A Directed Genetic Algorithm for global optimization

Within the framework of real-coded genetic algorithms, this paper proposes a directed genetic algorithm (DGA) that introduces a directed crossover operator and a directed mutation operator. The operation schemes of these operators borrow from the reflection and the expansion search mode of the Nelde...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation Vol. 219; no. 14; pp. 7348 - 7364
Main Authors: Kuo, Hsin-Chuan, Lin, Ching-Hai
Format: Journal Article
Language:English
Published: Elsevier Inc 15.03.2013
Subjects:
ISSN:0096-3003, 1873-5649
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Within the framework of real-coded genetic algorithms, this paper proposes a directed genetic algorithm (DGA) that introduces a directed crossover operator and a directed mutation operator. The operation schemes of these operators borrow from the reflection and the expansion search mode of the Nelder–Mead’s simplex method. First, the Taguchi method is employed to study the influence analysis of the parameters in the DGA. The results show that the parameters in the DGA have strong robustness for solving the global optimal solution. Then, several strategies are proposed to enhance the solution accuracy capability of the DGA. All of the strategies are applied to a set of 30/100-dimensional benchmark functions to prove their superiority over several genetic algorithms. Finally, a cantilevered beam design problem with constrained conditions is used as a practical structural optimization example for demonstrating the very good performance of the proposed method.
AbstractList Within the framework of real-coded genetic algorithms, this paper proposes a directed genetic algorithm (DGA) that introduces a directed crossover operator and a directed mutation operator. The operation schemes of these operators borrow from the reflection and the expansion search mode of the Nelder–Mead’s simplex method. First, the Taguchi method is employed to study the influence analysis of the parameters in the DGA. The results show that the parameters in the DGA have strong robustness for solving the global optimal solution. Then, several strategies are proposed to enhance the solution accuracy capability of the DGA. All of the strategies are applied to a set of 30/100-dimensional benchmark functions to prove their superiority over several genetic algorithms. Finally, a cantilevered beam design problem with constrained conditions is used as a practical structural optimization example for demonstrating the very good performance of the proposed method.
Within the framework of real-coded genetic algorithms, this paper proposes a directed genetic algorithm (DGA) that introduces a directed crossover operator and a directed mutation operator. The operation schemes of these operators borrow from the reflection and the expansion search mode of the NelderaMeadas simplex method. First, the Taguchi method is employed to study the influence analysis of the parameters in the DGA. The results show that the parameters in the DGA have strong robustness for solving the global optimal solution. Then, several strategies are proposed to enhance the solution accuracy capability of the DGA. All of the strategies are applied to a set of 30/100-dimensional benchmark functions to prove their superiority over several genetic algorithms. Finally, a cantilevered beam design problem with constrained conditions is used as a practical structural optimization example for demonstrating the very good performance of the proposed method.
Author Kuo, Hsin-Chuan
Lin, Ching-Hai
Author_xml – sequence: 1
  givenname: Hsin-Chuan
  surname: Kuo
  fullname: Kuo, Hsin-Chuan
  email: khc@ntou.edu.tw, khc@mail.ntou.edu.tw
– sequence: 2
  givenname: Ching-Hai
  surname: Lin
  fullname: Lin, Ching-Hai
  email: lch850@gmail.com
BookMark eNp9kLFOwzAQhi1UJNrCA7BlZEmwY8exxVQVKEiVWGC2HPtSXCVxsV0keHpSysRQ6Zdu-b_T3TdDk8EPgNA1wQXBhN9uC92bosSkLMZgxs_QlIia5hVncoKmGEueU4zpBZrFuMUY15ywKWKL7N4FMAlstoIBkjPZotv44NJ7n7U-ZJvON7rL_C653n3r5Pxwic5b3UW4-ptz9Pb48Lp8ytcvq-flYp0bKnnKKwmiFdTWgjSkrK3gRFoQAhqhoWqAlZoSbprWSiugMlzWrLJWMyM5SKLpHN0c9-6C_9hDTKp30UDX6QH8PipCmWSMkJqN1fpYNcHHGKBVxqXfY1PQrlMEq4MntVWjJ3XwpMaMnkaS_CN3wfU6fJ1k7o4MjN9_OggqGgeDAfvrUlnvTtA_N5-B7w
CitedBy_id crossref_primary_10_1007_s11859_019_1406_6
crossref_primary_10_1016_j_amc_2013_07_068
crossref_primary_10_1109_ACCESS_2019_2913180
crossref_primary_10_1109_ACCESS_2019_2944981
crossref_primary_10_1016_j_amc_2014_12_030
crossref_primary_10_1134_S0001433820110067
crossref_primary_10_1038_s41598_019_50208_x
crossref_primary_10_1155_2021_8896794
crossref_primary_10_1155_2021_8899685
crossref_primary_10_1007_s10489_018_1364_2
crossref_primary_10_1016_j_ceramint_2025_01_252
crossref_primary_10_1016_j_jhydrol_2016_03_002
crossref_primary_10_1080_0952813X_2015_1042530
crossref_primary_10_1016_j_ins_2015_01_026
crossref_primary_10_1016_j_eswa_2015_04_064
crossref_primary_10_1177_0954406215597955
crossref_primary_10_1016_j_ins_2015_07_033
crossref_primary_10_1109_JIOT_2020_3031922
crossref_primary_10_1109_ACCESS_2020_2973412
crossref_primary_10_1007_s00500_020_05545_9
crossref_primary_10_1007_s10489_018_1370_4
crossref_primary_10_1007_s11042_015_3213_1
crossref_primary_10_1155_2019_4243853
crossref_primary_10_1016_j_optlaseng_2013_12_003
crossref_primary_10_1007_s13042_024_02297_y
Cites_doi 10.1109/CEC.2010.5586260
10.1007/s10898-008-9357-z
10.1016/0360-8352(96)00053-8
10.1002/(SICI)1097-0363(19990530)30:2<149::AID-FLD829>3.0.CO;2-B
10.1109/ICNN.1995.488968
10.1016/S0141-9331(02)00053-4
10.1093/comjnl/7.4.308
10.1109/4235.771163
10.1016/B978-0-08-094832-4.50018-0
10.1109/ICPR.2004.1334169
10.1016/S0377-2217(02)00401-0
10.1023/A:1008202821328
10.1023/A:1022452626305
10.1109/ICEC.1997.592275
10.1109/3477.484436
10.1016/S0045-7949(99)00125-X
10.1007/s00500-004-0377-4
10.1038/scientificamerican0300-72
10.1016/j.amc.2007.03.046
10.1109/CEC.2010.5586270
10.1016/B978-0-08-050684-5.50016-1
ContentType Journal Article
Copyright 2012 Elsevier Inc.
Copyright_xml – notice: 2012 Elsevier Inc.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.amc.2012.12.046
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 7364
ExternalDocumentID 10_1016_j_amc_2012_12_046
S0096300312013227
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABAOU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SME
SPC
SPCBC
SSW
SSZ
T5K
TN5
WH7
X6Y
XPP
ZMT
~02
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HMJ
HVGLF
HZ~
R2-
SEW
TAE
VH1
VOH
WUQ
~HD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c396t-59e8f83d781b127d8619de88eb8ae5be42a316cbfd9d8e5c69745dda4c96e91a3
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000316668800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0096-3003
IngestDate Sun Nov 09 10:38:16 EST 2025
Tue Nov 18 21:37:19 EST 2025
Sat Nov 29 07:58:03 EST 2025
Fri Feb 23 02:27:02 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Nelder–Mead’s simplex algorithm
Global optimization
Directed genetic algorithm
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c396t-59e8f83d781b127d8619de88eb8ae5be42a316cbfd9d8e5c69745dda4c96e91a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1349441174
PQPubID 23500
PageCount 17
ParticipantIDs proquest_miscellaneous_1349441174
crossref_citationtrail_10_1016_j_amc_2012_12_046
crossref_primary_10_1016_j_amc_2012_12_046
elsevier_sciencedirect_doi_10_1016_j_amc_2012_12_046
PublicationCentury 2000
PublicationDate 2013-03-15
PublicationDateYYYYMMDD 2013-03-15
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-15
  day: 15
PublicationDecade 2010
PublicationTitle Applied mathematics and computation
PublicationYear 2013
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Dorigo, Maniezzo, Colorni (b0015) 1996; 26
Adnan, Akin (b0125) 2005; 2
Taguchi (b0130) 1990
Wright (b0060) 1991
Michalewicz (b0065) 1992
Fiacco, McCormick (b0160) 1968
Arora, Tulshyan, Deb (b0055) 2010; 2010
A. Neubauer, A theoretical analysis of the non-uniform mutation operator for the modified genetic algorithm, in: IEEE International Conference on, Evolutionary Computation, 1997, 93–96.
Eshelman, Scahffer (b0070) 1993
Birbil, Fang (b0035) 2003; 25
Depp, Thakur (b0085) 2007; 193
Ayed, Imtiaz, Sabah (b0110) 2002; 26
M.E. Farmer, S. Bapna, A.K. Jain, Large scale feature selection using modified random mutation hill climbing, ICPR 2004, In: Proceedings of the 17th International Conference on, Pattern Recognition, 2004.
Goldberg (b0050) 1991; 5
Edward (b0135) 2000
Goldberg (b0045) 1989
Nelder, Mead (b0120) 1965; 7
Storn, Price (b0020) 1997; 11
Makinen, Periaux, Toivanen (b0145) 1999; 30
Gupta, Li (b0155) 2000; 76
Deb (b0080) 2005; 9
Holland (b0005) 1975
Bonabeau, Dorigo, Theranlaz (b0025) 1999
Tadahiko, Hisao, Hideo (b0105) 1996; 30
I. Ono, S. Kobayashi, A real-coded genetic algorithm for function optimization using unimodal normal distribution crossover, in: Proceedings of 7th Int’l Conf. on Genetic Algorithms, 1997, 246–253.
Yao, Liu, Lin (b0150) 1999; 3
K.A. De Jong, An analysis of the behavior of a class of genetic adaptive systems, Ph. D. Dissertation, University of Michigan, Ann Arbor, 1975.
Gong, Hu, Zhang, Liu, Liu (b0100) 2010; 2010
Chelouah, Siarry (b0115) 2003; 148
J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of IEEE International Conference on Neural Networks, vol. 4, Perth, Australia, 1995, pp. 1942–1948.
Kuo, Wu (b0140) 2009; 44
Bonabeau, Theranlaz (b0030) 2000
Michalewicz (10.1016/j.amc.2012.12.046_b0065) 1992
Ayed (10.1016/j.amc.2012.12.046_b0110) 2002; 26
Storn (10.1016/j.amc.2012.12.046_b0020) 1997; 11
10.1016/j.amc.2012.12.046_b0040
Wright (10.1016/j.amc.2012.12.046_b0060) 1991
Goldberg (10.1016/j.amc.2012.12.046_b0050) 1991; 5
Gupta (10.1016/j.amc.2012.12.046_b0155) 2000; 76
Bonabeau (10.1016/j.amc.2012.12.046_b0030) 2000
Eshelman (10.1016/j.amc.2012.12.046_b0070) 1993
Tadahiko (10.1016/j.amc.2012.12.046_b0105) 1996; 30
Gong (10.1016/j.amc.2012.12.046_b0100) 2010; 2010
Fiacco (10.1016/j.amc.2012.12.046_b0160) 1968
Kuo (10.1016/j.amc.2012.12.046_b0140) 2009; 44
Chelouah (10.1016/j.amc.2012.12.046_b0115) 2003; 148
Edward (10.1016/j.amc.2012.12.046_b0135) 2000
10.1016/j.amc.2012.12.046_b0090
Birbil (10.1016/j.amc.2012.12.046_b0035) 2003; 25
Bonabeau (10.1016/j.amc.2012.12.046_b0025) 1999
Arora (10.1016/j.amc.2012.12.046_b0055) 2010; 2010
10.1016/j.amc.2012.12.046_b0095
10.1016/j.amc.2012.12.046_b0010
10.1016/j.amc.2012.12.046_b0075
Yao (10.1016/j.amc.2012.12.046_b0150) 1999; 3
Dorigo (10.1016/j.amc.2012.12.046_b0015) 1996; 26
Goldberg (10.1016/j.amc.2012.12.046_b0045) 1989
Nelder (10.1016/j.amc.2012.12.046_b0120) 1965; 7
Deb (10.1016/j.amc.2012.12.046_b0080) 2005; 9
Depp (10.1016/j.amc.2012.12.046_b0085) 2007; 193
Adnan (10.1016/j.amc.2012.12.046_b0125) 2005; 2
Taguchi (10.1016/j.amc.2012.12.046_b0130) 1990
Makinen (10.1016/j.amc.2012.12.046_b0145) 1999; 30
Holland (10.1016/j.amc.2012.12.046_b0005) 1975
References_xml – year: 1975
  ident: b0005
  article-title: Adaption in Natural and Artificial Systems
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b0020
  article-title: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
– start-page: 187
  year: 1993
  end-page: 202
  ident: b0070
  article-title: Real-coded genetic algorithms and interval-schemata
  publication-title: Foundations of Genetic Algorithms 2
– year: 1990
  ident: b0130
  article-title: Techniques for Quality Engineering
– year: 1989
  ident: b0045
  article-title: Genetic Algorithms in Search
– volume: 2010
  start-page: 1
  year: 2010
  end-page: 7
  ident: b0100
  article-title: A linear map-based mutation scheme for real coded genetic algorithms
  publication-title: IEEE Congr. Evol. Comput.
– volume: 44
  start-page: 563
  year: 2009
  end-page: 578
  ident: b0140
  article-title: A new approach with orthogonal array for global optimization in design of experiments
  publication-title: J. Global Optim.
– reference: J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of IEEE International Conference on Neural Networks, vol. 4, Perth, Australia, 1995, pp. 1942–1948.
– volume: 76
  start-page: 507
  year: 2000
  end-page: 516
  ident: b0155
  article-title: Robust design optimization with mathematical programming neural networks
  publication-title: Comput. Struct.
– year: 1968
  ident: b0160
  article-title: Nonlinear programming: Sequential Unconstrained Minimization Techniques
– start-page: 205
  year: 1991
  end-page: 218
  ident: b0060
  article-title: Genetic algorithms for real parameter optimization
  publication-title: Foundations of Genetic Algorithms 1
– reference: A. Neubauer, A theoretical analysis of the non-uniform mutation operator for the modified genetic algorithm, in: IEEE International Conference on, Evolutionary Computation, 1997, 93–96.
– reference: I. Ono, S. Kobayashi, A real-coded genetic algorithm for function optimization using unimodal normal distribution crossover, in: Proceedings of 7th Int’l Conf. on Genetic Algorithms, 1997, 246–253.
– reference: K.A. De Jong, An analysis of the behavior of a class of genetic adaptive systems, Ph. D. Dissertation, University of Michigan, Ann Arbor, 1975.
– year: 2000
  ident: b0135
  article-title: Wilson, Sociobiology: The New Synthesis 1975
– volume: 26
  start-page: 363
  year: 2002
  end-page: 371
  ident: b0110
  article-title: Particle swarm optimization for task assignment problem
  publication-title: Microprocess. Microsys.
– volume: 2
  start-page: 1875
  year: 2005
  end-page: 1882
  ident: b0125
  article-title: Enhanced particle swarm optimization through external memory support
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 72
  year: 2000
  end-page: 79
  ident: b0030
  article-title: Swarm smarts
  publication-title: Sci. Am.
– volume: 30
  start-page: 149
  year: 1999
  end-page: 159
  ident: b0145
  article-title: Multidisciplinary shape optimization in aerodynamics and electromagnetic using genetic algorithms
  publication-title: Int. J. Numer. Methods Fluids
– year: 1999
  ident: b0025
  article-title: Swarm Intelligence. From Natural to Artificial System
– volume: 5
  start-page: 139
  year: 1991
  end-page: 167
  ident: b0050
  article-title: Real-coded genetic algorithms, virtual alphabets, and blocking
  publication-title: Complex Syst.
– year: 1992
  ident: b0065
  article-title: Genetic Algorithms
– volume: 148
  start-page: 335
  year: 2003
  end-page: 348
  ident: b0115
  article-title: Genetic and Nelder–Mead algorithms hybridized for a more accurate global optimization of continuous multi-minima functions
  publication-title: Eur. J. Oper. Res.
– volume: 30
  start-page: 1061
  year: 1996
  end-page: 1071
  ident: b0105
  article-title: Genetic algorithms for flow-shop scheduling problems
  publication-title: Comput. Ind. Eng.
– volume: 3
  start-page: 82
  year: 1999
  end-page: 102
  ident: b0150
  article-title: Evolutionary programming made faster
  publication-title: IEEE Trans. Evol. Comput.
– volume: 193
  start-page: 211
  year: 2007
  end-page: 230
  ident: b0085
  article-title: A new mutation operator for real coded genetic algorithms
  publication-title: Appl. Math. Comput.
– volume: 25
  start-page: 263
  year: 2003
  end-page: 282
  ident: b0035
  article-title: An electromagnetism-like mechanism for global optimization
  publication-title: J. Global Optim.
– volume: 2010
  start-page: 1
  year: 2010
  end-page: 8
  ident: b0055
  article-title: Parallelization of binary and real-coded genetic algorithms on GPU using CUDA
  publication-title: IEEE Congr. Evol. Comput.
– volume: 26
  start-page: 29
  year: 1996
  end-page: 41
  ident: b0015
  article-title: Ant system: optimization by a colony of co-operating agents
  publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern.
– volume: 9
  start-page: 236
  year: 2005
  end-page: 253
  ident: b0080
  article-title: A population-based algorithm-generator for real-parameter optimization
  publication-title: Soft Comput.
– volume: 7
  start-page: 308
  year: 1965
  end-page: 313
  ident: b0120
  article-title: A simplex method for function minimization
  publication-title: Comput. J.
– reference: M.E. Farmer, S. Bapna, A.K. Jain, Large scale feature selection using modified random mutation hill climbing, ICPR 2004, In: Proceedings of the 17th International Conference on, Pattern Recognition, 2004.
– volume: 2010
  start-page: 1
  year: 2010
  ident: 10.1016/j.amc.2012.12.046_b0055
  article-title: Parallelization of binary and real-coded genetic algorithms on GPU using CUDA
  publication-title: IEEE Congr. Evol. Comput.
  doi: 10.1109/CEC.2010.5586260
– volume: 44
  start-page: 563
  year: 2009
  ident: 10.1016/j.amc.2012.12.046_b0140
  article-title: A new approach with orthogonal array for global optimization in design of experiments
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-008-9357-z
– volume: 30
  start-page: 1061
  year: 1996
  ident: 10.1016/j.amc.2012.12.046_b0105
  article-title: Genetic algorithms for flow-shop scheduling problems
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/0360-8352(96)00053-8
– volume: 30
  start-page: 149
  year: 1999
  ident: 10.1016/j.amc.2012.12.046_b0145
  article-title: Multidisciplinary shape optimization in aerodynamics and electromagnetic using genetic algorithms
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/(SICI)1097-0363(19990530)30:2<149::AID-FLD829>3.0.CO;2-B
– year: 1968
  ident: 10.1016/j.amc.2012.12.046_b0160
– ident: 10.1016/j.amc.2012.12.046_b0010
  doi: 10.1109/ICNN.1995.488968
– year: 1999
  ident: 10.1016/j.amc.2012.12.046_b0025
– year: 1990
  ident: 10.1016/j.amc.2012.12.046_b0130
– year: 1975
  ident: 10.1016/j.amc.2012.12.046_b0005
– year: 1989
  ident: 10.1016/j.amc.2012.12.046_b0045
– volume: 26
  start-page: 363
  year: 2002
  ident: 10.1016/j.amc.2012.12.046_b0110
  article-title: Particle swarm optimization for task assignment problem
  publication-title: Microprocess. Microsys.
  doi: 10.1016/S0141-9331(02)00053-4
– volume: 7
  start-page: 308
  year: 1965
  ident: 10.1016/j.amc.2012.12.046_b0120
  article-title: A simplex method for function minimization
  publication-title: Comput. J.
  doi: 10.1093/comjnl/7.4.308
– volume: 2
  start-page: 1875
  year: 2005
  ident: 10.1016/j.amc.2012.12.046_b0125
  article-title: Enhanced particle swarm optimization through external memory support
  publication-title: IEEE Trans. Evol. Comput.
– volume: 3
  start-page: 82
  year: 1999
  ident: 10.1016/j.amc.2012.12.046_b0150
  article-title: Evolutionary programming made faster
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.771163
– start-page: 187
  year: 1993
  ident: 10.1016/j.amc.2012.12.046_b0070
  article-title: Real-coded genetic algorithms and interval-schemata
  doi: 10.1016/B978-0-08-094832-4.50018-0
– ident: 10.1016/j.amc.2012.12.046_b0090
  doi: 10.1109/ICPR.2004.1334169
– volume: 148
  start-page: 335
  year: 2003
  ident: 10.1016/j.amc.2012.12.046_b0115
  article-title: Genetic and Nelder–Mead algorithms hybridized for a more accurate global optimization of continuous multi-minima functions
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/S0377-2217(02)00401-0
– volume: 11
  start-page: 341
  year: 1997
  ident: 10.1016/j.amc.2012.12.046_b0020
  article-title: Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008202821328
– year: 2000
  ident: 10.1016/j.amc.2012.12.046_b0135
– year: 1992
  ident: 10.1016/j.amc.2012.12.046_b0065
– volume: 25
  start-page: 263
  year: 2003
  ident: 10.1016/j.amc.2012.12.046_b0035
  article-title: An electromagnetism-like mechanism for global optimization
  publication-title: J. Global Optim.
  doi: 10.1023/A:1022452626305
– ident: 10.1016/j.amc.2012.12.046_b0040
– ident: 10.1016/j.amc.2012.12.046_b0075
– ident: 10.1016/j.amc.2012.12.046_b0095
  doi: 10.1109/ICEC.1997.592275
– volume: 5
  start-page: 139
  year: 1991
  ident: 10.1016/j.amc.2012.12.046_b0050
  article-title: Real-coded genetic algorithms, virtual alphabets, and blocking
  publication-title: Complex Syst.
– volume: 26
  start-page: 29
  year: 1996
  ident: 10.1016/j.amc.2012.12.046_b0015
  article-title: Ant system: optimization by a colony of co-operating agents
  publication-title: IEEE Trans. Syst. Man Cybern. Part B Cybern.
  doi: 10.1109/3477.484436
– volume: 76
  start-page: 507
  year: 2000
  ident: 10.1016/j.amc.2012.12.046_b0155
  article-title: Robust design optimization with mathematical programming neural networks
  publication-title: Comput. Struct.
  doi: 10.1016/S0045-7949(99)00125-X
– volume: 9
  start-page: 236
  year: 2005
  ident: 10.1016/j.amc.2012.12.046_b0080
  article-title: A population-based algorithm-generator for real-parameter optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-004-0377-4
– start-page: 72
  year: 2000
  ident: 10.1016/j.amc.2012.12.046_b0030
  article-title: Swarm smarts
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0300-72
– volume: 193
  start-page: 211
  year: 2007
  ident: 10.1016/j.amc.2012.12.046_b0085
  article-title: A new mutation operator for real coded genetic algorithms
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2007.03.046
– volume: 2010
  start-page: 1
  year: 2010
  ident: 10.1016/j.amc.2012.12.046_b0100
  article-title: A linear map-based mutation scheme for real coded genetic algorithms
  publication-title: IEEE Congr. Evol. Comput.
  doi: 10.1109/CEC.2010.5586270
– start-page: 205
  year: 1991
  ident: 10.1016/j.amc.2012.12.046_b0060
  article-title: Genetic algorithms for real parameter optimization
  doi: 10.1016/B978-0-08-050684-5.50016-1
SSID ssj0007614
Score 2.232187
Snippet Within the framework of real-coded genetic algorithms, this paper proposes a directed genetic algorithm (DGA) that introduces a directed crossover operator and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7348
SubjectTerms Cantilever beams
Directed genetic algorithm
Genetic algorithms
Global optimization
Mathematical analysis
Mathematical models
Nelder–Mead’s simplex algorithm
Operators
Optimization
Searching
Strategy
Title A Directed Genetic Algorithm for global optimization
URI https://dx.doi.org/10.1016/j.amc.2012.12.046
https://www.proquest.com/docview/1349441174
Volume 219
WOSCitedRecordID wos000316668800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2021
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFLdG4cAO0zZAfGwokyYOk4zyYSf2MUJFBXWFQ5F6s5zEQBBNu6ZB_Pk8J3aICkPsMCmKIitJq_dznt-Xfw-hn54f-QksHToGIDHhLsGM8hCngQpCLhkoxLpryTAajdhkwi9NF8eybicQFQV7fOTz_wo1jAHYeuvsP8DdvhQG4BpAhzPADud3AR8bNQaWpOaU1oSs8f3NbJEvb6d1UaHhAJmBspiaXZhdE9XapdOW0LW0m9_m1UrivqoDrYMyL_DJbdUp78lNLh8WRjyQeTe2oPs8BLjZXWn1JdeVcW7Q1ZdWx5mJQTrqT1PldJbSKGgYyl-o6SZicHcsp5pF0vPriCx5hRJ7dCFOr4ZDMe5PxkfzP1h3C9NZddM6ZQ2t-xHlrIfW47P-5Lxdg6OwYXW3_9_ms-vKvpVf_ZtFsrI21wbH-DP6ZDwFJ24Q_oI-qOIr-vj7GZUtRGLHYu0YrJ0WawewdhqsnS7W2-jqtD8-GWDTBgM-GB4uMeWKXbMgi8DDgE8rY-DzZooxlTCpaKKILwMvTJPrjGdM0TQEF5FmmSQpDxX3ZLCDesWsULvIgSGiXD-jjFO4cCXjqYpST_P-JVSxPeRaUYjUcMTrViX3whYD3gmQntDSE3CA9PbQr_aReUOQ8tbNxMpXGAuvsdwEzIy3HvthsRCg_XRKSxZqVpVCk2uCQQ9u9f477jlAm8-z_BvqLReV-o420odlXi4OzRx6ArJLeR8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Directed+Genetic+Algorithm+for+global+optimization&rft.jtitle=Applied+mathematics+and+computation&rft.au=Kuo%2C+Hsin-Chuan&rft.au=Lin%2C+Ching-Hai&rft.date=2013-03-15&rft.issn=0096-3003&rft.volume=219&rft.issue=14&rft.spage=7348&rft.epage=7364&rft_id=info:doi/10.1016%2Fj.amc.2012.12.046&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon