Ordinary differential equations in the oscillation theory of partial half-linear differential equation
In the paper we study the damped half-linear partial differential equation div ( A ( x ) ‖ ∇ u ‖ p − 2 ∇ u ) + 〈 b → ( x ) , ‖ ∇ u ‖ p − 2 ∇ u 〉 + c ( x ) | u | p − 2 u = 0 . Using radialization method we derive general oscillation results which allow to deduce new oscillation criteria for this equa...
Uloženo v:
| Vydáno v: | Journal of mathematical analysis and applications Ročník 338; číslo 1; s. 194 - 208 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
San Diego, CA
Elsevier Inc
01.02.2008
Elsevier |
| Témata: | |
| ISSN: | 0022-247X, 1096-0813 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In the paper we study the damped half-linear partial differential equation
div
(
A
(
x
)
‖
∇
u
‖
p
−
2
∇
u
)
+
〈
b
→
(
x
)
,
‖
∇
u
‖
p
−
2
∇
u
〉
+
c
(
x
)
|
u
|
p
−
2
u
=
0
.
Using radialization method we derive general oscillation results which allow to deduce new oscillation criteria for this equation from oscillation criteria for ordinary differential equations. Using careful radialization we improve several known oscillation criteria. |
|---|---|
| ISSN: | 0022-247X 1096-0813 |
| DOI: | 10.1016/j.jmaa.2007.05.015 |