Distributional Drift Adaptation With Temporal Conditional Variational Autoencoder for Multivariate Time Series Forecasting

Due to the nonstationary nature, the distribution of real-world multivariate time series (MTS) changes over time, which is known as distribution drift. Most existing MTS forecasting models greatly suffer from distribution drift and degrade the forecasting performance over time. Existing methods addr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems Jg. 36; H. 4; S. 7287 - 7301
Hauptverfasser: He, Hui, Zhang, Qi, Yi, Kun, Shi, Kaize, Niu, Zhendong, Cao, Longbing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.04.2025
Schlagworte:
ISSN:2162-237X, 2162-2388, 2162-2388
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!