Validation of the USGS Landsat Burned Area Essential Climate Variable (BAECV) across the conterminous United States
The Landsat Burned Area Essential Climate Variable (BAECV), developed by the U.S. Geological Survey (USGS), capitalizes on the long temporal availability of Landsat imagery to identify burned areas across the conterminous United States (CONUS) (1984–2015). Adequate validation of such products is cri...
Uložené v:
| Vydané v: | Remote sensing of environment Ročník 198; s. 393 - 406 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
01.09.2017
|
| Predmet: | |
| ISSN: | 0034-4257, 1879-0704 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The Landsat Burned Area Essential Climate Variable (BAECV), developed by the U.S. Geological Survey (USGS), capitalizes on the long temporal availability of Landsat imagery to identify burned areas across the conterminous United States (CONUS) (1984–2015). Adequate validation of such products is critical for their proper usage and interpretation. Validation of coarse-resolution products often relies on independent data derived from moderate-resolution sensors (e.g., Landsat). Validation of Landsat products, in turn, is challenging because there is no corresponding source of high-resolution, multispectral imagery that has been systematically collected in space and time over the entire temporal extent of the Landsat archive. Because of this, comparison between high-resolution images and Landsat science products can help increase user's confidence in the Landsat science products, but may not, alone, be adequate. In this paper, we demonstrate an approach to systematically validate the Landsat-derived BAECV product. Burned area extent was mapped for Landsat image pairs using a manually trained semi-automated algorithm that was manually edited across 28 path/rows and five different years (1988, 1993, 1998, 2003, 2008). Three datasets were independently developed by three analysts and the datasets were integrated on a pixel by pixel basis in which at least one to all three analysts were required to agree a pixel was burned. We found that errors within our Landsat reference dataset could be minimized by using the rendition of the dataset in which pixels were mapped as burned if at least two of the three analysts agreed. BAECV errors of omission and commission for the detection of burned pixels averaged 42% and 33%, respectively for CONUS across all five validation years. Errors of omission and commission were lowest across the western CONUS, for example in the shrub and scrublands of the Arid West (31% and 24%, respectively), and highest in the grasslands and agricultural lands of the Great Plains in central CONUS (62% and 57%, respectively). The BAECV product detected most (>65%) fire events >10ha across the western CONUS (Arid and Mountain West ecoregions). Our approach and results demonstrate that a thorough validation of Landsat science products can be completed with independent Landsat-derived reference data, but could be strengthened by the use of complementary sources of high-resolution data.
•Creating multiple versions of a reference dataset can help bound error uncertainty.•The Landsat BAECV does not show temporal trends in accuracy.•Accuracy of the BAECV was strongest in regions dominated by shrub/scrub and forest.•Accuracy of the BAECV was weakest in agricultural land cover.•Most burned areas >10ha were detected for all ecoregions except the eastern U.S. |
|---|---|
| AbstractList | The Landsat Burned Area Essential Climate Variable (BAECV), developed by the U.S. Geological Survey (USGS), capitalizes on the long temporal availability of Landsat imagery to identify burned areas across the conterminous United States (CONUS) (1984–2015). Adequate validation of such products is critical for their proper usage and interpretation. Validation of coarse-resolution products often relies on independent data derived from moderate-resolution sensors (e.g., Landsat). Validation of Landsat products, in turn, is challenging because there is no corresponding source of high-resolution, multispectral imagery that has been systematically collected in space and time over the entire temporal extent of the Landsat archive. Because of this, comparison between high-resolution images and Landsat science products can help increase user's confidence in the Landsat science products, but may not, alone, be adequate. In this paper, we demonstrate an approach to systematically validate the Landsat-derived BAECV product. Burned area extent was mapped for Landsat image pairs using a manually trained semi-automated algorithm that was manually edited across 28 path/rows and five different years (1988, 1993, 1998, 2003, 2008). Three datasets were independently developed by three analysts and the datasets were integrated on a pixel by pixel basis in which at least one to all three analysts were required to agree a pixel was burned. We found that errors within our Landsat reference dataset could be minimized by using the rendition of the dataset in which pixels were mapped as burned if at least two of the three analysts agreed. BAECV errors of omission and commission for the detection of burned pixels averaged 42% and 33%, respectively for CONUS across all five validation years. Errors of omission and commission were lowest across the western CONUS, for example in the shrub and scrublands of the Arid West (31% and 24%, respectively), and highest in the grasslands and agricultural lands of the Great Plains in central CONUS (62% and 57%, respectively). The BAECV product detected most (>65%) fire events >10ha across the western CONUS (Arid and Mountain West ecoregions). Our approach and results demonstrate that a thorough validation of Landsat science products can be completed with independent Landsat-derived reference data, but could be strengthened by the use of complementary sources of high-resolution data. The Landsat Burned Area Essential Climate Variable (BAECV), developed by the U.S. Geological Survey (USGS), capitalizes on the long temporal availability of Landsat imagery to identify burned areas across the conterminous United States (CONUS) (1984–2015). Adequate validation of such products is critical for their proper usage and interpretation. Validation of coarse-resolution products often relies on independent data derived from moderate-resolution sensors (e.g., Landsat). Validation of Landsat products, in turn, is challenging because there is no corresponding source of high-resolution, multispectral imagery that has been systematically collected in space and time over the entire temporal extent of the Landsat archive. Because of this, comparison between high-resolution images and Landsat science products can help increase user's confidence in the Landsat science products, but may not, alone, be adequate. In this paper, we demonstrate an approach to systematically validate the Landsat-derived BAECV product. Burned area extent was mapped for Landsat image pairs using a manually trained semi-automated algorithm that was manually edited across 28 path/rows and five different years (1988, 1993, 1998, 2003, 2008). Three datasets were independently developed by three analysts and the datasets were integrated on a pixel by pixel basis in which at least one to all three analysts were required to agree a pixel was burned. We found that errors within our Landsat reference dataset could be minimized by using the rendition of the dataset in which pixels were mapped as burned if at least two of the three analysts agreed. BAECV errors of omission and commission for the detection of burned pixels averaged 42% and 33%, respectively for CONUS across all five validation years. Errors of omission and commission were lowest across the western CONUS, for example in the shrub and scrublands of the Arid West (31% and 24%, respectively), and highest in the grasslands and agricultural lands of the Great Plains in central CONUS (62% and 57%, respectively). The BAECV product detected most (>65%) fire events >10ha across the western CONUS (Arid and Mountain West ecoregions). Our approach and results demonstrate that a thorough validation of Landsat science products can be completed with independent Landsat-derived reference data, but could be strengthened by the use of complementary sources of high-resolution data. •Creating multiple versions of a reference dataset can help bound error uncertainty.•The Landsat BAECV does not show temporal trends in accuracy.•Accuracy of the BAECV was strongest in regions dominated by shrub/scrub and forest.•Accuracy of the BAECV was weakest in agricultural land cover.•Most burned areas >10ha were detected for all ecoregions except the eastern U.S. |
| Author | Beal, Yen-Ju G. Hawbaker, Todd J. Vanderhoof, Melanie K. Fairaux, Nicole |
| Author_xml | – sequence: 1 givenname: Melanie K. orcidid: 0000-0002-0101-5533 surname: Vanderhoof fullname: Vanderhoof, Melanie K. email: mvanderhoof@usgs.gov – sequence: 2 givenname: Nicole surname: Fairaux fullname: Fairaux, Nicole – sequence: 3 givenname: Yen-Ju G. surname: Beal fullname: Beal, Yen-Ju G. – sequence: 4 givenname: Todd J. surname: Hawbaker fullname: Hawbaker, Todd J. |
| BookMark | eNp9kMFO4zAQhq0VSFtYHoCbj3BIGCexnYhTqQqLVGkPpb1ajj3RukodsF0k3h7T7mkPnEYjzffrn--CnPnJIyHXDEoGTNztyhCxrIDJEkQJFf9BZqyVXQESmjMyA6iboqm4_EkuYtwBMN5KNiNxq0dndXKTp9NA01-km_XTmq60t1En-nAIHi2dB9R0GSP65PRIF6Pb64R0q4PT_Yj05mG-XGxvqTZhivEYYyafMOydnw6RbrxLOWadMhV_kfNBjxGv_s1Lsnlcvix-F6s_T8-L-aowdSdSwXsDbTdI3Q1DKy1UNepec2TI2972bY9tnRdmsRNcaNP0HASrEbEerERbX5KbU-5rmN4OGJPau2hwHLXHXEpVANAI0XCZT-Xp9Ng_4KCMS0crKWg3KgbqS7PaqaxZfWlWIFTWnEn2H_kaspzw8S1zf2Iwf__uMKhoHHqD1gU0SdnJfUN_AlCYmPo |
| CitedBy_id | crossref_primary_10_1109_TGRS_2021_3110280 crossref_primary_10_1016_j_isprsjprs_2024_02_014 crossref_primary_10_1002_eap_2237 crossref_primary_10_1071_WF20072 crossref_primary_10_1080_01431161_2020_1809741 crossref_primary_10_3390_rs13040816 crossref_primary_10_3390_rs11050489 crossref_primary_10_3390_rs14174354 crossref_primary_10_1016_j_rse_2018_12_011 crossref_primary_10_1016_j_foreco_2021_119635 crossref_primary_10_3390_f10050363 crossref_primary_10_3390_rs12040674 crossref_primary_10_1080_01431161_2024_2380543 crossref_primary_10_3390_rs16132500 crossref_primary_10_3390_fire4020026 crossref_primary_10_1016_j_rse_2020_111801 crossref_primary_10_1111_geb_13058 crossref_primary_10_1016_j_rse_2019_02_013 crossref_primary_10_1080_10106049_2022_2060323 crossref_primary_10_1186_s42408_020_00076_y crossref_primary_10_5194_essd_12_3229_2020 crossref_primary_10_5194_essd_15_5227_2023 crossref_primary_10_1016_j_rse_2021_112823 crossref_primary_10_22209_rt_ve2020n2a02 crossref_primary_10_1088_2752_5295_acb079 crossref_primary_10_3390_rs9111131 crossref_primary_10_1007_s12145_023_00933_9 crossref_primary_10_3390_rs13245131 crossref_primary_10_3390_rs11030328 crossref_primary_10_1071_WF19201 crossref_primary_10_1109_TGRS_2022_3174651 crossref_primary_10_1016_j_isprsjprs_2024_08_019 crossref_primary_10_3390_s20092454 crossref_primary_10_1071_WF18075 crossref_primary_10_3390_rs9070743 crossref_primary_10_3390_rs15061489 crossref_primary_10_1016_j_rse_2017_06_027 crossref_primary_10_1016_j_rse_2022_113214 crossref_primary_10_3390_rs13214298 |
| Cites_doi | 10.1038/nature06272 10.1016/j.rse.2017.06.027 10.1126/science.250.4988.1669 10.1071/WF07106 10.1080/01431160110053185 10.1080/01431160500113096 10.1007/s10021-013-9669-9 10.1109/TGRS.2006.877436 10.1016/j.jag.2013.05.014 10.1016/j.rse.2010.07.010 10.1007/s10021-008-9201-9 10.1046/j.1466-822X.2001.00175.x 10.1016/j.rse.2008.05.013 10.1016/S0034-4257(96)00176-9 10.1016/j.rse.2010.12.005 10.1016/j.rse.2010.07.008 10.1007/s10661-005-1611-y 10.1139/x01-183 10.1111/jbi.12533 10.5194/bg-7-1171-2010 10.1007/s00267-014-0364-1 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 10.1016/j.rse.2014.01.008 10.1109/TGRS.2008.2009000 10.1016/j.rse.2015.01.022 10.1016/j.isprsjprs.2012.03.001 10.4996/fireecology.0301003 10.1016/j.rse.2012.12.003 10.1016/j.rse.2014.06.012 10.1016/j.rse.2012.12.001 10.1016/j.rse.2008.10.006 10.1073/pnas.0506179102 10.1002/sim.4780040112 10.1080/10106049109354290 10.1007/BF00031911 10.1071/WF05085 10.1016/j.rse.2015.01.005 10.14358/PERS.73.2.165 10.1016/j.jag.2010.06.008 10.1080/17538940902801614 10.14358/PERS.74.7.881 10.1016/j.rse.2016.08.022 10.1029/2004GB002366 10.1016/j.rse.2010.07.009 10.3390/rs61212360 10.1080/01431161.2011.648284 10.1071/WF03079 10.1016/j.rse.2014.03.021 10.1093/auk/117.2.393 10.1016/j.geoderma.2010.03.015 10.1016/j.rse.2008.02.010 10.1016/0034-4257(79)90013-0 10.1111/geb.12440 10.1016/j.rse.2011.08.024 10.1007/BF01617722 10.1023/A:1020207710195 10.1080/01431160903131000 10.3390/rs6032050 10.1016/0378-1127(92)90274-D |
| ContentType | Journal Article |
| Copyright | 2017 |
| Copyright_xml | – notice: 2017 |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.rse.2017.06.025 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology Environmental Sciences |
| EISSN | 1879-0704 |
| EndPage | 406 |
| ExternalDocumentID | 10_1016_j_rse_2017_06_025 S0034425717302845 |
| GeographicLocations | Great Plains region United States |
| GeographicLocations_xml | – name: Great Plains region – name: United States |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ WH7 ZCA ZMT ~02 ~G- ~KM 29P 41~ 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABUFD ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FA8 FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ H~9 OHT R2- SEN SEP SEW VOH WUQ XOL ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c396t-5bc089f7a9ff87d023eaba5e1e58bdb8be83e1e1de9656ac4b50613eee3fd7ed3 |
| ISICitedReferencesCount | 43 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000406818500032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0034-4257 |
| IngestDate | Sun Nov 09 13:29:31 EST 2025 Tue Nov 18 21:50:23 EST 2025 Sat Nov 29 02:51:21 EST 2025 Fri Feb 23 02:30:06 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Validation Wildfire Burned area Essential climate variable Fire Landsat |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c396t-5bc089f7a9ff87d023eaba5e1e58bdb8be83e1e1de9656ac4b50613eee3fd7ed3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-0101-5533 |
| PQID | 2000466457 |
| PQPubID | 24069 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_2000466457 crossref_citationtrail_10_1016_j_rse_2017_06_025 crossref_primary_10_1016_j_rse_2017_06_025 elsevier_sciencedirect_doi_10_1016_j_rse_2017_06_025 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-09-01 2017-09-00 20170901 |
| PublicationDateYYYYMMDD | 2017-09-01 |
| PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Remote sensing of environment |
| PublicationYear | 2017 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Zhang, Roy (bb0375) 2016; 186 Eidenshink, Schwind, Brewer, Zhu, Quayle, Howard (bb0080) 2007; 3 Cuzick (bb0070) 1985; 4 Goodwin, Collett (bb0125) 2014; 148 Mallinis, Koutsias (bb0185) 2012; 33 Trigg, Flasse (bb0340) 2001; 22 Miller, Safford, Crimmins, Thode (bb0205) 2009; 12 Roy, Boschetti (bb0290) 2009; 47 (bb0040) 1997 Whitman, Battlori, Parisien, Miller, Coop, Krawchuk, Chong, Haire (bb0365) 2015; 42 Pinty, Verstraete (bb0270) 1992; 101 Waldrop, van Lear, Lloyd, Harms (bb0350) 1987 Strahler, Boschetti, Foody, Friedl, Hansen, Herold, Mayaux, Morisette, Stehman, Woodcock (bb0320) 2006 Olson, Dinerstein, Wikramanayake, Burgess, Powell, Underwood, D'Amico, Itoua, Strand, Morrison, Loucks, Allnutt, Ricketts, Kura, Lamoreux, Wettengel, Hedao, Kassem (bb0235) 2001; 51 Podur, Martell, Knight (bb0275) 2002; 32 Zimmerman, Zumbo (bb0385) 1993 Richter, Schläpfer (bb0285) 2016 Bastarrika, Chuvieco, Martin (bb0005) 2011; 115 Giglio, Lobada, Roy, Quayle, Justice (bb0100) 2009; 113 Omernik, Griffith (bb0240) 2014; 54 Thomas, Huang, Goward, Powell, Rishmawi, Schleeweis, Hinds (bb0330) 2011; 115 Hansen, Loveland (bb0135) 2012; 122 Hawbaker, Vanderhoof, Beal, Takacs, Schmidt, Falgout, Williams, Fairaux, Caldwell, Picotte, Howard, Stitt, Dwyer (bb0145) 2017; 198 Kovalskyy, Roy (bb0180) 2013; 130 Tucker (bb0345) 1979; 8 Fleiss (bb0085) 1981 Stroppiana, Bordogna, Carrara, Boschetti, Boschetti, Brivio (bb0325) 2012; 69 Morisette, Baret, Liang (bb0220) 2006; 44 Goward, Huang, Zhao, Schleeweis, Rishmawi, Lindsey, Dungan, Michaelis (bb0130) 2016 Padilla, Stehman, Hantson, Oliva, AlonsoCanas, Bradley, Tansey, Mota, Pereira, Chuvieco (bb0255) 2015; 160 Cohen, Yang, Kennedy (bb0055) 2010; 114 Holden, Morgan, Smith, Vierling (bb0155) 2010; 19 Roy, Frost, Justice, Landmann, Le Roux, Gumbo, Makungwa, Dunham, Du Toit, Mhwandagara, Zacarias, Tacheba, Dube, Pereira, Mushove, Morisette, Santhana Vannan, Davies (bb0295) 2005; 26 Conard, Sukhinin, Stocks, Cahoon, Davidenko, Ivanova (bb0060) 2002; 55 Key, Benson (bb0175) 2006 Forbes (bb0090) 1995; 11 Homer, Dewitz, Yang, Jin, Danielson, Xian, Coulston, Herold, Wickham, Megown (bb0160) 2015; 81 Masek, Goward, Kennedy, Cohen, Moisen, Schleeweis, Haung (bb0195) 2013; 16 Palacios-Orueta, Chuvieco, Parra, Carmona-Moreno (bb0260) 2005; 104 Global Climate Observing System (bb0110) 2004 Breiman, Freiedman, Olshen, Stone (bb0035) 1984 Padilla, Stehman, Litago, Chuvieco (bb0250) 2014; 6 Zhu, Woodcock (bb0380) 2014; 152 Padilla, Stehman, Chuvieco (bb0245) 2014; 144 Mouillot, Schultz, Yue, Cadule, Tansey, Ciais, Chuvieco (bb0225) 2014; 26 Cochran (bb0050) 1977 Henry (bb0150) 2008; 74 Chuvieco, Yue, Heil, Mouillot, Alonso-Canas, Padilla, Pereira, Oom, Tansey (bb0045) 2016; 25 Baveye, Laba, Otten, Bouckaert, Sterpaio, Goswami, Grinev, Huston, Hu, Liu, Mooney, Pajor, Sleutel, Tarquis, Wang, Wei, Sezgin (bb0015) 2010; 157 Stehman (bb0305) 1997; 60 Hastie, Tibshirani, Friedman (bb0140) 2009 Mitri, Gitas (bb0215) 2006; 15 Boschetti, Roy, Justice, Humber (bb0030) 2015; 161 García, Caselles (bb0095) 1991; 6 Stehman (bb0310) 2009; 30 Waldrop, White, Jones (bb0355) 1992; 47 Kennedy, Yang, Cohen (bb0170) 2010; 114 Thonicke, Venevsky, Sitch, Cramer (bb0335) 2001; 10 Randerson, van der Werf, Collatz, Giglio, Still, Kasibhatla, Miller, White, DeFries, Kasischke (bb0280) 2005; 19 Crutzen, Andreae (bb0065) 1990; 250 Huang, Goward, Masek, Gao, Vermote, Thomas, Schleeweis, Kennedy, Zhu, Eidenshink, Townshend (bb0165) 2009; 2 Bastarrika, Alvarado, Artano, Martinez, Mesanza, Torre, Ramo, Chuvieco (bb0010) 2014; 6 Wickham, Stehman, Gass, Dewitz, Fry, Wade (bb0370) 2013; 130 Mazz (bb0200) 1996; 2743 Giglio, Randerson, van der Werf, Kasibhatla, Collatz, Morton (bb0105) 2010; 7 Nichols, Hines, Sauer, Fallon, Fallon, Heglund (bb0230) 2000; 117 Petropoulos, Kontoes, Keramitsoglou (bb0265) 2011; 13 Masek, Huang, Wolfe, Cohen, Hall, Kutler, Nelson (bb0190) 2008; 112 Walters, Schneider, Guthrie (bb0360) 2011 Bond-Lamberty, Peckham, Ahl, Gower (bb0020) 2007; 450 Goetz, Bunn, Fiske, Houghton (bb0120) 2005; 102 Stehman, Arora, Kasetkasem, Varshney (bb0315) 2007; 73 Mitri, Gitas (bb0210) 2004; 13 Roy, Boschetti, Justice, Ju (bb0300) 2008; 112 Padilla (10.1016/j.rse.2017.06.025_bb0255) 2015; 160 Masek (10.1016/j.rse.2017.06.025_bb0195) 2013; 16 Bastarrika (10.1016/j.rse.2017.06.025_bb0010) 2014; 6 Stehman (10.1016/j.rse.2017.06.025_bb0310) 2009; 30 Wickham (10.1016/j.rse.2017.06.025_bb0370) 2013; 130 García (10.1016/j.rse.2017.06.025_bb0095) 1991; 6 Goward (10.1016/j.rse.2017.06.025_bb0130) 2016 Crutzen (10.1016/j.rse.2017.06.025_bb0065) 1990; 250 Masek (10.1016/j.rse.2017.06.025_bb0190) 2008; 112 Mitri (10.1016/j.rse.2017.06.025_bb0210) 2004; 13 Huang (10.1016/j.rse.2017.06.025_bb0165) 2009; 2 Stehman (10.1016/j.rse.2017.06.025_bb0305) 1997; 60 Cuzick (10.1016/j.rse.2017.06.025_bb0070) 1985; 4 Eidenshink (10.1016/j.rse.2017.06.025_bb0080) 2007; 3 Strahler (10.1016/j.rse.2017.06.025_bb0320) 2006 Whitman (10.1016/j.rse.2017.06.025_bb0365) 2015; 42 Padilla (10.1016/j.rse.2017.06.025_bb0245) 2014; 144 Miller (10.1016/j.rse.2017.06.025_bb0205) 2009; 12 Giglio (10.1016/j.rse.2017.06.025_bb0105) 2010; 7 Henry (10.1016/j.rse.2017.06.025_bb0150) 2008; 74 Mouillot (10.1016/j.rse.2017.06.025_bb0225) 2014; 26 Roy (10.1016/j.rse.2017.06.025_bb0295) 2005; 26 Cochran (10.1016/j.rse.2017.06.025_bb0050) 1977 Roy (10.1016/j.rse.2017.06.025_bb0300) 2008; 112 Bond-Lamberty (10.1016/j.rse.2017.06.025_bb0020) 2007; 450 Giglio (10.1016/j.rse.2017.06.025_bb0100) 2009; 113 Tucker (10.1016/j.rse.2017.06.025_bb0345) 1979; 8 Goetz (10.1016/j.rse.2017.06.025_bb0120) 2005; 102 Nichols (10.1016/j.rse.2017.06.025_bb0230) 2000; 117 Bastarrika (10.1016/j.rse.2017.06.025_bb0005) 2011; 115 Stehman (10.1016/j.rse.2017.06.025_bb0315) 2007; 73 Zimmerman (10.1016/j.rse.2017.06.025_bb0385) 1993 Podur (10.1016/j.rse.2017.06.025_bb0275) 2002; 32 Global Climate Observing System (10.1016/j.rse.2017.06.025_bb0110) Petropoulos (10.1016/j.rse.2017.06.025_bb0265) 2011; 13 Trigg (10.1016/j.rse.2017.06.025_bb0340) 2001; 22 Hawbaker (10.1016/j.rse.2017.06.025_bb0145) 2017; 198 Thonicke (10.1016/j.rse.2017.06.025_bb0335) 2001; 10 Padilla (10.1016/j.rse.2017.06.025_bb0250) 2014; 6 (10.1016/j.rse.2017.06.025_bb0040) 1997 Kennedy (10.1016/j.rse.2017.06.025_bb0170) 2010; 114 Baveye (10.1016/j.rse.2017.06.025_bb0015) 2010; 157 Mallinis (10.1016/j.rse.2017.06.025_bb0185) 2012; 33 Richter (10.1016/j.rse.2017.06.025_bb0285) Fleiss (10.1016/j.rse.2017.06.025_bb0085) 1981 Thomas (10.1016/j.rse.2017.06.025_bb0330) 2011; 115 Homer (10.1016/j.rse.2017.06.025_bb0160) 2015; 81 Cohen (10.1016/j.rse.2017.06.025_bb0055) 2010; 114 Holden (10.1016/j.rse.2017.06.025_bb0155) 2010; 19 Key (10.1016/j.rse.2017.06.025_bb0175) 2006 Zhu (10.1016/j.rse.2017.06.025_bb0380) 2014; 152 Roy (10.1016/j.rse.2017.06.025_bb0290) 2009; 47 Chuvieco (10.1016/j.rse.2017.06.025_bb0045) 2016; 25 Goodwin (10.1016/j.rse.2017.06.025_bb0125) 2014; 148 Breiman (10.1016/j.rse.2017.06.025_bb0035) 1984 Hansen (10.1016/j.rse.2017.06.025_bb0135) 2012; 122 Omernik (10.1016/j.rse.2017.06.025_bb0240) 2014; 54 Pinty (10.1016/j.rse.2017.06.025_bb0270) 1992; 101 Kovalskyy (10.1016/j.rse.2017.06.025_bb0180) 2013; 130 Waldrop (10.1016/j.rse.2017.06.025_bb0355) 1992; 47 Boschetti (10.1016/j.rse.2017.06.025_bb0030) 2015; 161 Randerson (10.1016/j.rse.2017.06.025_bb0280) 2005; 19 Waldrop (10.1016/j.rse.2017.06.025_bb0350) 1987 Palacios-Orueta (10.1016/j.rse.2017.06.025_bb0260) 2005; 104 Olson (10.1016/j.rse.2017.06.025_bb0235) 2001; 51 Morisette (10.1016/j.rse.2017.06.025_bb0220) 2006; 44 Conard (10.1016/j.rse.2017.06.025_bb0060) 2002; 55 Mitri (10.1016/j.rse.2017.06.025_bb0215) 2006; 15 Zhang (10.1016/j.rse.2017.06.025_bb0375) 2016; 186 Forbes (10.1016/j.rse.2017.06.025_bb0090) 1995; 11 Hastie (10.1016/j.rse.2017.06.025_bb0140) 2009 Mazz (10.1016/j.rse.2017.06.025_bb0200) 1996; 2743 Stroppiana (10.1016/j.rse.2017.06.025_bb0325) 2012; 69 Walters (10.1016/j.rse.2017.06.025_bb0360) 2011 |
| References_xml | – year: 1997 ident: bb0040 publication-title: Remote Sensing of Large Wildfires in the European Mediterranean Basin – volume: 32 start-page: 195 year: 2002 end-page: 205 ident: bb0275 article-title: Statistical quality control analysis of forest fire activity in Canada publication-title: Can. J. For. Res. – volume: 47 start-page: 1032 year: 2009 end-page: 1044 ident: bb0290 article-title: Southern Africa validation of the MODIS, L3JRC, and GlobCarbon burned-area products publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 115 start-page: 19 year: 2011 end-page: 32 ident: bb0330 article-title: Validation of North American forest disturbance dynamics derived from Landsat time series stacks publication-title: Remote Sens. Environ. – volume: 148 start-page: 206 year: 2014 end-page: 221 ident: bb0125 article-title: Development of an automated method for mapping fire history captured in Landsat TM and ETM publication-title: Remote Sens. Environ. – volume: 161 start-page: 27 year: 2015 end-page: 42 ident: bb0030 article-title: MODIS-Landsat fusion for large area 30 publication-title: Remote Sens. Environ. – volume: 144 start-page: 187 year: 2014 end-page: 196 ident: bb0245 article-title: Validation of the 2008 MODIS-MCD45 global burned area product using stratified random sampling publication-title: Remote Sens. Environ. – volume: 186 start-page: 217 year: 2016 end-page: 233 ident: bb0375 article-title: Landsat 5 thematic mapper reflectance and NDVI 27-year time series inconsistencies due to satellite orbit change publication-title: Remote Sens. Environ. – volume: 10 start-page: 661 year: 2001 end-page: 677 ident: bb0335 article-title: The role of fire disturbance for global vegetation dynamics: coupling fire into a dynamic global vegetation model publication-title: Glob. Ecol. Biogeogr. – volume: 11 start-page: 189 year: 1995 end-page: 206 ident: bb0090 article-title: Classification-algorithm evaluation: five performance measures based on confusion matrices publication-title: J. Clin. Monit. – volume: 130 start-page: 294 year: 2013 end-page: 304 ident: bb0370 article-title: Accuracy assessment of NLCD 2006 land cover and impervious surface publication-title: Remote Sens. Environ. – volume: 115 start-page: 1003 year: 2011 end-page: 1012 ident: bb0005 article-title: Mapping burned areas from Landsat TM/ETM publication-title: Remote Sens. Environ. – volume: 33 start-page: 4408 year: 2012 end-page: 4433 ident: bb0185 article-title: Comparing ten classification methods for burned area mapping in a Mediterranean environment using Landsat TM satellite data publication-title: Int. J. Remote Sens. – volume: 26 start-page: 64 year: 2014 end-page: 79 ident: bb0225 article-title: Ten years of global burned area products from spaceborne remote sensing – a review: analysis of user needs and recommendations for future developments publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 51 start-page: 933 year: 2001 end-page: 938 ident: bb0235 article-title: Terrestrial ecoregions of the world: a new map of life on earth publication-title: Bioscience – volume: 73 start-page: 165 year: 2007 end-page: 174 ident: bb0315 article-title: Estimation of fuzzy error matrix accuracy measures under stratified random sampling publication-title: Photogramm. Eng. Remote. Sens. – volume: 112 start-page: 3690 year: 2008 end-page: 3707 ident: bb0300 article-title: The collection 5 MODIS burned area product – global evaluation by comparison with the MODIS active fire product publication-title: Remote Sens. Environ. – volume: 44 start-page: 1695 year: 2006 end-page: 1697 ident: bb0220 article-title: Special issue on global land product validation publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 81 start-page: 345 year: 2015 end-page: 354 ident: bb0160 article-title: Completion of the 2011 National Land Cover Database for the conterminous United States – representing a decade of land cover change information publication-title: Photogramm. Eng. Remote. Sens. – volume: 450 start-page: 89 year: 2007 end-page: 92 ident: bb0020 article-title: Fire as the dominant driver of central Canadian boreal forest carbon balance publication-title: Nature – year: 1993 ident: bb0385 article-title: Relative Power of the Wilcoxon Test, the Friedman Test, and Repeated-measures ANOVA on Ranks – volume: 2743 year: 1996 ident: bb0200 article-title: Analysis of observer variability in the assessment of FLIR performance publication-title: Proceedings of the International Society for Optical Engineering – volume: 16 start-page: 1087 year: 2013 end-page: 1104 ident: bb0195 article-title: United States forest disturbance trends observed using Landsat time series publication-title: Ecosystems – volume: 19 start-page: 1 year: 2005 end-page: 13 ident: bb0280 article-title: Fire emissions from C3 and C4 vegetation and their influence on interannual variability of atmospheric CO publication-title: Glob. Biogeochem. Cycles – volume: 8 start-page: 127 year: 1979 end-page: 150 ident: bb0345 article-title: Red and photographic infrared linear combinations for monitoring vegetation publication-title: Remote Sens. Environ. – year: 2009 ident: bb0140 article-title: The Elements of Statistical Learning; Data Mining, Inference, and Prediction – volume: 3 start-page: 3 year: 2007 end-page: 21 ident: bb0080 article-title: A project for monitoring trends in burn severity publication-title: Fire Ecol. – volume: 130 start-page: 280 year: 2013 end-page: 293 ident: bb0180 article-title: The global availability of Landsat 5 TM and Landsat ETM publication-title: Remote Sens. Environ. – volume: 113 start-page: 408 year: 2009 end-page: 420 ident: bb0100 article-title: An active-fire based burned area mapping algorithm for the MODIS sensor publication-title: Remote Sens. Environ. – volume: 74 start-page: 881 year: 2008 end-page: 891 ident: bb0150 article-title: Comparison of single- and multi-date Landsat data for mapping wildfire scares in Ocala National Forest, Florida publication-title: Photogramm. Eng. Remote. Sens. – volume: 15 start-page: 457 year: 2006 end-page: 462 ident: bb0215 article-title: Fire type mapping using object-based classification of Ikonos imagery publication-title: Int. J. Wildland Fire – volume: 13 start-page: 367 year: 2004 end-page: 376 ident: bb0210 article-title: A semi-automated object-oriented model for burned area mapping in the Mediterranean region using Landsat-TM imagery publication-title: Int. J. Wildland Fire – volume: 250 start-page: 1669 year: 1990 end-page: 1678 ident: bb0065 article-title: Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles publication-title: Science – volume: 6 start-page: 2050 year: 2014 end-page: 2068 ident: bb0250 article-title: Assessing the temporal stability of the accuracy of a time series of burned area products publication-title: Remote Sens. – volume: 122 start-page: 66 year: 2012 end-page: 74 ident: bb0135 article-title: A review of large area monitoring of land cover change using Landsat data publication-title: Remote Sens. Environ. – volume: 112 start-page: 2914 year: 2008 end-page: 2926 ident: bb0190 article-title: North American forest disturbance from a decadal Landsat record publication-title: Remote Sens. Environ. – volume: 30 start-page: 5243 year: 2009 end-page: 5272 ident: bb0310 article-title: Sampling designs for accuracy assessment of land cover publication-title: Int. J. Remote Sens. – volume: 6 start-page: 31 year: 1991 end-page: 37 ident: bb0095 article-title: Mapping burns and natural reforestation using thematic mapper data publication-title: Geocarto Int. – volume: 6 start-page: 12360 year: 2014 end-page: 12380 ident: bb0010 article-title: BAMS: a tool for supervised burned area mapping using Landsat data publication-title: Remote Sens. – volume: 26 start-page: 4265 year: 2005 end-page: 4292 ident: bb0295 article-title: The Southern Africa fire network (SAFNet) regional burned-area product-validation protocol publication-title: Int. J. Remote Sens. – volume: 60 start-page: 258 year: 1997 end-page: 269 ident: bb0305 article-title: Estimating standard errors of accuracy assessment statistics under cluster sampling publication-title: Remote Sens. Environ. – volume: 55 start-page: 197 year: 2002 end-page: 211 ident: bb0060 article-title: Determining effects of area burned and fire severity on carbon cycling and emissions in Siberia publication-title: Clim. Chang. – volume: 160 start-page: 114 year: 2015 end-page: 121 ident: bb0255 article-title: Comparing the accuracies of remote sensing global burned area products using stratified random sampling and estimation publication-title: Remote Sens. Environ. – volume: 152 start-page: 217 year: 2014 end-page: 234 ident: bb0380 article-title: Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: an algorithm designed specifically for monitoring land cover change publication-title: Remote Sens. Environ. – volume: 2 start-page: 195 year: 2009 end-page: 218 ident: bb0165 article-title: Development of time series stacks of Landsat images for reconstructing forest disturbance history publication-title: Int. J. Digital Earth – volume: 101 start-page: 15 year: 1992 end-page: 20 ident: bb0270 article-title: GEMI: a non-linear index to monitor global vegetation from satellites publication-title: Vegetatio – volume: 4 start-page: 87 year: 1985 end-page: 90 ident: bb0070 article-title: A Wilcoxon-type test for trend publication-title: Stat. Med. – volume: 42 start-page: 1736 year: 2015 end-page: 1749 ident: bb0365 article-title: The climate space of fire regimes in north-western North America publication-title: J. Biogeogr. – volume: 198 start-page: 504 year: 2017 end-page: 522 ident: bb0145 article-title: Mapping burned areas using dense time-series of Landsat data publication-title: Remote Sens. Environ. – year: 1981 ident: bb0085 article-title: Statistical Methods for Rates and Proportions – volume: 7 start-page: 1171 year: 2010 ident: bb0105 article-title: Assessing variability and long-term trends in burned area by merging multiple satellite fire products publication-title: Biogeosci. Discuss. – volume: 25 start-page: 619 year: 2016 end-page: 629 ident: bb0045 article-title: A new global burned area product for climate assessment of fire impacts publication-title: Glob. Ecol. Biogeogr. – volume: 13 start-page: 70 year: 2011 end-page: 80 ident: bb0265 article-title: Burnt area delineation from a uni-temporal perspective based on Landsat TM imagery classification using support vector machines publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 22 start-page: 2641 year: 2001 end-page: 2647 ident: bb0340 article-title: An evaluation of different bi-spectral spaces for discriminating burned shrub-savannah publication-title: Int. J. Remote Sens. – volume: 114 start-page: 2897 year: 2010 end-page: 2910 ident: bb0170 article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr – temporal segmentation algorithms publication-title: Remote Sens. Environ. – volume: 117 start-page: 393 year: 2000 end-page: 408 ident: bb0230 article-title: A double-observer approach for estimating detection probability and abundance from point counts publication-title: Auk – year: 2011 ident: bb0360 article-title: Geospatial Multi-agency Coordination (GeoMAC) Wildland Fire Perimeters, 2008 (Data Series 612) – volume: 102 start-page: 13521 year: 2005 end-page: 13525 ident: bb0120 article-title: Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance publication-title: Proc. Natl. Acad. Sci. U. S. A. – year: 2016 ident: bb0285 article-title: Atmospheric/Topographic correction for satellite imagery: ATCOR-2/3 User Guide – year: 2004 ident: bb0110 article-title: Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC – volume: 19 start-page: 449 year: 2010 end-page: 458 ident: bb0155 article-title: Beyond Landsat: a comparison of four satellite sensors for detecting burn severity in ponderosa pine forests of the Gila Wilderness, NM, USA publication-title: Int. J. Wildland Fire – volume: 69 start-page: 88 year: 2012 end-page: 102 ident: bb0325 article-title: A method for extracting burned areas from Landsat TM/ETM publication-title: ISPRS J. Photogramm. Remote Sens. – year: 2016 ident: bb0130 article-title: NACP NAFD Project: Forest Disturbance History from Landsat, 1986–2010 – volume: 104 start-page: 189 year: 2005 end-page: 209 ident: bb0260 article-title: Biomass burning emissions: a review of models using remote-sensing data publication-title: Environ. Monit. Assess. – year: 1987 ident: bb0350 article-title: Long-Term Studies of Prescribed Burning in Loblolly Pine Forests of the Southeastern Coastal Plain. (General Technical Preport SE-45) – year: 2006 ident: bb0320 article-title: Global Land Cover Validation: Recommendations for evaluation and accuracy assessment of global land cover maps (GOFC-GOLD Report No. 25) – year: 1984 ident: bb0035 article-title: Classification and Regression Trees – year: 1977 ident: bb0050 article-title: Sampling Techniques – volume: 114 start-page: 2911 year: 2010 end-page: 2924 ident: bb0055 article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync–Tools for calibration and validation publication-title: Remote Sens. Environ. – volume: 47 start-page: 195 year: 1992 end-page: 210 ident: bb0355 article-title: Fire regimes for pine-grassland communities in the southeastern United States publication-title: For. Ecol. Manag. – volume: 54 start-page: 1249 year: 2014 end-page: 1266 ident: bb0240 article-title: Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework publication-title: Environ. Manag. – volume: 157 start-page: 51 year: 2010 end-page: 63 ident: bb0015 article-title: Observer-dependent variability of the thresholding step in the quantitative analysis of soil images and X-ray microtomography data publication-title: Geoderma – year: 2006 ident: bb0175 article-title: Landscape assessment: sampling and analysis methods publication-title: FIREMON: Fire Effects Monitoring and Inventory System (General Technical Report RMRS-GTR-164-CD) – volume: 12 start-page: 16 year: 2009 end-page: 32 ident: bb0205 article-title: Quantitative evidence for increasing forest fire severity in the Sierra Nevada and Southern Cascade Mountains, California and Nevada, USA publication-title: Ecosystems – volume: 450 start-page: 89 year: 2007 ident: 10.1016/j.rse.2017.06.025_bb0020 article-title: Fire as the dominant driver of central Canadian boreal forest carbon balance publication-title: Nature doi: 10.1038/nature06272 – volume: 198 start-page: 504 year: 2017 ident: 10.1016/j.rse.2017.06.025_bb0145 article-title: Mapping burned areas using dense time-series of Landsat data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.027 – year: 1987 ident: 10.1016/j.rse.2017.06.025_bb0350 – year: 1997 ident: 10.1016/j.rse.2017.06.025_bb0040 – volume: 81 start-page: 345 year: 2015 ident: 10.1016/j.rse.2017.06.025_bb0160 article-title: Completion of the 2011 National Land Cover Database for the conterminous United States – representing a decade of land cover change information publication-title: Photogramm. Eng. Remote. Sens. – volume: 250 start-page: 1669 issue: 4988 year: 1990 ident: 10.1016/j.rse.2017.06.025_bb0065 article-title: Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles publication-title: Science doi: 10.1126/science.250.4988.1669 – volume: 19 start-page: 449 year: 2010 ident: 10.1016/j.rse.2017.06.025_bb0155 article-title: Beyond Landsat: a comparison of four satellite sensors for detecting burn severity in ponderosa pine forests of the Gila Wilderness, NM, USA publication-title: Int. J. Wildland Fire doi: 10.1071/WF07106 – volume: 22 start-page: 2641 issue: 13 year: 2001 ident: 10.1016/j.rse.2017.06.025_bb0340 article-title: An evaluation of different bi-spectral spaces for discriminating burned shrub-savannah publication-title: Int. J. Remote Sens. doi: 10.1080/01431160110053185 – volume: 26 start-page: 4265 issue: 19 year: 2005 ident: 10.1016/j.rse.2017.06.025_bb0295 article-title: The Southern Africa fire network (SAFNet) regional burned-area product-validation protocol publication-title: Int. J. Remote Sens. doi: 10.1080/01431160500113096 – volume: 16 start-page: 1087 issue: 6 year: 2013 ident: 10.1016/j.rse.2017.06.025_bb0195 article-title: United States forest disturbance trends observed using Landsat time series publication-title: Ecosystems doi: 10.1007/s10021-013-9669-9 – volume: 44 start-page: 1695 issue: 7 year: 2006 ident: 10.1016/j.rse.2017.06.025_bb0220 article-title: Special issue on global land product validation publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2006.877436 – year: 1984 ident: 10.1016/j.rse.2017.06.025_bb0035 – volume: 26 start-page: 64 year: 2014 ident: 10.1016/j.rse.2017.06.025_bb0225 article-title: Ten years of global burned area products from spaceborne remote sensing – a review: analysis of user needs and recommendations for future developments publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2013.05.014 – volume: 114 start-page: 2911 year: 2010 ident: 10.1016/j.rse.2017.06.025_bb0055 article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync–Tools for calibration and validation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.07.010 – volume: 12 start-page: 16 issue: 1 year: 2009 ident: 10.1016/j.rse.2017.06.025_bb0205 article-title: Quantitative evidence for increasing forest fire severity in the Sierra Nevada and Southern Cascade Mountains, California and Nevada, USA publication-title: Ecosystems doi: 10.1007/s10021-008-9201-9 – year: 1977 ident: 10.1016/j.rse.2017.06.025_bb0050 – volume: 10 start-page: 661 issue: 6 year: 2001 ident: 10.1016/j.rse.2017.06.025_bb0335 article-title: The role of fire disturbance for global vegetation dynamics: coupling fire into a dynamic global vegetation model publication-title: Glob. Ecol. Biogeogr. doi: 10.1046/j.1466-822X.2001.00175.x – volume: 112 start-page: 3690 year: 2008 ident: 10.1016/j.rse.2017.06.025_bb0300 article-title: The collection 5 MODIS burned area product – global evaluation by comparison with the MODIS active fire product publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.05.013 – volume: 60 start-page: 258 year: 1997 ident: 10.1016/j.rse.2017.06.025_bb0305 article-title: Estimating standard errors of accuracy assessment statistics under cluster sampling publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(96)00176-9 – volume: 115 start-page: 1003 year: 2011 ident: 10.1016/j.rse.2017.06.025_bb0005 article-title: Mapping burned areas from Landsat TM/ETM+ data with a two-phase algorithm: balancing omission and commission errors publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.12.005 – volume: 114 start-page: 2897 issue: 12 year: 2010 ident: 10.1016/j.rse.2017.06.025_bb0170 article-title: Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr – temporal segmentation algorithms publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.07.008 – volume: 104 start-page: 189 issue: 1–3 year: 2005 ident: 10.1016/j.rse.2017.06.025_bb0260 article-title: Biomass burning emissions: a review of models using remote-sensing data publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-005-1611-y – volume: 32 start-page: 195 issue: 2 year: 2002 ident: 10.1016/j.rse.2017.06.025_bb0275 article-title: Statistical quality control analysis of forest fire activity in Canada publication-title: Can. J. For. Res. doi: 10.1139/x01-183 – ident: 10.1016/j.rse.2017.06.025_bb0110 – volume: 42 start-page: 1736 issue: 9 year: 2015 ident: 10.1016/j.rse.2017.06.025_bb0365 article-title: The climate space of fire regimes in north-western North America publication-title: J. Biogeogr. doi: 10.1111/jbi.12533 – volume: 7 start-page: 1171 year: 2010 ident: 10.1016/j.rse.2017.06.025_bb0105 article-title: Assessing variability and long-term trends in burned area by merging multiple satellite fire products publication-title: Biogeosci. Discuss. doi: 10.5194/bg-7-1171-2010 – volume: 54 start-page: 1249 issue: 6 year: 2014 ident: 10.1016/j.rse.2017.06.025_bb0240 article-title: Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework publication-title: Environ. Manag. doi: 10.1007/s00267-014-0364-1 – volume: 51 start-page: 933 year: 2001 ident: 10.1016/j.rse.2017.06.025_bb0235 article-title: Terrestrial ecoregions of the world: a new map of life on earth publication-title: Bioscience doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 – volume: 144 start-page: 187 year: 2014 ident: 10.1016/j.rse.2017.06.025_bb0245 article-title: Validation of the 2008 MODIS-MCD45 global burned area product using stratified random sampling publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.01.008 – volume: 47 start-page: 1032 issue: 4 year: 2009 ident: 10.1016/j.rse.2017.06.025_bb0290 article-title: Southern Africa validation of the MODIS, L3JRC, and GlobCarbon burned-area products publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.2009000 – volume: 161 start-page: 27 year: 2015 ident: 10.1016/j.rse.2017.06.025_bb0030 article-title: MODIS-Landsat fusion for large area 30m burned area mapping publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.01.022 – volume: 69 start-page: 88 year: 2012 ident: 10.1016/j.rse.2017.06.025_bb0325 article-title: A method for extracting burned areas from Landsat TM/ETM+ images by soft aggregation of multiple spectral indices and a region growing algorithm publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2012.03.001 – volume: 3 start-page: 3 issue: 1 year: 2007 ident: 10.1016/j.rse.2017.06.025_bb0080 article-title: A project for monitoring trends in burn severity publication-title: Fire Ecol. doi: 10.4996/fireecology.0301003 – volume: 130 start-page: 280 year: 2013 ident: 10.1016/j.rse.2017.06.025_bb0180 article-title: The global availability of Landsat 5 TM and Landsat ETM+ land surface observations and implications for global 30m Landsat data product generation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.12.003 – volume: 152 start-page: 217 year: 2014 ident: 10.1016/j.rse.2017.06.025_bb0380 article-title: Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: an algorithm designed specifically for monitoring land cover change publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.06.012 – volume: 130 start-page: 294 year: 2013 ident: 10.1016/j.rse.2017.06.025_bb0370 article-title: Accuracy assessment of NLCD 2006 land cover and impervious surface publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.12.001 – year: 2006 ident: 10.1016/j.rse.2017.06.025_bb0175 article-title: Landscape assessment: sampling and analysis methods – volume: 113 start-page: 408 year: 2009 ident: 10.1016/j.rse.2017.06.025_bb0100 article-title: An active-fire based burned area mapping algorithm for the MODIS sensor publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.10.006 – volume: 102 start-page: 13521 issue: 38 year: 2005 ident: 10.1016/j.rse.2017.06.025_bb0120 article-title: Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0506179102 – year: 2016 ident: 10.1016/j.rse.2017.06.025_bb0130 – volume: 2743 year: 1996 ident: 10.1016/j.rse.2017.06.025_bb0200 article-title: Analysis of observer variability in the assessment of FLIR performance – year: 2006 ident: 10.1016/j.rse.2017.06.025_bb0320 – volume: 4 start-page: 87 issue: 1 year: 1985 ident: 10.1016/j.rse.2017.06.025_bb0070 article-title: A Wilcoxon-type test for trend publication-title: Stat. Med. doi: 10.1002/sim.4780040112 – volume: 6 start-page: 31 year: 1991 ident: 10.1016/j.rse.2017.06.025_bb0095 article-title: Mapping burns and natural reforestation using thematic mapper data publication-title: Geocarto Int. doi: 10.1080/10106049109354290 – volume: 101 start-page: 15 issue: 1 year: 1992 ident: 10.1016/j.rse.2017.06.025_bb0270 article-title: GEMI: a non-linear index to monitor global vegetation from satellites publication-title: Vegetatio doi: 10.1007/BF00031911 – volume: 15 start-page: 457 year: 2006 ident: 10.1016/j.rse.2017.06.025_bb0215 article-title: Fire type mapping using object-based classification of Ikonos imagery publication-title: Int. J. Wildland Fire doi: 10.1071/WF05085 – volume: 160 start-page: 114 year: 2015 ident: 10.1016/j.rse.2017.06.025_bb0255 article-title: Comparing the accuracies of remote sensing global burned area products using stratified random sampling and estimation publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.01.005 – volume: 73 start-page: 165 year: 2007 ident: 10.1016/j.rse.2017.06.025_bb0315 article-title: Estimation of fuzzy error matrix accuracy measures under stratified random sampling publication-title: Photogramm. Eng. Remote. Sens. doi: 10.14358/PERS.73.2.165 – volume: 13 start-page: 70 issue: 1 year: 2011 ident: 10.1016/j.rse.2017.06.025_bb0265 article-title: Burnt area delineation from a uni-temporal perspective based on Landsat TM imagery classification using support vector machines publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2010.06.008 – volume: 2 start-page: 195 issue: 3 year: 2009 ident: 10.1016/j.rse.2017.06.025_bb0165 article-title: Development of time series stacks of Landsat images for reconstructing forest disturbance history publication-title: Int. J. Digital Earth doi: 10.1080/17538940902801614 – volume: 74 start-page: 881 issue: 7 year: 2008 ident: 10.1016/j.rse.2017.06.025_bb0150 article-title: Comparison of single- and multi-date Landsat data for mapping wildfire scares in Ocala National Forest, Florida publication-title: Photogramm. Eng. Remote. Sens. doi: 10.14358/PERS.74.7.881 – volume: 186 start-page: 217 year: 2016 ident: 10.1016/j.rse.2017.06.025_bb0375 article-title: Landsat 5 thematic mapper reflectance and NDVI 27-year time series inconsistencies due to satellite orbit change publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.08.022 – volume: 19 start-page: 1 year: 2005 ident: 10.1016/j.rse.2017.06.025_bb0280 article-title: Fire emissions from C3 and C4 vegetation and their influence on interannual variability of atmospheric CO2 and δ13CO2 publication-title: Glob. Biogeochem. Cycles doi: 10.1029/2004GB002366 – ident: 10.1016/j.rse.2017.06.025_bb0285 – volume: 115 start-page: 19 year: 2011 ident: 10.1016/j.rse.2017.06.025_bb0330 article-title: Validation of North American forest disturbance dynamics derived from Landsat time series stacks publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.07.009 – year: 1993 ident: 10.1016/j.rse.2017.06.025_bb0385 – volume: 6 start-page: 12360 issue: 12 year: 2014 ident: 10.1016/j.rse.2017.06.025_bb0010 article-title: BAMS: a tool for supervised burned area mapping using Landsat data publication-title: Remote Sens. doi: 10.3390/rs61212360 – volume: 33 start-page: 4408 issue: 14 year: 2012 ident: 10.1016/j.rse.2017.06.025_bb0185 article-title: Comparing ten classification methods for burned area mapping in a Mediterranean environment using Landsat TM satellite data publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2011.648284 – volume: 13 start-page: 367 issue: 3 year: 2004 ident: 10.1016/j.rse.2017.06.025_bb0210 article-title: A semi-automated object-oriented model for burned area mapping in the Mediterranean region using Landsat-TM imagery publication-title: Int. J. Wildland Fire doi: 10.1071/WF03079 – volume: 148 start-page: 206 year: 2014 ident: 10.1016/j.rse.2017.06.025_bb0125 article-title: Development of an automated method for mapping fire history captured in Landsat TM and ETM+ time series across Queensland, Australia publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.03.021 – volume: 117 start-page: 393 issue: 2 year: 2000 ident: 10.1016/j.rse.2017.06.025_bb0230 article-title: A double-observer approach for estimating detection probability and abundance from point counts publication-title: Auk doi: 10.1093/auk/117.2.393 – volume: 157 start-page: 51 issue: 1–2 year: 2010 ident: 10.1016/j.rse.2017.06.025_bb0015 article-title: Observer-dependent variability of the thresholding step in the quantitative analysis of soil images and X-ray microtomography data publication-title: Geoderma doi: 10.1016/j.geoderma.2010.03.015 – year: 2011 ident: 10.1016/j.rse.2017.06.025_bb0360 – year: 1981 ident: 10.1016/j.rse.2017.06.025_bb0085 – volume: 112 start-page: 2914 year: 2008 ident: 10.1016/j.rse.2017.06.025_bb0190 article-title: North American forest disturbance from a decadal Landsat record publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.02.010 – volume: 8 start-page: 127 year: 1979 ident: 10.1016/j.rse.2017.06.025_bb0345 article-title: Red and photographic infrared linear combinations for monitoring vegetation publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(79)90013-0 – volume: 25 start-page: 619 issue: 5 year: 2016 ident: 10.1016/j.rse.2017.06.025_bb0045 article-title: A new global burned area product for climate assessment of fire impacts publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/geb.12440 – volume: 122 start-page: 66 year: 2012 ident: 10.1016/j.rse.2017.06.025_bb0135 article-title: A review of large area monitoring of land cover change using Landsat data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.08.024 – year: 2009 ident: 10.1016/j.rse.2017.06.025_bb0140 – volume: 11 start-page: 189 issue: 3 year: 1995 ident: 10.1016/j.rse.2017.06.025_bb0090 article-title: Classification-algorithm evaluation: five performance measures based on confusion matrices publication-title: J. Clin. Monit. doi: 10.1007/BF01617722 – volume: 55 start-page: 197 issue: 1/2 year: 2002 ident: 10.1016/j.rse.2017.06.025_bb0060 article-title: Determining effects of area burned and fire severity on carbon cycling and emissions in Siberia publication-title: Clim. Chang. doi: 10.1023/A:1020207710195 – volume: 30 start-page: 5243 issue: 20 year: 2009 ident: 10.1016/j.rse.2017.06.025_bb0310 article-title: Sampling designs for accuracy assessment of land cover publication-title: Int. J. Remote Sens. doi: 10.1080/01431160903131000 – volume: 6 start-page: 2050 issue: 3 year: 2014 ident: 10.1016/j.rse.2017.06.025_bb0250 article-title: Assessing the temporal stability of the accuracy of a time series of burned area products publication-title: Remote Sens. doi: 10.3390/rs6032050 – volume: 47 start-page: 195 issue: 1–4 year: 1992 ident: 10.1016/j.rse.2017.06.025_bb0355 article-title: Fire regimes for pine-grassland communities in the southeastern United States publication-title: For. Ecol. Manag. doi: 10.1016/0378-1127(92)90274-D |
| SSID | ssj0015871 |
| Score | 2.4285686 |
| Snippet | The Landsat Burned Area Essential Climate Variable (BAECV), developed by the U.S. Geological Survey (USGS), capitalizes on the long temporal availability of... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 393 |
| SubjectTerms | agricultural land algorithms Burned area data collection ecoregions Essential climate variable Fire grasslands Great Plains region Landsat multispectral imagery remote sensing shrublands shrubs space and time United States United States Geological Survey Validation Wildfire |
| Title | Validation of the USGS Landsat Burned Area Essential Climate Variable (BAECV) across the conterminous United States |
| URI | https://dx.doi.org/10.1016/j.rse.2017.06.025 https://www.proquest.com/docview/2000466457 |
| Volume | 198 |
| WOSCitedRecordID | wos000406818500032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bj9JAFJ7grkZfjKIb11vGxAe1KQHaMtNHJIiiboyLBJ-amc5pZEPKhsKKf8tf6JlLy8Xsxn3wpYFCT0rPxznfnDkXQl6CYLHsNIWv0lD5YScUPo8l-AwCnkYMvQpkZtgEOznhk0n8pVb7XdbCXMxYnvP1Oj7_r6rGc6hsXTp7DXVXQvEEvkal4xHVjsd_UvwYmbWqiKDhlaeDU--TrunV0QAdxFReF8mi1y906ZGOmfdmU6Su4I1x6WyKqZB4vu32e2MdNRDGlRpROrPdpM_ozNkdvrrNcr8CAgC8QifH26TqrXq6UsVjU1fzYz43bSE_w0wXu3sfGxWixHQhVusKrpvtfzBDCrzvkPvDlTdobKzoTylclshorpQ3bGwHNdBRlllblaEOQl-bkx1DbedVO1Mb2MmKzmuHpm_B3w7BxibOGotC90RtMdOs1ZZa7zbf3nOKVapimQV3lqCIRItIdCZgO7pBDtssitGSHnY_9CfDau8q4szOaXQ_odxLN1mFe_dxGRva4wWG7IzukbtulUK7Fl33SQ3yOjnqb5SIHzqvUNTJ7QG4xud1cmtgRkX_ekCKDRDpPKOIHqqBSB0QqQUi1UCkFRCpAyItgUhfGRi-phaERsw2CKkFIbUgfEi-veuPeu99N-LDT4O4s_QjmTZ5nDERZxlnCgkkCCkiaEHEpZJcAg_wTUtBjAsPkYYy0gQUAIJMMVDBETnI5zk8IjTNQtEKZNZGUxPGmRTI1TnPwqZkLEq5PCbN8lEnqet_r8ewzJJLVXxM3lSXnNvmL1d9OSz1lzj2allpgli86rIXpa4TtOx6u07kgM9PD4ht6uEPEXt8nft4Qu5s_lFPycFysYJn5GZ6sZwWi-cOrH8AwxDH7g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+the+USGS+Landsat+Burned+Area+Essential+Climate+Variable+%28BAECV%29+across+the+conterminous+United+States&rft.jtitle=Remote+sensing+of+environment&rft.au=Vanderhoof%2C+Melanie+K.&rft.au=Fairaux%2C+Nicole&rft.au=Beal%2C+Yen-Ju+G.&rft.au=Hawbaker%2C+Todd+J.&rft.date=2017-09-01&rft.issn=0034-4257&rft.volume=198&rft.spage=393&rft.epage=406&rft_id=info:doi/10.1016%2Fj.rse.2017.06.025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rse_2017_06_025 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |