.2017.06.025_bb0015
  article-title: Observer-dependent variability of the thresholding step in the quantitative analysis of soil images and X-ray microtomography data
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.03.015
– year: 2011
  ident: 10.1016/j.rse.2017.06.025_bb0360
– year: 1981
  ident: 10.1016/j.rse.2017.06.025_bb0085
– volume: 112
  start-page: 2914
  year: 2008
  ident: 10.1016/j.rse.2017.06.025_bb0190
  article-title: North American forest disturbance from a decadal Landsat record
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.02.010
– volume: 8
  start-page: 127
  year: 1979
  ident: 10.1016/j.rse.2017.06.025_bb0345
  article-title: Red and photographic infrared linear combinations for monitoring vegetation
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(79)90013-0
– volume: 25
  start-page: 619
  issue: 5
  year: 2016
  ident: 10.1016/j.rse.2017.06.025_bb0045
  article-title: A new global burned area product for climate assessment of fire impacts
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/geb.12440
– volume: 122
  start-page: 66
  year: 2012
  ident: 10.1016/j.rse.2017.06.025_bb0135
  article-title: A review of large area monitoring of land cover change using Landsat data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.08.024
– year: 2009
  ident: 10.1016/j.rse.2017.06.025_bb0140
– volume: 11
  start-page: 189
  issue: 3
  year: 1995
  ident: 10.1016/j.rse.2017.06.025_bb0090
  article-title: Classification-algorithm evaluation: five performance measures based on confusion matrices
  publication-title: J. Clin. Monit.
  doi: 10.1007/BF01617722
– volume: 55
  start-page: 197
  issue: 1/2
  year: 2002
  ident: 10.1016/j.rse.2017.06.025_bb0060
  article-title: Determining effects of area burned and fire severity on carbon cycling and emissions in Siberia
  publication-title: Clim. Chang.
  doi: 10.1023/A:1020207710195
– volume: 30
  start-page: 5243
  issue: 20
  year: 2009
  ident: 10.1016/j.rse.2017.06.025_bb0310
  article-title: Sampling designs for accuracy assessment of land cover
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160903131000
– volume: 6
  start-page: 2050
  issue: 3
  year: 2014
  ident: 10.1016/j.rse.2017.06.025_bb0250
  article-title: Assessing the temporal stability of the accuracy of a time series of burned area products
  publication-title: Remote Sens.
  doi: 10.3390/rs6032050
– volume: 47
  start-page: 195
  issue: 1–4
  year: 1992
  ident: 10.1016/j.rse.2017.06.025_bb0355
  article-title: Fire regimes for pine-grassland communities in the southeastern United States
  publication-title: For. Ecol. Manag.
  doi: 10.1016/0378-1127(92)90274-D
SSID ssj0015871
Score 2.4285686
Snippet The Landsat Burned Area Essential Climate Variable (BAECV), developed by the U.S. Geological Survey (USGS), capitalizes on the long temporal availability of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 393
SubjectTerms agricultural land
algorithms
Burned area
data collection
ecoregions
Essential climate variable
Fire
grasslands
Great Plains region
Landsat
multispectral imagery
remote sensing
shrublands
shrubs
space and time
United States
United States Geological Survey
Validation
Wildfire
Title Validation of the USGS Landsat Burned Area Essential Climate Variable (BAECV) across the conterminous United States
URI https://dx.doi.org/10.1016/j.rse.2017.06.025
https://www.proquest.com/docview/2000466457
Volume 198
WOSCitedRecordID wos000406818500032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bj9JAFJ7grkZfjKIb11vGxAe1KQHaMtNHJIiiboyLBJ-amc5pZEPKhsKKf8tf6JlLy8Xsxn3wpYFCT0rPxznfnDkXQl6CYLHsNIWv0lD5YScUPo8l-AwCnkYMvQpkZtgEOznhk0n8pVb7XdbCXMxYnvP1Oj7_r6rGc6hsXTp7DXVXQvEEvkal4xHVjsd_UvwYmbWqiKDhlaeDU--TrunV0QAdxFReF8mi1y906ZGOmfdmU6Su4I1x6WyKqZB4vu32e2MdNRDGlRpROrPdpM_ozNkdvrrNcr8CAgC8QifH26TqrXq6UsVjU1fzYz43bSE_w0wXu3sfGxWixHQhVusKrpvtfzBDCrzvkPvDlTdobKzoTylclshorpQ3bGwHNdBRlllblaEOQl-bkx1DbedVO1Mb2MmKzmuHpm_B3w7BxibOGotC90RtMdOs1ZZa7zbf3nOKVapimQV3lqCIRItIdCZgO7pBDtssitGSHnY_9CfDau8q4szOaXQ_odxLN1mFe_dxGRva4wWG7IzukbtulUK7Fl33SQ3yOjnqb5SIHzqvUNTJ7QG4xud1cmtgRkX_ekCKDRDpPKOIHqqBSB0QqQUi1UCkFRCpAyItgUhfGRi-phaERsw2CKkFIbUgfEi-veuPeu99N-LDT4O4s_QjmTZ5nDERZxlnCgkkCCkiaEHEpZJcAg_wTUtBjAsPkYYy0gQUAIJMMVDBETnI5zk8IjTNQtEKZNZGUxPGmRTI1TnPwqZkLEq5PCbN8lEnqet_r8ewzJJLVXxM3lSXnNvmL1d9OSz1lzj2allpgli86rIXpa4TtOx6u07kgM9PD4ht6uEPEXt8nft4Qu5s_lFPycFysYJn5GZ6sZwWi-cOrH8AwxDH7g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+the+USGS+Landsat+Burned+Area+Essential+Climate+Variable+%28BAECV%29+across+the+conterminous+United+States&rft.jtitle=Remote+sensing+of+environment&rft.au=Vanderhoof%2C+Melanie+K.&rft.au=Fairaux%2C+Nicole&rft.au=Beal%2C+Yen-Ju+G.&rft.au=Hawbaker%2C+Todd+J.&rft.date=2017-09-01&rft.issn=0034-4257&rft.volume=198&rft.spage=393&rft.epage=406&rft_id=info:doi/10.1016%2Fj.rse.2017.06.025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rse_2017_06_025
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon