Improved distributed Δ-coloring
We present a randomized distributed algorithm that computes a Δ -coloring in any non-complete graph with maximum degree Δ ≥ 4 in O ( log Δ ) + 2 O ( log log n ) rounds, as well as a randomized algorithm that computes a Δ -coloring in O ( ( log log n ) 2 ) rounds when Δ ∈ [ 3 , O ( 1 ) ] . Both these...
Uložené v:
| Vydané v: | Distributed computing Ročník 34; číslo 4; s. 239 - 258 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2021
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0178-2770, 1432-0452 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We present a randomized distributed algorithm that computes a
Δ
-coloring in any non-complete graph with maximum degree
Δ
≥
4
in
O
(
log
Δ
)
+
2
O
(
log
log
n
)
rounds, as well as a randomized algorithm that computes a
Δ
-coloring in
O
(
(
log
log
n
)
2
)
rounds when
Δ
∈
[
3
,
O
(
1
)
]
. Both these algorithms improve on an
O
(
log
3
n
/
log
Δ
)
-round algorithm of Panconesi and Srinivasan (STOC’93), which has remained the state of the art for the past 25 years. Moreover, the latter algorithm gets (exponentially) closer to an
Ω
(
log
log
n
)
round lower bound of Brandt et al. (STOC’16). |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0178-2770 1432-0452 |
| DOI: | 10.1007/s00446-021-00397-4 |