Improved distributed Δ-coloring
We present a randomized distributed algorithm that computes a Δ -coloring in any non-complete graph with maximum degree Δ ≥ 4 in O ( log Δ ) + 2 O ( log log n ) rounds, as well as a randomized algorithm that computes a Δ -coloring in O ( ( log log n ) 2 ) rounds when Δ ∈ [ 3 , O ( 1 ) ] . Both these...
Uložené v:
| Vydané v: | Distributed computing Ročník 34; číslo 4; s. 239 - 258 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2021
Springer Nature B.V |
| Predmet: | |
| ISSN: | 0178-2770, 1432-0452 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We present a randomized distributed algorithm that computes a
Δ
-coloring in any non-complete graph with maximum degree
Δ
≥
4
in
O
(
log
Δ
)
+
2
O
(
log
log
n
)
rounds, as well as a randomized algorithm that computes a
Δ
-coloring in
O
(
(
log
log
n
)
2
)
rounds when
Δ
∈
[
3
,
O
(
1
)
]
. Both these algorithms improve on an
O
(
log
3
n
/
log
Δ
)
-round algorithm of Panconesi and Srinivasan (STOC’93), which has remained the state of the art for the past 25 years. Moreover, the latter algorithm gets (exponentially) closer to an
Ω
(
log
log
n
)
round lower bound of Brandt et al. (STOC’16). |
|---|---|
| AbstractList | We present a randomized distributed algorithm that computes a
Δ
-coloring in any non-complete graph with maximum degree
Δ
≥
4
in
O
(
log
Δ
)
+
2
O
(
log
log
n
)
rounds, as well as a randomized algorithm that computes a
Δ
-coloring in
O
(
(
log
log
n
)
2
)
rounds when
Δ
∈
[
3
,
O
(
1
)
]
. Both these algorithms improve on an
O
(
log
3
n
/
log
Δ
)
-round algorithm of Panconesi and Srinivasan (STOC’93), which has remained the state of the art for the past 25 years. Moreover, the latter algorithm gets (exponentially) closer to an
Ω
(
log
log
n
)
round lower bound of Brandt et al. (STOC’16). We present a randomized distributed algorithm that computes a Δ -coloring in any non-complete graph with maximum degree Δ ≥ 4 in O ( log Δ ) + 2 O ( log log n ) rounds, as well as a randomized algorithm that computes a Δ -coloring in O ( ( log log n ) 2 ) rounds when Δ ∈ [ 3 , O ( 1 ) ] . Both these algorithms improve on an O ( log 3 n / log Δ ) -round algorithm of Panconesi and Srinivasan (STOC'93), which has remained the state of the art for the past 25 years. Moreover, the latter algorithm gets (exponentially) closer to an Ω ( log log n ) round lower bound of Brandt et al. (STOC'16).We present a randomized distributed algorithm that computes a Δ -coloring in any non-complete graph with maximum degree Δ ≥ 4 in O ( log Δ ) + 2 O ( log log n ) rounds, as well as a randomized algorithm that computes a Δ -coloring in O ( ( log log n ) 2 ) rounds when Δ ∈ [ 3 , O ( 1 ) ] . Both these algorithms improve on an O ( log 3 n / log Δ ) -round algorithm of Panconesi and Srinivasan (STOC'93), which has remained the state of the art for the past 25 years. Moreover, the latter algorithm gets (exponentially) closer to an Ω ( log log n ) round lower bound of Brandt et al. (STOC'16). We present a randomized distributed algorithm that computes a Δ-coloring in any non-complete graph with maximum degree Δ≥4 in O(logΔ)+2O(loglogn) rounds, as well as a randomized algorithm that computes a Δ-coloring in O((loglogn)2) rounds when Δ∈[3,O(1)]. Both these algorithms improve on an O(log3n/logΔ)-round algorithm of Panconesi and Srinivasan (STOC’93), which has remained the state of the art for the past 25 years. Moreover, the latter algorithm gets (exponentially) closer to an Ω(loglogn) round lower bound of Brandt et al. (STOC’16). We present a randomized distributed algorithm that computes a $$\Delta $$ Δ -coloring in any non-complete graph with maximum degree $$\Delta \ge 4$$ Δ ≥ 4 in $$O(\log \Delta ) + 2^{O(\sqrt{\log \log n})}$$ O ( log Δ ) + 2 O ( log log n ) rounds, as well as a randomized algorithm that computes a $$\Delta $$ Δ -coloring in $$O((\log \log n)^2)$$ O ( ( log log n ) 2 ) rounds when $$\Delta \in [3, O(1)]$$ Δ ∈ [ 3 , O ( 1 ) ] . Both these algorithms improve on an $$O(\log ^3 n / \log \Delta )$$ O ( log 3 n / log Δ ) -round algorithm of Panconesi and Srinivasan (STOC’93), which has remained the state of the art for the past 25 years. Moreover, the latter algorithm gets (exponentially) closer to an $$\Omega (\log \log n)$$ Ω ( log log n ) round lower bound of Brandt et al. (STOC’16). |
| Author | Hirvonen, Juho Kuhn, Fabian Maus, Yannic Ghaffari, Mohsen |
| Author_xml | – sequence: 1 givenname: Mohsen surname: Ghaffari fullname: Ghaffari, Mohsen organization: ETH Zurich – sequence: 2 givenname: Juho surname: Hirvonen fullname: Hirvonen, Juho organization: Aalto University – sequence: 3 givenname: Fabian orcidid: 0000-0002-1025-5037 surname: Kuhn fullname: Kuhn, Fabian email: kuhn@cs.uni-freiburg.de organization: University of Freiburg – sequence: 4 givenname: Yannic surname: Maus fullname: Maus, Yannic organization: Technion |
| BookMark | eNp9kMtKAzEUhoNUsK2-gKuCGzfRk_vMUoqXQsGNrkNmJiMp00lNMoLv4XP5TKaOIHTR1TmL7z_n55uhSe97i9AlgRsCoG4jAOcSAyUYgJUK8xM0JZxRDFzQCZoCUQWmSsEZmsW4gUwRQqdosdrugv-wzaJxMQVXDSnv31-49p0Prn87R6et6aK9-Jtz9Ppw_7J8wuvnx9Xybo1rVsqEWVVYSUAxIypmgFS8lcxwZo1sKDG84qplYASTRpa0yd_LouZMUtkqJlrO5uh6vJvrvA82Jr11sbZdZ3rrh6ipKAmlAmSZ0asDdOOH0Od2mcofiFBEZIqOVB18jMG2ehfc1oRPTUDvpelRms7S9K80vW9RHIRql0xyvk_BuO54lI3RuNt7s-G_1ZHUD69TgDo |
| CitedBy_id | crossref_primary_10_1007_s00446_025_00485_9 |
| Cites_doi | 10.1145/2897518.2897533 10.1016/0095-8956(75)90089-1 10.1017/S030500410002168X 10.1109/FOCS.2012.60 10.1145/3212734.3212769 10.1137/1.9781611974782.166 10.1145/129712.129769 10.1002/jgt.21847 10.1109/FOCS.2016.72 10.1007/978-1-349-03521-2 10.1145/2903137 10.1137/1.9780898719772 10.1145/3357713.3384298 10.1016/j.tcs.2012.09.004 10.1109/SFCS.1989.63504 10.1145/1281100.1281111 10.1109/FOCS.2016.73 10.1145/2897518.2897570 10.1145/3055399.3055471 10.1145/3188745.3188964 10.1007/BF01200759 10.1016/0196-6774(86)90019-2 10.1137/1.9781611975994.76 10.1137/0221015 10.2200/S00520ED1V01Y201307DCT011 10.1007/978-0-8176-4842-8_7 10.1137/1.9781611974331.ch20 10.1137/0215074 10.1137/1.9781611975482.49 10.1145/3212734.3212740 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2021. |
| Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2021. |
| DBID | C6C AAYXX CITATION 3V. 7RQ 7SC 7XB 8AL 8AO 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U U9A 7X8 |
| DOI | 10.1007/s00446-021-00397-4 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Career & Technical Education Database Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Career and Technical Education (Alumni Edition) Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Career and Technical Education ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Computer Science Database CrossRef |
| Database_xml | – sequence: 1 dbid: 7RQ name: Career & Technical Education Database url: https://search.proquest.com/career sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1432-0452 |
| EndPage | 258 |
| ExternalDocumentID | 10_1007_s00446_021_00397_4 |
| GrantInformation_xml | – fundername: European Research Council grantid: 336495 funderid: http://dx.doi.org/10.13039/501100000781 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 28- 29G 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7RQ 8AO 8FE 8FG 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW LAS LLZTM M0N M4Y MA- N2Q N9A NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR YZZ Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZCA ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AETEA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U U9A 7X8 PUEGO |
| ID | FETCH-LOGICAL-c396t-3b8e61073a5b3a01b4f63a43ea6d21a4b47f30a536a692d03198c43626f735f43 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000672109500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0178-2770 |
| IngestDate | Thu Oct 02 07:52:12 EDT 2025 Tue Dec 02 15:56:11 EST 2025 Sat Nov 29 06:13:26 EST 2025 Tue Nov 18 21:28:19 EST 2025 Fri Feb 21 02:48:20 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c396t-3b8e61073a5b3a01b4f63a43ea6d21a4b47f30a536a692d03198c43626f735f43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1025-5037 |
| OpenAccessLink | https://link.springer.com/10.1007/s00446-021-00397-4 |
| PQID | 2553615715 |
| PQPubID | 31799 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_2591225069 proquest_journals_2553615715 crossref_primary_10_1007_s00446_021_00397_4 crossref_citationtrail_10_1007_s00446_021_00397_4 springer_journals_10_1007_s00446_021_00397_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-01 |
| PublicationDateYYYYMMDD | 2021-08-01 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Distributed computing |
| PublicationTitleAbbrev | Distrib. Comput |
| PublicationYear | 2021 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Erdős, P., Rubin, A., Taylor, H.: Choosability in graphs. In: Proceedings of West Coast Conference on Combinatorics, Graph Theory and Computing, vol. 26, pp. 125–157. Congressus Numerantium (1979) Chang, Y.-J., Li, W., Pettie, S.: An optimal distributed (Δ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta + 1$$\end{document})-coloring algorithm? In: Proceedings 50th ACM Symposium on Theory of Computing (STOC 2018) (to appear) (2018) Rozhoň, V., Ghaffari, M.: Polylogarithmic-time deterministic network decomposition and distributed derandomization. In: Proceedings of the ACM Symposium on Theory of Computing (STOC), pp. 350–363 (2020) Aboulker, P., Bonamy, M., Bousquet, N., Esperet, L.: Distributed coloring in sparse graphs with fewer colors. In: Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, PODC 2018, Egham, UK, 23–27, 2018, pp. 419–425 (2018) Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM (2000) Awerbuch, B., Goldberg, A.V., Luby, M., Plotkin, S.A.: Network decomposition and locality in distributed computation. In: Proceedings of 30th Symposium on Foundations of Computer Science (FOCS 1989), pp. 364–369 (1989) Bondy, J.A., Murty, U.: Graph Theory with Applications. Elsevier (1976) Ghaffari, M., Su, H.-H.: Distributed degree splitting, edge coloring, and orientations. In: Proceedings of 28th ACM-SIAM Symposium on Discrete Algorithms (SODA 2017), pp. 2505–2523. Society for Industrial and Applied Mathematics (2017) Chang, Y.-J., Kopelowitz, T., Pettie, S.: An exponential separation between randomized and deterministic complexity in the local model. In: Proceedings of 57th Symposium on Foundations of Computer Science (FOCS 2016), pp. 615–624. IEEE (2016) AlonNBabaiLItaiAA fast and simple randomized parallel algorithm for the maximal independent set problemJ. Algorithms19867456758386679210.1016/0196-6774(86)90019-2 CranstonDWRabernLBrooks’ theorem and beyondJ. Graph Theory2015803199225340372610.1002/jgt.21847 BrooksRLOn colouring the nodes of a networkMath. Proc. Camb. Philos. Soc.19413721941971223610.1017/S030500410002168X Leonard Brooks, R.: On colouring the nodes of a network. In: Classic Papers in Combinatorics, pp. 118–121. Springer (2009) Kuhn, F.: Faster deterministic distributed coloring through recursive list coloring. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1244–1259 (2020) Ghaffari, M., Kuhn, F., Maus, Y.: On the complexity of local distributed graph problems. In: Proceedings of 49th ACM Symposium on Theory of Computing (STOC 2017), pp. 784–797. ACM (2017) Panconesi, A., Srinivasan, A.: Improved distributed algorithms for coloring and network decomposition problems. In: Proceedings of 24th ACM Symposium on Theory of Computing (STOC 1992), pp. 581–592. ACM (1992) Ghaffari, M.: An improved distributed algorithm for maximal independent set. In: Proceedings of 27th ACM-SIAM Symposium on Discrete Algorithms (SODA 2016), pp. 270–277 (2016) Barenboim, L., Elkin, M., Goldenberg, U.: Locally-iterative distributed (Δ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta +1$$\end{document})-coloring below szegedy-vishwanathan barrier, and applications to self-stabilization and to restricted-bandwidth models. In: Proceedings of 37th ACM Symposium on Principles of Distributed Computing (PODC 2018) (to appear) (2018) Brandt, S., Fischer, O., Hirvonen, J., Keller, B., Lempiäinen, T., Rybicki, J., Suomela, J., Uitto, J.: A lower bound for the distributed Lovász local lemma. In: Proceedings of 48th ACM Symposium on Theory of Computing (STOC 2016), pp. 479–488. ACM (2016) Fischer, M., Ghaffari, M.: Sublogarithmic distributed algorithms for Lovász local lemma, and the complexity hierarchy. In: Proceedings of the International Symposium on Distributed Computing (DISC), pp. 18:1–18:16 (2017) Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed symmetry breaking. In: Proceedings of 53rd Symposium on Foundations of Computer Science (FOCS 2012), pp. 321–330 (2012) Harris, D.G., Schneider, J., Su, H.-H.: Distributed (Δ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta }+ 1$$\end{document})-coloring in sublogarithmic rounds. In: Proceedings of 48th ACM Symposium on Theory of Computing (STOC 2016) pp. 465–478. ACM (2016) Maus, Y., Tonoyan, T.: Local conflict coloring revisited: linial for lists. In: Proceedings of the International Symposium on Distributed Computing (DISC), pp. 16:1–16:18 (2020) Gfeller, B., Vicari, E.: A randomized distributed algorithm for the maximal independent set problem in growth-bounded graphs. In: Proceedings of 26th ACM Symposium on Principles of Distributed Computing (PODC 2007), pp. 53–60, New York, NY, USA (2007). ACM LubyMA simple parallel algorithm for the maximal independent set problemSIAM J. Comput.19861541036105386136910.1137/0215074 Molloy, M., Reed, B.: Graph Colouring and the Probabilistic Method, vol. 23. Springer (2013) PanconesiASrinivasanAThe local nature of Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}-coloring and its algorithmic applicationsCombinatorica1995152255280133735710.1007/BF01200759 LovászLThree short proofs in graph theoryJ. Combin. Theory Ser. B197519326927139634410.1016/0095-8956(75)90089-1 BarenboimLElkinMPettieSSchneiderJThe locality of distributed symmetry breakingJ. ACM20166332012045354953010.1145/2903137 VizingVVextex coloring with given colorsMetody Diskretn. Anal.197629310 SchneiderJElkinMWattenhoferRSymmetry breaking depending on the chromatic number or the neighborhood growthTheoret. Comput. Sci.20135094050312345710.1016/j.tcs.2012.09.004 Fraigniaud, P., Heinrich, M., Kosowski, A.: Local conflict coloring. In: Proceedings of 57th Symposium on Foundations of Computer Science (FOCS 2016), pp. 625–634 (2016) BarenboimLElkinMDistributed graph coloring: fundamentals and recent developmentsSynth. Lect. Distrib. Comput. Theory201341117110.2200/S00520ED1V01Y201307DCT011 Chechik, S., Mukhtar, D.: Optimal distributed coloring algorithms for planar graphs in the local model. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), SODA’19, pp. 787–804 (2019) LinialNLocality in distributed graph algorithmsSIAM J. Comput.1992211193201114882510.1137/0221015 A Panconesi (397_CR31) 1995; 15 L Barenboim (397_CR7) 2016; 63 397_CR21 397_CR22 397_CR23 397_CR24 397_CR20 397_CR18 397_CR19 L Lovász (397_CR26) 1975; 19 397_CR14 397_CR16 V Vizing (397_CR35) 1976; 29 397_CR17 N Alon (397_CR2) 1986; 7 N Linial (397_CR25) 1992; 21 397_CR1 397_CR3 J Schneider (397_CR34) 2013; 509 397_CR32 397_CR9 397_CR11 DW Cranston (397_CR15) 2015; 80 397_CR33 397_CR12 397_CR13 397_CR6 397_CR5 397_CR8 397_CR30 397_CR29 M Luby (397_CR27) 1986; 15 397_CR28 L Barenboim (397_CR4) 2013; 4 RL Brooks (397_CR10) 1941; 37 |
| References_xml | – reference: VizingVVextex coloring with given colorsMetody Diskretn. Anal.197629310 – reference: BarenboimLElkinMPettieSSchneiderJThe locality of distributed symmetry breakingJ. ACM20166332012045354953010.1145/2903137 – reference: Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM (2000) – reference: Erdős, P., Rubin, A., Taylor, H.: Choosability in graphs. In: Proceedings of West Coast Conference on Combinatorics, Graph Theory and Computing, vol. 26, pp. 125–157. Congressus Numerantium (1979) – reference: Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed symmetry breaking. In: Proceedings of 53rd Symposium on Foundations of Computer Science (FOCS 2012), pp. 321–330 (2012) – reference: Aboulker, P., Bonamy, M., Bousquet, N., Esperet, L.: Distributed coloring in sparse graphs with fewer colors. In: Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, PODC 2018, Egham, UK, 23–27, 2018, pp. 419–425 (2018) – reference: BarenboimLElkinMDistributed graph coloring: fundamentals and recent developmentsSynth. Lect. Distrib. Comput. Theory201341117110.2200/S00520ED1V01Y201307DCT011 – reference: Molloy, M., Reed, B.: Graph Colouring and the Probabilistic Method, vol. 23. Springer (2013) – reference: Panconesi, A., Srinivasan, A.: Improved distributed algorithms for coloring and network decomposition problems. In: Proceedings of 24th ACM Symposium on Theory of Computing (STOC 1992), pp. 581–592. ACM (1992) – reference: Gfeller, B., Vicari, E.: A randomized distributed algorithm for the maximal independent set problem in growth-bounded graphs. In: Proceedings of 26th ACM Symposium on Principles of Distributed Computing (PODC 2007), pp. 53–60, New York, NY, USA (2007). ACM – reference: LovászLThree short proofs in graph theoryJ. Combin. Theory Ser. B197519326927139634410.1016/0095-8956(75)90089-1 – reference: Chechik, S., Mukhtar, D.: Optimal distributed coloring algorithms for planar graphs in the local model. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), SODA’19, pp. 787–804 (2019) – reference: Ghaffari, M.: An improved distributed algorithm for maximal independent set. In: Proceedings of 27th ACM-SIAM Symposium on Discrete Algorithms (SODA 2016), pp. 270–277 (2016) – reference: Ghaffari, M., Su, H.-H.: Distributed degree splitting, edge coloring, and orientations. In: Proceedings of 28th ACM-SIAM Symposium on Discrete Algorithms (SODA 2017), pp. 2505–2523. Society for Industrial and Applied Mathematics (2017) – reference: Maus, Y., Tonoyan, T.: Local conflict coloring revisited: linial for lists. In: Proceedings of the International Symposium on Distributed Computing (DISC), pp. 16:1–16:18 (2020) – reference: AlonNBabaiLItaiAA fast and simple randomized parallel algorithm for the maximal independent set problemJ. Algorithms19867456758386679210.1016/0196-6774(86)90019-2 – reference: CranstonDWRabernLBrooks’ theorem and beyondJ. Graph Theory2015803199225340372610.1002/jgt.21847 – reference: Rozhoň, V., Ghaffari, M.: Polylogarithmic-time deterministic network decomposition and distributed derandomization. In: Proceedings of the ACM Symposium on Theory of Computing (STOC), pp. 350–363 (2020) – reference: Chang, Y.-J., Kopelowitz, T., Pettie, S.: An exponential separation between randomized and deterministic complexity in the local model. In: Proceedings of 57th Symposium on Foundations of Computer Science (FOCS 2016), pp. 615–624. IEEE (2016) – reference: Fischer, M., Ghaffari, M.: Sublogarithmic distributed algorithms for Lovász local lemma, and the complexity hierarchy. In: Proceedings of the International Symposium on Distributed Computing (DISC), pp. 18:1–18:16 (2017) – reference: LinialNLocality in distributed graph algorithmsSIAM J. Comput.1992211193201114882510.1137/0221015 – reference: Fraigniaud, P., Heinrich, M., Kosowski, A.: Local conflict coloring. In: Proceedings of 57th Symposium on Foundations of Computer Science (FOCS 2016), pp. 625–634 (2016) – reference: LubyMA simple parallel algorithm for the maximal independent set problemSIAM J. Comput.19861541036105386136910.1137/0215074 – reference: Barenboim, L., Elkin, M., Goldenberg, U.: Locally-iterative distributed (Δ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta +1$$\end{document})-coloring below szegedy-vishwanathan barrier, and applications to self-stabilization and to restricted-bandwidth models. In: Proceedings of 37th ACM Symposium on Principles of Distributed Computing (PODC 2018) (to appear) (2018) – reference: Brandt, S., Fischer, O., Hirvonen, J., Keller, B., Lempiäinen, T., Rybicki, J., Suomela, J., Uitto, J.: A lower bound for the distributed Lovász local lemma. In: Proceedings of 48th ACM Symposium on Theory of Computing (STOC 2016), pp. 479–488. ACM (2016) – reference: Kuhn, F.: Faster deterministic distributed coloring through recursive list coloring. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1244–1259 (2020) – reference: BrooksRLOn colouring the nodes of a networkMath. Proc. Camb. Philos. Soc.19413721941971223610.1017/S030500410002168X – reference: Harris, D.G., Schneider, J., Su, H.-H.: Distributed (Δ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Delta }+ 1$$\end{document})-coloring in sublogarithmic rounds. In: Proceedings of 48th ACM Symposium on Theory of Computing (STOC 2016) pp. 465–478. ACM (2016) – reference: Ghaffari, M., Kuhn, F., Maus, Y.: On the complexity of local distributed graph problems. In: Proceedings of 49th ACM Symposium on Theory of Computing (STOC 2017), pp. 784–797. ACM (2017) – reference: Awerbuch, B., Goldberg, A.V., Luby, M., Plotkin, S.A.: Network decomposition and locality in distributed computation. In: Proceedings of 30th Symposium on Foundations of Computer Science (FOCS 1989), pp. 364–369 (1989) – reference: Chang, Y.-J., Li, W., Pettie, S.: An optimal distributed (Δ+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta + 1$$\end{document})-coloring algorithm? In: Proceedings 50th ACM Symposium on Theory of Computing (STOC 2018) (to appear) (2018) – reference: PanconesiASrinivasanAThe local nature of Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta $$\end{document}-coloring and its algorithmic applicationsCombinatorica1995152255280133735710.1007/BF01200759 – reference: SchneiderJElkinMWattenhoferRSymmetry breaking depending on the chromatic number or the neighborhood growthTheoret. Comput. Sci.20135094050312345710.1016/j.tcs.2012.09.004 – reference: Bondy, J.A., Murty, U.: Graph Theory with Applications. Elsevier (1976) – reference: Leonard Brooks, R.: On colouring the nodes of a network. In: Classic Papers in Combinatorics, pp. 118–121. Springer (2009) – ident: 397_CR23 doi: 10.1145/2897518.2897533 – volume: 19 start-page: 269 issue: 3 year: 1975 ident: 397_CR26 publication-title: J. Combin. Theory Ser. B doi: 10.1016/0095-8956(75)90089-1 – volume: 37 start-page: 194 issue: 2 year: 1941 ident: 397_CR10 publication-title: Math. Proc. Camb. Philos. Soc. doi: 10.1017/S030500410002168X – ident: 397_CR6 doi: 10.1109/FOCS.2012.60 – ident: 397_CR29 – ident: 397_CR5 doi: 10.1145/3212734.3212769 – ident: 397_CR22 doi: 10.1137/1.9781611974782.166 – ident: 397_CR30 doi: 10.1145/129712.129769 – volume: 80 start-page: 199 issue: 3 year: 2015 ident: 397_CR15 publication-title: J. Graph Theory doi: 10.1002/jgt.21847 – ident: 397_CR12 doi: 10.1109/FOCS.2016.72 – ident: 397_CR8 doi: 10.1007/978-1-349-03521-2 – volume: 63 start-page: 201 issue: 3 year: 2016 ident: 397_CR7 publication-title: J. ACM doi: 10.1145/2903137 – ident: 397_CR32 doi: 10.1137/1.9780898719772 – ident: 397_CR33 doi: 10.1145/3357713.3384298 – volume: 509 start-page: 40 year: 2013 ident: 397_CR34 publication-title: Theoret. Comput. Sci. doi: 10.1016/j.tcs.2012.09.004 – ident: 397_CR3 doi: 10.1109/SFCS.1989.63504 – ident: 397_CR19 doi: 10.1145/1281100.1281111 – ident: 397_CR18 doi: 10.1109/FOCS.2016.73 – volume: 29 start-page: 3 year: 1976 ident: 397_CR35 publication-title: Metody Diskretn. Anal. – ident: 397_CR16 – ident: 397_CR9 doi: 10.1145/2897518.2897570 – ident: 397_CR21 doi: 10.1145/3055399.3055471 – ident: 397_CR13 doi: 10.1145/3188745.3188964 – volume: 15 start-page: 255 issue: 2 year: 1995 ident: 397_CR31 publication-title: Combinatorica doi: 10.1007/BF01200759 – volume: 7 start-page: 567 issue: 4 year: 1986 ident: 397_CR2 publication-title: J. Algorithms doi: 10.1016/0196-6774(86)90019-2 – ident: 397_CR24 doi: 10.1137/1.9781611975994.76 – volume: 21 start-page: 193 issue: 1 year: 1992 ident: 397_CR25 publication-title: SIAM J. Comput. doi: 10.1137/0221015 – volume: 4 start-page: 1 issue: 1 year: 2013 ident: 397_CR4 publication-title: Synth. Lect. Distrib. Comput. Theory doi: 10.2200/S00520ED1V01Y201307DCT011 – ident: 397_CR11 doi: 10.1007/978-0-8176-4842-8_7 – ident: 397_CR28 – ident: 397_CR20 doi: 10.1137/1.9781611974331.ch20 – volume: 15 start-page: 1036 issue: 4 year: 1986 ident: 397_CR27 publication-title: SIAM J. Comput. doi: 10.1137/0215074 – ident: 397_CR14 doi: 10.1137/1.9781611975482.49 – ident: 397_CR17 – ident: 397_CR1 doi: 10.1145/3212734.3212740 |
| SSID | ssj0003112 |
| Score | 2.3275619 |
| Snippet | We present a randomized distributed algorithm that computes a
Δ
-coloring in any non-complete graph with maximum degree
Δ
≥
4
in
O
(
log
Δ
)
+
2
O
(
log
log
n... We present a randomized distributed algorithm that computes a $$\Delta $$ Δ -coloring in any non-complete graph with maximum degree $$\Delta \ge 4$$ Δ ≥ 4 in... We present a randomized distributed algorithm that computes a Δ-coloring in any non-complete graph with maximum degree Δ≥4 in O(logΔ)+2O(loglogn) rounds, as... We present a randomized distributed algorithm that computes a Δ -coloring in any non-complete graph with maximum degree Δ ≥ 4 in O ( log Δ ) + 2 O ( log log n... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 239 |
| SubjectTerms | Algorithms Coloring Computer Communication Networks Computer Hardware Computer Science Computer Systems Organization and Communication Networks Lower bounds Software Engineering/Programming and Operating Systems Theory of Computation |
| SummonAdditionalLinks | – databaseName: Career & Technical Education Database dbid: 7RQ link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB509eDF9Yn1RQVvGmybNGlPIuLiaVFR2FtJ2gQE6a778Jf4u_xNZrJpFwX34q3QpAnTeWYy8wGcxzQzymp-klVVSayFlkRGQpEkj6SMKpXaaQ5sQvT72WCQP_gDt4m_VtnoRKeoq2GJZ-RX1vWl1vqKOL0evRNEjcLsqofQWIU1a6g58rl4emw1MY1dthMR6EkiROSLZlzpnMtkEryggOWpgrCfhmnhbf5KkDq70-v-d8dbsOk9zvBmziLbsKLrHeg2aA6hF-5dCOfnC7oKK2ymizhY9vnrk2Bfa9zbHrz07p5v74nHTyAlzfmUUJVp6x0JKlNFZRQrZjiVjGrJqySWTDFhaCTtLiXPkwrrmbKSYX8aI2hqGN2HTj2s9QGERtig28ZSNlhSLMuN5IpyJdNSam00iwKIG-IVpW8ujhgXb0XbFtkRvLAELxzBCxbARTtnNG-tsXT0cUPlwovZpFiQOICz9rUVEMx6yFoPZzgmj63SingewGXzLxef-HvFw-UrHsFG4tgHLwMeQ2c6nukTWC8_pq-T8aljxG8Fn-EQ priority: 102 providerName: ProQuest |
| Title | Improved distributed Δ-coloring |
| URI | https://link.springer.com/article/10.1007/s00446-021-00397-4 https://www.proquest.com/docview/2553615715 https://www.proquest.com/docview/2591225069 |
| Volume | 34 |
| WOSCitedRecordID | wos000672109500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Journals customDbUrl: eissn: 1432-0452 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003112 issn: 0178-2770 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7o5oMvzitW56jgmwbaJk3SR5UNQRhzXhi-lKRNQJBOdvGX-Lv8TSZZ26GooC-hpbmUk-RccnLOB3ASYq6l4fyI53mGjIQWSARMoigJhAhyGZtmDmyC9ft8NEoGZVDYtLrtXrkkHaeug92c7xHZKwU2oJQhsgpNI-64BWwY3j7U_BeHzsdpcedRxFhQhsp838dncbTUMb-4RZ206bX-95-bsFFql_75YjlswYoqtqFVITf45UbeAX9xlqByP7eJcy3mlXl-f0M2h7UdbRfue927yytUYiWgDCd0hrDkymhCDItYYhGEkmiKBcFK0DwKBZGEaRyIGFNBkyi3sUs8IzYXjWY41gTvQaMYF2offM2MgW3sJmMYScITLajEVIo4E0ppRQIPwopkaVYmErd4Fs9pnQLZkSA1JEgdCVLiwWnd5mWRRuPX2u1qJtJyS01TY_tgo36xMPbguP5sNoP1cIhCjee2ThIaBhXQxIOzanaWXfw84sHfqh_CeuQm2F4EbENjNpmrI1jLXmdP00kHVtnwxpYj3oHmRbc_GJq3a4ZMOYgfO265fgDR2txA |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB50FfTi-sTVVSvoSYNtkzbtQUR8sLK6eFjBW03aFATZXfeh-D_8Hf4Uf5OZ9LEouDcP3gptkpKZfDPJZOYD2HNokEqN_CRIkphoCy2IsLkkbmgLYSfS080M2QRvtYL7-_B2Cj6KXBi8VllgogHqpBvjGfmRdn2ptr7c8U56zwRZozC6WlBoZGrRVG-vess2OL461_Ldd93Li_ZZg-SsAiSmoT8kVAZK-wycCk9SYTuSpT4VjCrhJ64jmGQ8pbbQowk_dBPM8glihlVbUk69lFHd7zTMMBpwXFdNTkrkp46JriLjPXE5t_MkHZOqZyKnBC9EYDosJ-y7IRx7tz8CssbOXVb_2wwtwkLuUVun2RJYginVWYZqwVZh5eC1AlZ2fqISK8FiwcjzpZ8_3wnW7ca5WIW7P_nPNah0uh21DlbKlaR6r6g3g5IFYSp8SX0pvFgolSpm18AphBXFefF05PB4isqyz0bAkRZwZAQcsRoclG16WemQiV_XC6lGOYwMorFIa7BbvtYAgFEd0VHdEX4TOhqUbT-swWGhO-Mufh9xY_KIOzDXaN9cR9dXreYmzLtGdfHiYx0qw_5IbcFs_DJ8HPS3zSKw4OGvdeoLfaU68Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB58IV58i-uzgp402DZp0x5ERF0UZdmDgnipSZuAILvqror_w1_jj_A3OZNtd1HQmwdvhTZJyUy-mcm8ADYDnliNyM-SosgZSmjFlC81C1NfKb_QEQ5zzSZko5FcXaXNIXivcmEorLLCRAfURTunO_JdVH05Sl8ZRLu2DItoHtX37x8YdZAiT2vVTqPHImfm9QXNt87e6RHSeisM68cXhyes7DDAcp7GXcZ1YlB_kFxFmis_0MLGXAluVFyEgRJaSMt9hSurOA0LyvhJckEVXKzkkRUc5x2GUYk2JoUTNqPrvhTggfO0IsMjJ0rplwk7Lm3PeVEZBUdQaqxk4qtQHGi635yzTubVp_7zbk3DZKlpewe9ozEDQ6Y1C1NVFwuvBLU58Hr3KqbwCioiTP2_8PnjjVE9b9qXebj8k_9cgJFWu2UWwbPSaI42JBqJWiSpVbHmsVZRroyxRvg1CCrCZXlZVJ16e9xl_XLQjtgZEjtzxM5EDbb7Y-57JUV-_XqlonBWwksnG5C3Bhv91wgM5O1RLdN-om_SAMHaj9Ma7FR8NJji5xWXfl9xHcaRlbLz08bZMkyEjospHnIFRrqPT2YVxvLn7m3ncc2dBw9u_pqlPgGzPkQV |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+distributed+%CE%94-coloring&rft.jtitle=Distributed+computing&rft.au=Ghaffari%2C+Mohsen&rft.au=Hirvonen%2C+Juho&rft.au=Kuhn%2C+Fabian&rft.au=Maus%2C+Yannic&rft.date=2021-08-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0178-2770&rft.eissn=1432-0452&rft.volume=34&rft.issue=4&rft.spage=239&rft.epage=258&rft_id=info:doi/10.1007%2Fs00446-021-00397-4&rft.externalDocID=10_1007_s00446_021_00397_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-2770&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-2770&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-2770&client=summon |