DEM–FEM coupling simulations of the interactions between a tire tread and granular terrain
This study proposes an efficient combination of the Discrete Element Method (DEM) and the Finite Element Method (FEM) to study the tractive performance of a rubber tire in interaction with granular terrain. The presented approach is relevant to all engineering devices interacting with granular matte...
Saved in:
| Published in: | Computer methods in applied mechanics and engineering Vol. 289; pp. 227 - 248 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.06.2015
|
| Subjects: | |
| ISSN: | 0045-7825, 1879-2138 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This study proposes an efficient combination of the Discrete Element Method (DEM) and the Finite Element Method (FEM) to study the tractive performance of a rubber tire in interaction with granular terrain. The presented approach is relevant to all engineering devices interacting with granular matter which causes response forces.
Herein, the discrete element method (DEM) is used to describe the dynamics of the granular assembly. On the one hand, the discrete approach accounts for the motion and forces of each grain individually. On the other hand, the finite element method accurately predicts the deformations and stresses acting within the tire tread. Hence, the simulation domain occupied by the tire tread is efficiently described as a continuous entity. The coupling of both methods is based on the interface shared by the two spatially separated domains. Contact forces develop at the interface and propagate into each domain. The coupling method enables to capture both responses simultaneously and allows to sufficiently resolve the different length scales. Each grain in contact with the surface of the tire tread generates a contact force which it reacts on repulsively. The contact forces sum up over the tread surface and cause the tire tread to deform. The coupling method compensates quite naturally the shortages of both numerical methods. It further employs a fast contact detection algorithm to save valuable computation time.
The proposed DEM–FEM coupling technique was employed to study the tractive performance of a rubber tire with lug tread patterns in a soil bed. The contact forces at the tread surface are captured by 3D simulations for a tire slip of sT=5%. The simulations showed to accurately recapture the gross tractive effort TH, running resistance TR and drawbar pull TP of the tire tread in comparison to related measurements. Further, the traction mechanisms between the tire tread and the granular ground are studied by analyzing the motion of the soil grains and the deformation of the tread.
•The Extended Discrete Element Method (XDEM) is employed to describe the mechanical behavior of the soil.•The tire tread is described by the Finite-Element-Method (FEM) which evaluates the elastic deformation due to contact forces of the terrain.•The development of the DEM–FEM coupling algorithm enabled to connect the two domains efficiently.•The simulation technique proofed to be able to predict accurately the traction behavior of tire tread–terrain interactions. |
|---|---|
| AbstractList | This study proposes an efficient combination of the Discrete Element Method (DEM) and the Finite Element Method (FEM) to study the tractive performance of a rubber tire in interaction with granular terrain. The presented approach is relevant to all engineering devices interacting with granular matter which causes response forces.
Herein, the discrete element method (DEM) is used to describe the dynamics of the granular assembly. On the one hand, the discrete approach accounts for the motion and forces of each grain individually. On the other hand, the finite element method accurately predicts the deformations and stresses acting within the tire tread. Hence, the simulation domain occupied by the tire tread is efficiently described as a continuous entity. The coupling of both methods is based on the interface shared by the two spatially separated domains. Contact forces develop at the interface and propagate into each domain. The coupling method enables to capture both responses simultaneously and allows to sufficiently resolve the different length scales. Each grain in contact with the surface of the tire tread generates a contact force which it reacts on repulsively. The contact forces sum up over the tread surface and cause the tire tread to deform. The coupling method compensates quite naturally the shortages of both numerical methods. It further employs a fast contact detection algorithm to save valuable computation time.
The proposed DEM–FEM coupling technique was employed to study the tractive performance of a rubber tire with lug tread patterns in a soil bed. The contact forces at the tread surface are captured by 3D simulations for a tire slip of sT=5%. The simulations showed to accurately recapture the gross tractive effort TH, running resistance TR and drawbar pull TP of the tire tread in comparison to related measurements. Further, the traction mechanisms between the tire tread and the granular ground are studied by analyzing the motion of the soil grains and the deformation of the tread.
•The Extended Discrete Element Method (XDEM) is employed to describe the mechanical behavior of the soil.•The tire tread is described by the Finite-Element-Method (FEM) which evaluates the elastic deformation due to contact forces of the terrain.•The development of the DEM–FEM coupling algorithm enabled to connect the two domains efficiently.•The simulation technique proofed to be able to predict accurately the traction behavior of tire tread–terrain interactions. This study proposes an efficient combination of the Discrete Element Method (DEM) and the Finite Element Method (FEM) to study the tractive performance of a rubber tire in interaction with granular terrain. The presented approach is relevant to all engineering devices interacting with granular matter which causes response forces. The coupling of both methods is based on the interface shared by the two spatially separated domains. Contact forces develop at the interface and propagate into each domain. The coupling method enables to capture both responses simultaneously and allows to sufficiently resolve the different length scales. It further employs a fast contact detection algorithm to save valuable computation time. The proposed DEM-FEM coupling technique was employed to study the tractive performance of a rubber tire with lug tread patterns in a soil bed. The simulations showed to accurately recapture the gross tractive effort T sub(H), running resistance T sub(R) and drawbar pull T sub(P) of the tire tread in comparison to related measurements. |
| Author | Vogel, Frank Peters, Bernhard Michael, Mark |
| Author_xml | – sequence: 1 givenname: Mark orcidid: 0000-0002-9810-5796 surname: Michael fullname: Michael, Mark email: contact@markmichael.eu organization: FSTC, University of Luxembourg, 6 rue Coudenhove-Kalergi, L-1359, Luxembourg – sequence: 2 givenname: Frank surname: Vogel fullname: Vogel, Frank organization: InuTech GmbH, Fuerther Strasse 212, 90429 Nuremberg, Germany – sequence: 3 givenname: Bernhard surname: Peters fullname: Peters, Bernhard organization: FSTC, University of Luxembourg, 6 rue Coudenhove-Kalergi, L-1359, Luxembourg |
| BookMark | eNp9kMFOAyEURYmpibX6Ae5YupkRmGFg4srUVk1q3HRpQijzptJMmQpU485_8A_9Eql15aKPxUvIPYR7TtHA9Q4QuqAkp4RWV6vcrHXOCOU5YTmh5REaUinqjNFCDtCQkJJnQjJ-gk5DWJE0krIher6dPH5_fk0nj9j0201n3RIHu952OtreBdy3OL4Ati6C12Z_t4D4DuCwxtF6wNGDbrB2DV567RLpcQp7bd0ZOm51F-D8b4_QfDqZj--z2dPdw_hmlpmirmJWVEA5qxZaME0405JoyctFIemiamoQrUynrmtBy8oUmhHgpQAjjWG8btpihC73z258_7qFENXaBgNdpx3026CoILXgsqhYiop91Pg-BA-tMjb-Vo3pw52iRO10qpVKOtVOpyJMJZ2JpP_Ijbdr7T8OMtd7BlL5NwteBWPBGWiSNxNV09sD9A8NjZBm |
| CitedBy_id | crossref_primary_10_1007_s12206_021_0908_2 crossref_primary_10_1016_j_ces_2017_12_044 crossref_primary_10_1016_j_coldregions_2015_06_002 crossref_primary_10_1016_j_powtec_2025_121678 crossref_primary_10_1007_s00366_023_01921_9 crossref_primary_10_1016_j_jterra_2023_05_007 crossref_primary_10_1007_s40571_024_00781_4 crossref_primary_10_1016_j_jterra_2017_09_003 crossref_primary_10_3390_en17143571 crossref_primary_10_1016_j_powtec_2016_09_076 crossref_primary_10_1007_s40571_022_00479_5 crossref_primary_10_1007_s11044_022_09848_7 crossref_primary_10_3390_en17040966 crossref_primary_10_1016_j_compgeo_2024_106624 crossref_primary_10_1016_j_biosystemseng_2018_07_010 crossref_primary_10_1016_j_powtec_2021_06_038 crossref_primary_10_1002_nme_4913 crossref_primary_10_1016_j_conbuildmat_2022_129977 crossref_primary_10_1016_j_biosystemseng_2016_02_017 crossref_primary_10_1016_j_still_2020_104606 crossref_primary_10_1016_j_rineng_2024_102214 crossref_primary_10_1109_ACCESS_2019_2921717 crossref_primary_10_1016_j_compgeo_2016_09_011 crossref_primary_10_1016_j_powtec_2019_12_006 crossref_primary_10_1007_s11831_023_09961_6 crossref_primary_10_1155_2020_9768904 crossref_primary_10_1007_s11071_025_11094_3 crossref_primary_10_1063_5_0034585 crossref_primary_10_1016_j_compag_2023_108459 crossref_primary_10_1016_j_cherd_2019_12_008 crossref_primary_10_1016_j_jterra_2018_05_003 crossref_primary_10_1007_s00466_021_02060_y crossref_primary_10_1016_j_powtec_2024_119536 crossref_primary_10_3390_machines10090721 crossref_primary_10_1016_j_ijsolstr_2023_112409 crossref_primary_10_1177_0954407020930175 crossref_primary_10_1016_j_powtec_2019_07_014 crossref_primary_10_1016_j_powtec_2025_121175 crossref_primary_10_1007_s11242_016_0729_4 crossref_primary_10_1016_j_egyr_2022_11_158 crossref_primary_10_1016_j_jterra_2024_101012 crossref_primary_10_1016_j_jterra_2022_09_002 crossref_primary_10_1016_j_powtec_2019_10_069 crossref_primary_10_1016_j_apt_2020_06_044 crossref_primary_10_1016_j_ijsolstr_2019_08_036 crossref_primary_10_1007_s10409_022_09016_x crossref_primary_10_1016_j_jterra_2018_03_005 crossref_primary_10_1016_j_powtec_2025_120776 crossref_primary_10_1016_j_compgeo_2023_105462 crossref_primary_10_1016_j_ijmecsci_2020_105634 crossref_primary_10_1016_j_powtec_2019_08_068 crossref_primary_10_1016_j_cma_2024_117427 crossref_primary_10_1007_s10035_017_0728_3 crossref_primary_10_1109_LRA_2021_3084877 crossref_primary_10_1177_09544062221126630 crossref_primary_10_3390_pr9101813 crossref_primary_10_1016_j_engstruct_2022_113925 crossref_primary_10_1016_j_measurement_2022_111832 crossref_primary_10_1007_s12210_024_01255_8 crossref_primary_10_1007_s40571_019_00293_6 crossref_primary_10_1016_j_ijmecsci_2020_105503 crossref_primary_10_1007_s11071_024_10587_x crossref_primary_10_1039_C9RA00399A crossref_primary_10_3390_su151310017 crossref_primary_10_1016_j_applthermaleng_2017_11_075 crossref_primary_10_1007_s40571_024_00769_0 crossref_primary_10_1016_j_cma_2017_08_010 crossref_primary_10_1080_14680629_2025_2478617 crossref_primary_10_1002_nme_6345 crossref_primary_10_1016_j_advengsoft_2024_103735 crossref_primary_10_1016_j_cpc_2024_109196 crossref_primary_10_1016_j_engstruct_2025_121014 crossref_primary_10_1063_5_0272675 crossref_primary_10_1016_j_powtec_2024_120165 crossref_primary_10_1680_jgeot_22_00326 crossref_primary_10_1007_s12289_019_01473_8 crossref_primary_10_1016_j_enganabound_2022_04_003 crossref_primary_10_1007_s40571_023_00622_w crossref_primary_10_3390_agriculture13051094 crossref_primary_10_1061__ASCE_GM_1943_5622_0002572 crossref_primary_10_1080_15397734_2024_2303657 crossref_primary_10_1134_S1029959916040081 crossref_primary_10_1016_j_ijnonlinmec_2025_105118 crossref_primary_10_1016_j_cma_2022_115651 crossref_primary_10_1007_s00170_023_11657_x crossref_primary_10_1016_j_jterra_2015_12_004 crossref_primary_10_1111_cgf_15059 crossref_primary_10_1016_j_petsci_2024_04_008 crossref_primary_10_1007_s10409_022_22218_x crossref_primary_10_3390_pr10071305 crossref_primary_10_1007_s40571_016_0109_4 crossref_primary_10_1016_j_compgeo_2018_04_022 crossref_primary_10_1061__ASCE_AS_1943_5525_0001267 crossref_primary_10_1016_j_apt_2023_104218 crossref_primary_10_1016_j_asr_2021_03_034 crossref_primary_10_1016_j_compstruc_2018_08_011 crossref_primary_10_1016_j_geoen_2024_213445 |
| Cites_doi | 10.1016/j.jterra.2004.02.002 10.1061/(ASCE)0733-9399(2001)127:10(1027) 10.1063/1.3179957 10.1115/1.4009973 10.1299/jmtl.2.55 10.1016/0032-5910(93)85010-7 10.1016/0032-5910(92)88030-L 10.1016/j.compgeo.2008.11.005 10.1016/j.ijimpeng.2006.09.047 10.1016/j.ijimpeng.2006.09.006 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier B.V. |
| Copyright_xml | – notice: 2015 Elsevier B.V. |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1016/j.cma.2015.02.014 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1879-2138 |
| EndPage | 248 |
| ExternalDocumentID | 10_1016_j_cma_2015_02_014 S0045782515000560 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADIYS ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW VH1 VOH WUQ ZY4 ~HD 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c396t-36e1526ba72a052a80a854b381b6d9e7f8f8f9997146c3a20e547ec8cc259df3 |
| ISICitedReferencesCount | 115 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000352082400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0045-7825 |
| IngestDate | Sun Nov 09 09:38:25 EST 2025 Sat Nov 29 06:16:31 EST 2025 Tue Nov 18 21:06:25 EST 2025 Fri Feb 23 02:20:28 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Soil Discrete Element Method (DEM) Tire tread Finite Element Method (FEM) Traction DEM–FEM coupling |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c396t-36e1526ba72a052a80a854b381b6d9e7f8f8f9997146c3a20e547ec8cc259df3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-9810-5796 |
| PQID | 1709758362 |
| PQPubID | 23500 |
| PageCount | 22 |
| ParticipantIDs | proquest_miscellaneous_1709758362 crossref_citationtrail_10_1016_j_cma_2015_02_014 crossref_primary_10_1016_j_cma_2015_02_014 elsevier_sciencedirect_doi_10_1016_j_cma_2015_02_014 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-06-01 2015-06-00 20150601 |
| PublicationDateYYYYMMDD | 2015-06-01 |
| PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Computer methods in applied mechanics and engineering |
| PublicationYear | 2015 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Horner, Peters, Carrillo (br000050) 2001; 127(10) Samiei (br000060) 2012 Xu, Yu (br000030) 1998; 53 Villard, Chevalier, Le Hello, Combe (br000035) 2009; 36 Idelsohn, Onate, Pin, Calvo (br000020) 2006; 195 Mindlin (br000070) 1949; 16 Michael (br000080) 2014 Varrette, Bouvry, Cartiaux, Georgatos (br000085) 2014 Morris, Rubin, Block, Bonner (br000005) 2006; 33 Tsuji, Kawaguchi, Tanaka (br000025) 1993; 77 Nakashima, Oida (br000040) 2004; 41 Nitka, Bilbie, Combe, Dascalu, Desrues (br000010) 2009; 1145 Shinone, Nakashima, Takatsu, Kasetani, Matsukawa, Shimizu, Miyasaka, Ohdoi (br000055) 2010; 3 (2) Tsuji, Tanaka, Ishida (br000075) 1992; 71 Nakashima, Takatsu, Shinone, Matsukawa, Kastani (br000045) 2009; 2 Hertz (br000065) 1881; 92 Beissel, Gerlach, Johnson (br000015) 2006; 33 Nitka (10.1016/j.cma.2015.02.014_br000010) 2009; 1145 Villard (10.1016/j.cma.2015.02.014_br000035) 2009; 36 Nakashima (10.1016/j.cma.2015.02.014_br000045) 2009; 2 Mindlin (10.1016/j.cma.2015.02.014_br000070) 1949; 16 Horner (10.1016/j.cma.2015.02.014_br000050) 2001; 127(10) Varrette (10.1016/j.cma.2015.02.014_br000085) 2014 Samiei (10.1016/j.cma.2015.02.014_br000060) 2012 Tsuji (10.1016/j.cma.2015.02.014_br000075) 1992; 71 Morris (10.1016/j.cma.2015.02.014_br000005) 2006; 33 Michael (10.1016/j.cma.2015.02.014_br000080) 2014 Idelsohn (10.1016/j.cma.2015.02.014_br000020) 2006; 195 Tsuji (10.1016/j.cma.2015.02.014_br000025) 1993; 77 Xu (10.1016/j.cma.2015.02.014_br000030) 1998; 53 Shinone (10.1016/j.cma.2015.02.014_br000055) 2010; 3 (2) Hertz (10.1016/j.cma.2015.02.014_br000065) 1881; 92 Beissel (10.1016/j.cma.2015.02.014_br000015) 2006; 33 Nakashima (10.1016/j.cma.2015.02.014_br000040) 2004; 41 |
| References_xml | – volume: 77 year: 1993 ident: br000025 article-title: Discrete particle simulation of two-dimensional fluidized bed publication-title: Powder Technol. – volume: 53 start-page: 2646 year: 1998 end-page: 2647 ident: br000030 article-title: Comments on the paper numerical simulation of the gas–solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics reply publication-title: Chem. Eng. Sci. – volume: 41 start-page: 127 year: 2004 end-page: 137 ident: br000040 article-title: Algorithm and implementation of soil-tire contact analysis code based on dynamic FE-DE method publication-title: J. Terramech. – year: 2012 ident: br000060 article-title: Assessment of implicit and explicit algorithms in numerical simulation of granular matter – volume: 92 start-page: 156 year: 1881 end-page: 171 ident: br000065 article-title: Ueber die beruehrung elastischer koerper publication-title: J. Reine Angew. Math. – volume: 33 start-page: 80 year: 2006 end-page: 90 ident: br000015 article-title: Hypervelocity impact computations with finite elements and meshfree particles publication-title: Int. J. Impact Eng. – volume: 16 start-page: 259 year: 1949 end-page: 268 ident: br000070 article-title: Compliance of elastic bodies in contact publication-title: Appl. Mech. – volume: 71 start-page: 239 year: 1992 end-page: 250 ident: br000075 article-title: Lagrangian numerical simulation of plug flow of cohesionless particle in a horizontal pipe publication-title: Powder Technol. – year: 2014 ident: br000080 article-title: A discrete approach to describe the kinematics between snow and a tire tread – volume: 1145 start-page: 443 year: 2009 end-page: 446 ident: br000010 article-title: A DEM–FEM two scale approach of the behaviour of granular materials publication-title: AIP Conf. Proc. – volume: 3 (2) start-page: 61 year: 2010 end-page: 66 ident: br000055 article-title: Experimental analysis of tread pattern effects on tire tractive performance on sand using an indoor traction measurement system with forced-slip mechanism publication-title: EAEF – volume: 33 start-page: 463 year: 2006 end-page: 473 ident: br000005 article-title: Simulations of fracture and fragmentation of geologic materials using combined FEM/DEM analysis publication-title: Int. J. Impact Eng. – volume: 36 start-page: 709 year: 2009 end-page: 717 ident: br000035 article-title: Coupling between finite and discrete element methods for the modelling of earth structures reinforced by geosynthetic publication-title: Comput. Geotech. – volume: 2 start-page: 55 year: 2009 end-page: 65 ident: br000045 article-title: FE-DEM Analysis of the effect of tread pattern on the tractive performance of tires operating on sand publication-title: J. Mech. Syst. Transport. Logist. – volume: 127(10) start-page: 1027 year: 2001 end-page: 1032 ident: br000050 article-title: Large Scale discrete element modeling of vehicle-soil interaction publication-title: J. Eng. Mech. – volume: 195 start-page: 2100 year: 2006 end-page: 2123 ident: br000020 article-title: Fluid structure interaction using the particle finite element method publication-title: Internat. Center Comput. Methods Eng. – year: 2014 ident: br000085 article-title: Management of an academic HPC cluster: The UL experience publication-title: Proc. of the 2014 Intl. Conf. on High Performance Computing & Simulation, HPCS 2014 – volume: 41 start-page: 127 year: 2004 ident: 10.1016/j.cma.2015.02.014_br000040 article-title: Algorithm and implementation of soil-tire contact analysis code based on dynamic FE-DE method publication-title: J. Terramech. doi: 10.1016/j.jterra.2004.02.002 – volume: 53 start-page: 2646 year: 1998 ident: 10.1016/j.cma.2015.02.014_br000030 article-title: Comments on the paper numerical simulation of the gas–solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics reply publication-title: Chem. Eng. Sci. – volume: 3 (2) start-page: 61 year: 2010 ident: 10.1016/j.cma.2015.02.014_br000055 article-title: Experimental analysis of tread pattern effects on tire tractive performance on sand using an indoor traction measurement system with forced-slip mechanism publication-title: EAEF – volume: 127(10) start-page: 1027 year: 2001 ident: 10.1016/j.cma.2015.02.014_br000050 article-title: Large Scale discrete element modeling of vehicle-soil interaction publication-title: J. Eng. Mech. doi: 10.1061/(ASCE)0733-9399(2001)127:10(1027) – volume: 1145 start-page: 443 year: 2009 ident: 10.1016/j.cma.2015.02.014_br000010 article-title: A DEM–FEM two scale approach of the behaviour of granular materials publication-title: AIP Conf. Proc. doi: 10.1063/1.3179957 – volume: 92 start-page: 156 year: 1881 ident: 10.1016/j.cma.2015.02.014_br000065 article-title: Ueber die beruehrung elastischer koerper publication-title: J. Reine Angew. Math. – volume: 16 start-page: 259 year: 1949 ident: 10.1016/j.cma.2015.02.014_br000070 article-title: Compliance of elastic bodies in contact publication-title: Appl. Mech. doi: 10.1115/1.4009973 – volume: 2 start-page: 55 year: 2009 ident: 10.1016/j.cma.2015.02.014_br000045 article-title: FE-DEM Analysis of the effect of tread pattern on the tractive performance of tires operating on sand publication-title: J. Mech. Syst. Transport. Logist. doi: 10.1299/jmtl.2.55 – volume: 77 year: 1993 ident: 10.1016/j.cma.2015.02.014_br000025 article-title: Discrete particle simulation of two-dimensional fluidized bed publication-title: Powder Technol. doi: 10.1016/0032-5910(93)85010-7 – volume: 71 start-page: 239 year: 1992 ident: 10.1016/j.cma.2015.02.014_br000075 article-title: Lagrangian numerical simulation of plug flow of cohesionless particle in a horizontal pipe publication-title: Powder Technol. doi: 10.1016/0032-5910(92)88030-L – volume: 36 start-page: 709 year: 2009 ident: 10.1016/j.cma.2015.02.014_br000035 article-title: Coupling between finite and discrete element methods for the modelling of earth structures reinforced by geosynthetic publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2008.11.005 – year: 2014 ident: 10.1016/j.cma.2015.02.014_br000080 – year: 2014 ident: 10.1016/j.cma.2015.02.014_br000085 article-title: Management of an academic HPC cluster: The UL experience – volume: 195 start-page: 2100 year: 2006 ident: 10.1016/j.cma.2015.02.014_br000020 article-title: Fluid structure interaction using the particle finite element method publication-title: Internat. Center Comput. Methods Eng. – volume: 33 start-page: 80 year: 2006 ident: 10.1016/j.cma.2015.02.014_br000015 article-title: Hypervelocity impact computations with finite elements and meshfree particles publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2006.09.047 – volume: 33 start-page: 463 year: 2006 ident: 10.1016/j.cma.2015.02.014_br000005 article-title: Simulations of fracture and fragmentation of geologic materials using combined FEM/DEM analysis publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2006.09.006 – year: 2012 ident: 10.1016/j.cma.2015.02.014_br000060 |
| SSID | ssj0000812 |
| Score | 2.4917922 |
| Snippet | This study proposes an efficient combination of the Discrete Element Method (DEM) and the Finite Element Method (FEM) to study the tractive performance of a... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 227 |
| SubjectTerms | Computer simulation Contact DEM–FEM coupling Discrete element method Discrete Element Method (DEM) Finite element method Finite Element Method (FEM) Joining Rubber Soil Tire tread Tires Traction Treads |
| Title | DEM–FEM coupling simulations of the interactions between a tire tread and granular terrain |
| URI | https://dx.doi.org/10.1016/j.cma.2015.02.014 https://www.proquest.com/docview/1709758362 |
| Volume | 289 |
| WOSCitedRecordID | wos000352082400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1879-2138 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000812 issn: 0045-7825 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwM8DBggNi4yEuKBKihx49h-HKgVoFJ4KKjixUocZ9q0paVppv18jm9tKGIaD6hSVFnORT5fjj_H53wHoVe0yrRIy2GkBY-jlPIiKghPIuDKJI-ZILGrWjJh0ymfz8XXXq8NuTCX56yu-dWVWP5XU0MbGNukzv6DuTcXhQb4D0aHI5gdjjcyPIxsNB59HqhFu7S55s3pRduJeDNM04hErFxKQ7MJ1coHa_B_NvTc6rcOTmAes1Gq0NlUkugS2VANwpegtlG1uWe0F9qkEwf5Z71VPNxY18Xq7-YKfV-cuEZbSX7rtNe-jts7vaqDCkD4UpHQbURV8L4pjYCR0K73Ja6CUPCfTijAT8XEiXD-4eXdB4ezt8oqRyXUqq66XNTfFbWnX-T422QiZ6P57PXyZ2SKjZlNeV955RbaI4wK3kd7xx9H80_bKZwnTmbeP3DYDreBgTt3_Ruh2ZnaLV-Z3Uf7fqGBjx1AHqCerg_QPb_owN6lNwfobkeR8iH64dGDA3pwBz14UWFAD-6iB3v04Bwb9GCLHgx2xwE92KPnEZqNR7P3HyJffiNSQ5Gto2GmgdxlRc7graUk53HOaVoAxSuyUmhWcfjB-oLBZKuGOYk1TZlWXClYUpfV8DHq14taP0G4orwkgpWqICqlLM2hW1moSmQVYZrRQxSHIZTKS9ObCinnMsQgnkkYdWlGXcZEwqgfojebU5ZOl-W6zmmwi_TE0hFGCYi67rSXwYYSnK7ZSctrvWgbmbBYwEIbyN_RDfo8RXe2r8Mz1F-vWv0c3VaX69Nm9cJj7xca2qWZ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DEM-FEM+coupling+simulations+of+the+interactions+between+a+tire+tread+and+granular+terrain&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Michael%2C+Mark&rft.au=Vogel%2C+Frank&rft.au=Peters%2C+Bernhard&rft.date=2015-06-01&rft.issn=0045-7825&rft.volume=289&rft.spage=227&rft.epage=248&rft_id=info:doi/10.1016%2Fj.cma.2015.02.014&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |