DEM–FEM coupling simulations of the interactions between a tire tread and granular terrain

This study proposes an efficient combination of the Discrete Element Method (DEM) and the Finite Element Method (FEM) to study the tractive performance of a rubber tire in interaction with granular terrain. The presented approach is relevant to all engineering devices interacting with granular matte...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in applied mechanics and engineering Vol. 289; pp. 227 - 248
Main Authors: Michael, Mark, Vogel, Frank, Peters, Bernhard
Format: Journal Article
Language:English
Published: Elsevier B.V 01.06.2015
Subjects:
ISSN:0045-7825, 1879-2138
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This study proposes an efficient combination of the Discrete Element Method (DEM) and the Finite Element Method (FEM) to study the tractive performance of a rubber tire in interaction with granular terrain. The presented approach is relevant to all engineering devices interacting with granular matter which causes response forces. Herein, the discrete element method (DEM) is used to describe the dynamics of the granular assembly. On the one hand, the discrete approach accounts for the motion and forces of each grain individually. On the other hand, the finite element method accurately predicts the deformations and stresses acting within the tire tread. Hence, the simulation domain occupied by the tire tread is efficiently described as a continuous entity. The coupling of both methods is based on the interface shared by the two spatially separated domains. Contact forces develop at the interface and propagate into each domain. The coupling method enables to capture both responses simultaneously and allows to sufficiently resolve the different length scales. Each grain in contact with the surface of the tire tread generates a contact force which it reacts on repulsively. The contact forces sum up over the tread surface and cause the tire tread to deform. The coupling method compensates quite naturally the shortages of both numerical methods. It further employs a fast contact detection algorithm to save valuable computation time. The proposed DEM–FEM coupling technique was employed to study the tractive performance of a rubber tire with lug tread patterns in a soil bed. The contact forces at the tread surface are captured by 3D simulations for a tire slip of sT=5%. The simulations showed to accurately recapture the gross tractive effort TH, running resistance TR and drawbar pull TP of the tire tread in comparison to related measurements. Further, the traction mechanisms between the tire tread and the granular ground are studied by analyzing the motion of the soil grains and the deformation of the tread. •The Extended Discrete Element Method (XDEM) is employed to describe the mechanical behavior of the soil.•The tire tread is described by the Finite-Element-Method (FEM) which evaluates the elastic deformation due to contact forces of the terrain.•The development of the DEM–FEM coupling algorithm enabled to connect the two domains efficiently.•The simulation technique proofed to be able to predict accurately the traction behavior of tire tread–terrain interactions.
AbstractList This study proposes an efficient combination of the Discrete Element Method (DEM) and the Finite Element Method (FEM) to study the tractive performance of a rubber tire in interaction with granular terrain. The presented approach is relevant to all engineering devices interacting with granular matter which causes response forces. Herein, the discrete element method (DEM) is used to describe the dynamics of the granular assembly. On the one hand, the discrete approach accounts for the motion and forces of each grain individually. On the other hand, the finite element method accurately predicts the deformations and stresses acting within the tire tread. Hence, the simulation domain occupied by the tire tread is efficiently described as a continuous entity. The coupling of both methods is based on the interface shared by the two spatially separated domains. Contact forces develop at the interface and propagate into each domain. The coupling method enables to capture both responses simultaneously and allows to sufficiently resolve the different length scales. Each grain in contact with the surface of the tire tread generates a contact force which it reacts on repulsively. The contact forces sum up over the tread surface and cause the tire tread to deform. The coupling method compensates quite naturally the shortages of both numerical methods. It further employs a fast contact detection algorithm to save valuable computation time. The proposed DEM–FEM coupling technique was employed to study the tractive performance of a rubber tire with lug tread patterns in a soil bed. The contact forces at the tread surface are captured by 3D simulations for a tire slip of sT=5%. The simulations showed to accurately recapture the gross tractive effort TH, running resistance TR and drawbar pull TP of the tire tread in comparison to related measurements. Further, the traction mechanisms between the tire tread and the granular ground are studied by analyzing the motion of the soil grains and the deformation of the tread. •The Extended Discrete Element Method (XDEM) is employed to describe the mechanical behavior of the soil.•The tire tread is described by the Finite-Element-Method (FEM) which evaluates the elastic deformation due to contact forces of the terrain.•The development of the DEM–FEM coupling algorithm enabled to connect the two domains efficiently.•The simulation technique proofed to be able to predict accurately the traction behavior of tire tread–terrain interactions.
This study proposes an efficient combination of the Discrete Element Method (DEM) and the Finite Element Method (FEM) to study the tractive performance of a rubber tire in interaction with granular terrain. The presented approach is relevant to all engineering devices interacting with granular matter which causes response forces. The coupling of both methods is based on the interface shared by the two spatially separated domains. Contact forces develop at the interface and propagate into each domain. The coupling method enables to capture both responses simultaneously and allows to sufficiently resolve the different length scales. It further employs a fast contact detection algorithm to save valuable computation time. The proposed DEM-FEM coupling technique was employed to study the tractive performance of a rubber tire with lug tread patterns in a soil bed. The simulations showed to accurately recapture the gross tractive effort T sub(H), running resistance T sub(R) and drawbar pull T sub(P) of the tire tread in comparison to related measurements.
Author Vogel, Frank
Peters, Bernhard
Michael, Mark
Author_xml – sequence: 1
  givenname: Mark
  orcidid: 0000-0002-9810-5796
  surname: Michael
  fullname: Michael, Mark
  email: contact@markmichael.eu
  organization: FSTC, University of Luxembourg, 6 rue Coudenhove-Kalergi, L-1359, Luxembourg
– sequence: 2
  givenname: Frank
  surname: Vogel
  fullname: Vogel, Frank
  organization: InuTech GmbH, Fuerther Strasse 212, 90429 Nuremberg, Germany
– sequence: 3
  givenname: Bernhard
  surname: Peters
  fullname: Peters, Bernhard
  organization: FSTC, University of Luxembourg, 6 rue Coudenhove-Kalergi, L-1359, Luxembourg
BookMark eNp9kMFOAyEURYmpibX6Ae5YupkRmGFg4srUVk1q3HRpQijzptJMmQpU485_8A_9Eql15aKPxUvIPYR7TtHA9Q4QuqAkp4RWV6vcrHXOCOU5YTmh5REaUinqjNFCDtCQkJJnQjJ-gk5DWJE0krIher6dPH5_fk0nj9j0201n3RIHu952OtreBdy3OL4Ati6C12Z_t4D4DuCwxtF6wNGDbrB2DV567RLpcQp7bd0ZOm51F-D8b4_QfDqZj--z2dPdw_hmlpmirmJWVEA5qxZaME0405JoyctFIemiamoQrUynrmtBy8oUmhHgpQAjjWG8btpihC73z258_7qFENXaBgNdpx3026CoILXgsqhYiop91Pg-BA-tMjb-Vo3pw52iRO10qpVKOtVOpyJMJZ2JpP_Ijbdr7T8OMtd7BlL5NwteBWPBGWiSNxNV09sD9A8NjZBm
CitedBy_id crossref_primary_10_1007_s12206_021_0908_2
crossref_primary_10_1016_j_ces_2017_12_044
crossref_primary_10_1016_j_coldregions_2015_06_002
crossref_primary_10_1016_j_powtec_2025_121678
crossref_primary_10_1007_s00366_023_01921_9
crossref_primary_10_1016_j_jterra_2023_05_007
crossref_primary_10_1007_s40571_024_00781_4
crossref_primary_10_1016_j_jterra_2017_09_003
crossref_primary_10_3390_en17143571
crossref_primary_10_1016_j_powtec_2016_09_076
crossref_primary_10_1007_s40571_022_00479_5
crossref_primary_10_1007_s11044_022_09848_7
crossref_primary_10_3390_en17040966
crossref_primary_10_1016_j_compgeo_2024_106624
crossref_primary_10_1016_j_biosystemseng_2018_07_010
crossref_primary_10_1016_j_powtec_2021_06_038
crossref_primary_10_1002_nme_4913
crossref_primary_10_1016_j_conbuildmat_2022_129977
crossref_primary_10_1016_j_biosystemseng_2016_02_017
crossref_primary_10_1016_j_still_2020_104606
crossref_primary_10_1016_j_rineng_2024_102214
crossref_primary_10_1109_ACCESS_2019_2921717
crossref_primary_10_1016_j_compgeo_2016_09_011
crossref_primary_10_1016_j_powtec_2019_12_006
crossref_primary_10_1007_s11831_023_09961_6
crossref_primary_10_1155_2020_9768904
crossref_primary_10_1007_s11071_025_11094_3
crossref_primary_10_1063_5_0034585
crossref_primary_10_1016_j_compag_2023_108459
crossref_primary_10_1016_j_cherd_2019_12_008
crossref_primary_10_1016_j_jterra_2018_05_003
crossref_primary_10_1007_s00466_021_02060_y
crossref_primary_10_1016_j_powtec_2024_119536
crossref_primary_10_3390_machines10090721
crossref_primary_10_1016_j_ijsolstr_2023_112409
crossref_primary_10_1177_0954407020930175
crossref_primary_10_1016_j_powtec_2019_07_014
crossref_primary_10_1016_j_powtec_2025_121175
crossref_primary_10_1007_s11242_016_0729_4
crossref_primary_10_1016_j_egyr_2022_11_158
crossref_primary_10_1016_j_jterra_2024_101012
crossref_primary_10_1016_j_jterra_2022_09_002
crossref_primary_10_1016_j_powtec_2019_10_069
crossref_primary_10_1016_j_apt_2020_06_044
crossref_primary_10_1016_j_ijsolstr_2019_08_036
crossref_primary_10_1007_s10409_022_09016_x
crossref_primary_10_1016_j_jterra_2018_03_005
crossref_primary_10_1016_j_powtec_2025_120776
crossref_primary_10_1016_j_compgeo_2023_105462
crossref_primary_10_1016_j_ijmecsci_2020_105634
crossref_primary_10_1016_j_powtec_2019_08_068
crossref_primary_10_1016_j_cma_2024_117427
crossref_primary_10_1007_s10035_017_0728_3
crossref_primary_10_1109_LRA_2021_3084877
crossref_primary_10_1177_09544062221126630
crossref_primary_10_3390_pr9101813
crossref_primary_10_1016_j_engstruct_2022_113925
crossref_primary_10_1016_j_measurement_2022_111832
crossref_primary_10_1007_s12210_024_01255_8
crossref_primary_10_1007_s40571_019_00293_6
crossref_primary_10_1016_j_ijmecsci_2020_105503
crossref_primary_10_1007_s11071_024_10587_x
crossref_primary_10_1039_C9RA00399A
crossref_primary_10_3390_su151310017
crossref_primary_10_1016_j_applthermaleng_2017_11_075
crossref_primary_10_1007_s40571_024_00769_0
crossref_primary_10_1016_j_cma_2017_08_010
crossref_primary_10_1080_14680629_2025_2478617
crossref_primary_10_1002_nme_6345
crossref_primary_10_1016_j_advengsoft_2024_103735
crossref_primary_10_1016_j_cpc_2024_109196
crossref_primary_10_1016_j_engstruct_2025_121014
crossref_primary_10_1063_5_0272675
crossref_primary_10_1016_j_powtec_2024_120165
crossref_primary_10_1680_jgeot_22_00326
crossref_primary_10_1007_s12289_019_01473_8
crossref_primary_10_1016_j_enganabound_2022_04_003
crossref_primary_10_1007_s40571_023_00622_w
crossref_primary_10_3390_agriculture13051094
crossref_primary_10_1061__ASCE_GM_1943_5622_0002572
crossref_primary_10_1080_15397734_2024_2303657
crossref_primary_10_1134_S1029959916040081
crossref_primary_10_1016_j_ijnonlinmec_2025_105118
crossref_primary_10_1016_j_cma_2022_115651
crossref_primary_10_1007_s00170_023_11657_x
crossref_primary_10_1016_j_jterra_2015_12_004
crossref_primary_10_1111_cgf_15059
crossref_primary_10_1016_j_petsci_2024_04_008
crossref_primary_10_1007_s10409_022_22218_x
crossref_primary_10_3390_pr10071305
crossref_primary_10_1007_s40571_016_0109_4
crossref_primary_10_1016_j_compgeo_2018_04_022
crossref_primary_10_1061__ASCE_AS_1943_5525_0001267
crossref_primary_10_1016_j_apt_2023_104218
crossref_primary_10_1016_j_asr_2021_03_034
crossref_primary_10_1016_j_compstruc_2018_08_011
crossref_primary_10_1016_j_geoen_2024_213445
Cites_doi 10.1016/j.jterra.2004.02.002
10.1061/(ASCE)0733-9399(2001)127:10(1027)
10.1063/1.3179957
10.1115/1.4009973
10.1299/jmtl.2.55
10.1016/0032-5910(93)85010-7
10.1016/0032-5910(92)88030-L
10.1016/j.compgeo.2008.11.005
10.1016/j.ijimpeng.2006.09.047
10.1016/j.ijimpeng.2006.09.006
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cma.2015.02.014
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
EndPage 248
ExternalDocumentID 10_1016_j_cma_2015_02_014
S0045782515000560
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADIYS
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
VH1
VOH
WUQ
ZY4
~HD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c396t-36e1526ba72a052a80a854b381b6d9e7f8f8f9997146c3a20e547ec8cc259df3
ISICitedReferencesCount 115
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000352082400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7825
IngestDate Sun Nov 09 09:38:25 EST 2025
Sat Nov 29 06:16:31 EST 2025
Tue Nov 18 21:06:25 EST 2025
Fri Feb 23 02:20:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Soil
Discrete Element Method (DEM)
Tire tread
Finite Element Method (FEM)
Traction
DEM–FEM coupling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c396t-36e1526ba72a052a80a854b381b6d9e7f8f8f9997146c3a20e547ec8cc259df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9810-5796
PQID 1709758362
PQPubID 23500
PageCount 22
ParticipantIDs proquest_miscellaneous_1709758362
crossref_citationtrail_10_1016_j_cma_2015_02_014
crossref_primary_10_1016_j_cma_2015_02_014
elsevier_sciencedirect_doi_10_1016_j_cma_2015_02_014
PublicationCentury 2000
PublicationDate 2015-06-01
2015-06-00
20150601
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Horner, Peters, Carrillo (br000050) 2001; 127(10)
Samiei (br000060) 2012
Xu, Yu (br000030) 1998; 53
Villard, Chevalier, Le Hello, Combe (br000035) 2009; 36
Idelsohn, Onate, Pin, Calvo (br000020) 2006; 195
Mindlin (br000070) 1949; 16
Michael (br000080) 2014
Varrette, Bouvry, Cartiaux, Georgatos (br000085) 2014
Morris, Rubin, Block, Bonner (br000005) 2006; 33
Tsuji, Kawaguchi, Tanaka (br000025) 1993; 77
Nakashima, Oida (br000040) 2004; 41
Nitka, Bilbie, Combe, Dascalu, Desrues (br000010) 2009; 1145
Shinone, Nakashima, Takatsu, Kasetani, Matsukawa, Shimizu, Miyasaka, Ohdoi (br000055) 2010; 3 (2)
Tsuji, Tanaka, Ishida (br000075) 1992; 71
Nakashima, Takatsu, Shinone, Matsukawa, Kastani (br000045) 2009; 2
Hertz (br000065) 1881; 92
Beissel, Gerlach, Johnson (br000015) 2006; 33
Nitka (10.1016/j.cma.2015.02.014_br000010) 2009; 1145
Villard (10.1016/j.cma.2015.02.014_br000035) 2009; 36
Nakashima (10.1016/j.cma.2015.02.014_br000045) 2009; 2
Mindlin (10.1016/j.cma.2015.02.014_br000070) 1949; 16
Horner (10.1016/j.cma.2015.02.014_br000050) 2001; 127(10)
Varrette (10.1016/j.cma.2015.02.014_br000085) 2014
Samiei (10.1016/j.cma.2015.02.014_br000060) 2012
Tsuji (10.1016/j.cma.2015.02.014_br000075) 1992; 71
Morris (10.1016/j.cma.2015.02.014_br000005) 2006; 33
Michael (10.1016/j.cma.2015.02.014_br000080) 2014
Idelsohn (10.1016/j.cma.2015.02.014_br000020) 2006; 195
Tsuji (10.1016/j.cma.2015.02.014_br000025) 1993; 77
Xu (10.1016/j.cma.2015.02.014_br000030) 1998; 53
Shinone (10.1016/j.cma.2015.02.014_br000055) 2010; 3 (2)
Hertz (10.1016/j.cma.2015.02.014_br000065) 1881; 92
Beissel (10.1016/j.cma.2015.02.014_br000015) 2006; 33
Nakashima (10.1016/j.cma.2015.02.014_br000040) 2004; 41
References_xml – volume: 77
  year: 1993
  ident: br000025
  article-title: Discrete particle simulation of two-dimensional fluidized bed
  publication-title: Powder Technol.
– volume: 53
  start-page: 2646
  year: 1998
  end-page: 2647
  ident: br000030
  article-title: Comments on the paper numerical simulation of the gas–solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics reply
  publication-title: Chem. Eng. Sci.
– volume: 41
  start-page: 127
  year: 2004
  end-page: 137
  ident: br000040
  article-title: Algorithm and implementation of soil-tire contact analysis code based on dynamic FE-DE method
  publication-title: J. Terramech.
– year: 2012
  ident: br000060
  article-title: Assessment of implicit and explicit algorithms in numerical simulation of granular matter
– volume: 92
  start-page: 156
  year: 1881
  end-page: 171
  ident: br000065
  article-title: Ueber die beruehrung elastischer koerper
  publication-title: J. Reine Angew. Math.
– volume: 33
  start-page: 80
  year: 2006
  end-page: 90
  ident: br000015
  article-title: Hypervelocity impact computations with finite elements and meshfree particles
  publication-title: Int. J. Impact Eng.
– volume: 16
  start-page: 259
  year: 1949
  end-page: 268
  ident: br000070
  article-title: Compliance of elastic bodies in contact
  publication-title: Appl. Mech.
– volume: 71
  start-page: 239
  year: 1992
  end-page: 250
  ident: br000075
  article-title: Lagrangian numerical simulation of plug flow of cohesionless particle in a horizontal pipe
  publication-title: Powder Technol.
– year: 2014
  ident: br000080
  article-title: A discrete approach to describe the kinematics between snow and a tire tread
– volume: 1145
  start-page: 443
  year: 2009
  end-page: 446
  ident: br000010
  article-title: A DEM–FEM two scale approach of the behaviour of granular materials
  publication-title: AIP Conf. Proc.
– volume: 3 (2)
  start-page: 61
  year: 2010
  end-page: 66
  ident: br000055
  article-title: Experimental analysis of tread pattern effects on tire tractive performance on sand using an indoor traction measurement system with forced-slip mechanism
  publication-title: EAEF
– volume: 33
  start-page: 463
  year: 2006
  end-page: 473
  ident: br000005
  article-title: Simulations of fracture and fragmentation of geologic materials using combined FEM/DEM analysis
  publication-title: Int. J. Impact Eng.
– volume: 36
  start-page: 709
  year: 2009
  end-page: 717
  ident: br000035
  article-title: Coupling between finite and discrete element methods for the modelling of earth structures reinforced by geosynthetic
  publication-title: Comput. Geotech.
– volume: 2
  start-page: 55
  year: 2009
  end-page: 65
  ident: br000045
  article-title: FE-DEM Analysis of the effect of tread pattern on the tractive performance of tires operating on sand
  publication-title: J. Mech. Syst. Transport. Logist.
– volume: 127(10)
  start-page: 1027
  year: 2001
  end-page: 1032
  ident: br000050
  article-title: Large Scale discrete element modeling of vehicle-soil interaction
  publication-title: J. Eng. Mech.
– volume: 195
  start-page: 2100
  year: 2006
  end-page: 2123
  ident: br000020
  article-title: Fluid structure interaction using the particle finite element method
  publication-title: Internat. Center Comput. Methods Eng.
– year: 2014
  ident: br000085
  article-title: Management of an academic HPC cluster: The UL experience
  publication-title: Proc. of the 2014 Intl. Conf. on High Performance Computing & Simulation, HPCS 2014
– volume: 41
  start-page: 127
  year: 2004
  ident: 10.1016/j.cma.2015.02.014_br000040
  article-title: Algorithm and implementation of soil-tire contact analysis code based on dynamic FE-DE method
  publication-title: J. Terramech.
  doi: 10.1016/j.jterra.2004.02.002
– volume: 53
  start-page: 2646
  year: 1998
  ident: 10.1016/j.cma.2015.02.014_br000030
  article-title: Comments on the paper numerical simulation of the gas–solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics reply
  publication-title: Chem. Eng. Sci.
– volume: 3 (2)
  start-page: 61
  year: 2010
  ident: 10.1016/j.cma.2015.02.014_br000055
  article-title: Experimental analysis of tread pattern effects on tire tractive performance on sand using an indoor traction measurement system with forced-slip mechanism
  publication-title: EAEF
– volume: 127(10)
  start-page: 1027
  year: 2001
  ident: 10.1016/j.cma.2015.02.014_br000050
  article-title: Large Scale discrete element modeling of vehicle-soil interaction
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(2001)127:10(1027)
– volume: 1145
  start-page: 443
  year: 2009
  ident: 10.1016/j.cma.2015.02.014_br000010
  article-title: A DEM–FEM two scale approach of the behaviour of granular materials
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.3179957
– volume: 92
  start-page: 156
  year: 1881
  ident: 10.1016/j.cma.2015.02.014_br000065
  article-title: Ueber die beruehrung elastischer koerper
  publication-title: J. Reine Angew. Math.
– volume: 16
  start-page: 259
  year: 1949
  ident: 10.1016/j.cma.2015.02.014_br000070
  article-title: Compliance of elastic bodies in contact
  publication-title: Appl. Mech.
  doi: 10.1115/1.4009973
– volume: 2
  start-page: 55
  year: 2009
  ident: 10.1016/j.cma.2015.02.014_br000045
  article-title: FE-DEM Analysis of the effect of tread pattern on the tractive performance of tires operating on sand
  publication-title: J. Mech. Syst. Transport. Logist.
  doi: 10.1299/jmtl.2.55
– volume: 77
  year: 1993
  ident: 10.1016/j.cma.2015.02.014_br000025
  article-title: Discrete particle simulation of two-dimensional fluidized bed
  publication-title: Powder Technol.
  doi: 10.1016/0032-5910(93)85010-7
– volume: 71
  start-page: 239
  year: 1992
  ident: 10.1016/j.cma.2015.02.014_br000075
  article-title: Lagrangian numerical simulation of plug flow of cohesionless particle in a horizontal pipe
  publication-title: Powder Technol.
  doi: 10.1016/0032-5910(92)88030-L
– volume: 36
  start-page: 709
  year: 2009
  ident: 10.1016/j.cma.2015.02.014_br000035
  article-title: Coupling between finite and discrete element methods for the modelling of earth structures reinforced by geosynthetic
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2008.11.005
– year: 2014
  ident: 10.1016/j.cma.2015.02.014_br000080
– year: 2014
  ident: 10.1016/j.cma.2015.02.014_br000085
  article-title: Management of an academic HPC cluster: The UL experience
– volume: 195
  start-page: 2100
  year: 2006
  ident: 10.1016/j.cma.2015.02.014_br000020
  article-title: Fluid structure interaction using the particle finite element method
  publication-title: Internat. Center Comput. Methods Eng.
– volume: 33
  start-page: 80
  year: 2006
  ident: 10.1016/j.cma.2015.02.014_br000015
  article-title: Hypervelocity impact computations with finite elements and meshfree particles
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2006.09.047
– volume: 33
  start-page: 463
  year: 2006
  ident: 10.1016/j.cma.2015.02.014_br000005
  article-title: Simulations of fracture and fragmentation of geologic materials using combined FEM/DEM analysis
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2006.09.006
– year: 2012
  ident: 10.1016/j.cma.2015.02.014_br000060
SSID ssj0000812
Score 2.4917922
Snippet This study proposes an efficient combination of the Discrete Element Method (DEM) and the Finite Element Method (FEM) to study the tractive performance of a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 227
SubjectTerms Computer simulation
Contact
DEM–FEM coupling
Discrete element method
Discrete Element Method (DEM)
Finite element method
Finite Element Method (FEM)
Joining
Rubber
Soil
Tire tread
Tires
Traction
Treads
Title DEM–FEM coupling simulations of the interactions between a tire tread and granular terrain
URI https://dx.doi.org/10.1016/j.cma.2015.02.014
https://www.proquest.com/docview/1709758362
Volume 289
WOSCitedRecordID wos000352082400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwM8DBggNi4yEuKBKihx49h-HKgVoFJ4KKjixUocZ9q0paVppv18jm9tKGIaD6hSVFnORT5fjj_H53wHoVe0yrRIy2GkBY-jlPIiKghPIuDKJI-ZILGrWjJh0ymfz8XXXq8NuTCX56yu-dWVWP5XU0MbGNukzv6DuTcXhQb4D0aHI5gdjjcyPIxsNB59HqhFu7S55s3pRduJeDNM04hErFxKQ7MJ1coHa_B_NvTc6rcOTmAes1Gq0NlUkugS2VANwpegtlG1uWe0F9qkEwf5Z71VPNxY18Xq7-YKfV-cuEZbSX7rtNe-jts7vaqDCkD4UpHQbURV8L4pjYCR0K73Ja6CUPCfTijAT8XEiXD-4eXdB4ezt8oqRyXUqq66XNTfFbWnX-T422QiZ6P57PXyZ2SKjZlNeV955RbaI4wK3kd7xx9H80_bKZwnTmbeP3DYDreBgTt3_Ruh2ZnaLV-Z3Uf7fqGBjx1AHqCerg_QPb_owN6lNwfobkeR8iH64dGDA3pwBz14UWFAD-6iB3v04Bwb9GCLHgx2xwE92KPnEZqNR7P3HyJffiNSQ5Gto2GmgdxlRc7graUk53HOaVoAxSuyUmhWcfjB-oLBZKuGOYk1TZlWXClYUpfV8DHq14taP0G4orwkgpWqICqlLM2hW1moSmQVYZrRQxSHIZTKS9ObCinnMsQgnkkYdWlGXcZEwqgfojebU5ZOl-W6zmmwi_TE0hFGCYi67rSXwYYSnK7ZSctrvWgbmbBYwEIbyN_RDfo8RXe2r8Mz1F-vWv0c3VaX69Nm9cJj7xca2qWZ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DEM-FEM+coupling+simulations+of+the+interactions+between+a+tire+tread+and+granular+terrain&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Michael%2C+Mark&rft.au=Vogel%2C+Frank&rft.au=Peters%2C+Bernhard&rft.date=2015-06-01&rft.issn=0045-7825&rft.volume=289&rft.spage=227&rft.epage=248&rft_id=info:doi/10.1016%2Fj.cma.2015.02.014&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon