Review on the graphene based optical fiber chemical and biological sensors

Graphene as a novel material has laid a foundation for its applications in optical fiber sensors, due to its unique properties, especially the optical properties. On the other hand, optical fiber sensors have received world-wide attention due to their high sensitivity, small size, good anti-electrom...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Sensors and actuators. B, Chemical Ročník 231; s. 324 - 340
Hlavní autoři: Zhao, Yong, Li, Xue-gang, Zhou, Xue, Zhang, Ya-nan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.08.2016
Témata:
ISSN:0925-4005, 1873-3077
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Graphene as a novel material has laid a foundation for its applications in optical fiber sensors, due to its unique properties, especially the optical properties. On the other hand, optical fiber sensors have received world-wide attention due to their high sensitivity, small size, good anti-electromagnetism disturbance ability and other potential advantages. In this paper, the developments of graphene in the applications of optical fiber sensors were reviewed from four aspects. Firstly, the common preparation methods of graphene were introduced. Next, the optical properties of graphene have been concluded. And then, some typical optical fiber chemical and biological sensors based on graphene, such as temperature sensors, biological sensors and gas sensors, were reviewed. It was shown that graphene had a great potential in the optical fiber sensing technology. Furthermore, the deficiencies and challenges of the graphene in the applications of optical fiber sensors were analyzed. In a whole, the unique advantages of graphene have present their versatility and importance in the application fields of optical fiber sensors.
AbstractList Graphene as a novel material has laid a foundation for its applications in optical fiber sensors, due to its unique properties, especially the optical properties. On the other hand, optical fiber sensors have received world-wide attention due to their high sensitivity, small size, good anti-electromagnetism disturbance ability and other potential advantages. In this paper, the developments of graphene in the applications of optical fiber sensors were reviewed from four aspects. Firstly, the common preparation methods of graphene were introduced. Next, the optical properties of graphene have been concluded. And then, some typical optical fiber chemical and biological sensors based on graphene, such as temperature sensors, biological sensors and gas sensors, were reviewed. It was shown that graphene had a great potential in the optical fiber sensing technology. Furthermore, the deficiencies and challenges of the graphene in the applications of optical fiber sensors were analyzed. In a whole, the unique advantages of graphene have present their versatility and importance in the application fields of optical fiber sensors.
Author Zhao, Yong
Li, Xue-gang
Zhang, Ya-nan
Zhou, Xue
Author_xml – sequence: 1
  givenname: Yong
  surname: Zhao
  fullname: Zhao, Yong
  email: zhaoyong@ise.neu.edu.cn, zhaoyong@tsinghua.org.cn
  organization: College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
– sequence: 2
  givenname: Xue-gang
  surname: Li
  fullname: Li, Xue-gang
  organization: College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
– sequence: 3
  givenname: Xue
  surname: Zhou
  fullname: Zhou, Xue
  organization: College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
– sequence: 4
  givenname: Ya-nan
  surname: Zhang
  fullname: Zhang, Ya-nan
  organization: College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
BookMark eNp9kMtOwzAQRS1UJNrCB7DLkk3COI7zECtU8VQlJARry49J6yq1g52C-HvSlhULVjNXumekOTMycd4hIZcUMgq0vN5k0aksH9cMWAZ5eUKmtK5YyqCqJmQKTc7TAoCfkVmMGwAoWAlT8vyKnxa_Eu-SYY3JKsh-jQ4TJSOaxPeD1bJLWqswJHqN20OUziTK-s6vDjGiiz7Ec3Layi7ixe-ck_f7u7fFY7p8eXha3C5TzZpySHMFquSKc6OYKWpUjTR10wIvtG4NNSW0FVLaItWMMwVlVWhT8RqkkWXODZuTq-PdPviPHcZBbG3U2HXSod9FQWuoaV4UjI5Veqzq4GMM2Io-2K0M34KC2HsTGzF6E3tvApgYvY1M9YfRdpCD9W4I0nb_kjdHEsfvR6tBRG3RaTQ2oB6E8fYf-gfdzYps
CitedBy_id crossref_primary_10_3390_s20072046
crossref_primary_10_1016_j_apsusc_2019_06_167
crossref_primary_10_1016_j_sna_2018_10_011
crossref_primary_10_1063_1_4971372
crossref_primary_10_3389_fphy_2020_00037
crossref_primary_10_3390_s17010155
crossref_primary_10_3390_coatings15091008
crossref_primary_10_1016_j_sna_2018_02_007
crossref_primary_10_1002_adfm_202202282
crossref_primary_10_3390_s22155748
crossref_primary_10_1016_j_carbon_2024_119533
crossref_primary_10_1016_j_snb_2018_09_118
crossref_primary_10_1016_j_mssp_2021_106247
crossref_primary_10_1109_JLT_2021_3071718
crossref_primary_10_1109_JLT_2021_3085350
crossref_primary_10_1016_j_sna_2017_12_028
crossref_primary_10_1364_AO_385324
crossref_primary_10_3390_s19112595
crossref_primary_10_1109_JLT_2020_3023456
crossref_primary_10_1016_j_ijleo_2018_11_103
crossref_primary_10_1109_JSEN_2019_2906010
crossref_primary_10_3390_s19102319
crossref_primary_10_1109_JLT_2019_2897426
crossref_primary_10_1016_j_snb_2018_04_087
crossref_primary_10_4028_www_scientific_net_JNanoR_53_37
crossref_primary_10_1016_j_microc_2024_111809
crossref_primary_10_1038_s41378_023_00530_2
crossref_primary_10_3390_molecules27082586
crossref_primary_10_1109_JSEN_2021_3094092
crossref_primary_10_35848_1347_4065_ade1df
crossref_primary_10_1016_j_matdes_2018_07_043
crossref_primary_10_1016_j_jenvman_2019_109814
crossref_primary_10_1002_adom_202001913
crossref_primary_10_1016_j_sna_2018_03_044
crossref_primary_10_1109_LPT_2018_2845459
crossref_primary_10_1016_j_bios_2019_111563
crossref_primary_10_1016_j_apsusc_2017_11_046
crossref_primary_10_1016_j_snb_2018_02_123
crossref_primary_10_1016_j_snb_2021_130694
crossref_primary_10_1016_j_optlastec_2019_01_045
crossref_primary_10_3390_ma12091542
crossref_primary_10_1088_1361_665X_aaddba
crossref_primary_10_1016_j_materresbull_2021_111551
crossref_primary_10_1088_1361_6463_ac4859
crossref_primary_10_3390_ijms20102461
crossref_primary_10_1016_j_measurement_2020_108451
crossref_primary_10_1016_j_yofte_2019_03_017
crossref_primary_10_1007_s13391_022_00384_2
crossref_primary_10_1016_j_yofte_2025_104252
crossref_primary_10_1016_j_yofte_2019_01_022
crossref_primary_10_1016_j_infrared_2021_103685
crossref_primary_10_1038_s41598_022_17616_y
crossref_primary_10_1002_lpor_202200009
crossref_primary_10_1002_pssr_201900697
crossref_primary_10_1002_pep2_24184
crossref_primary_10_3390_nano9030422
crossref_primary_10_1002_smm2_1266
crossref_primary_10_1155_2019_5786105
crossref_primary_10_1016_j_sna_2018_07_034
crossref_primary_10_1080_2374068X_2018_1484998
crossref_primary_10_1016_j_snb_2017_07_032
crossref_primary_10_1016_j_sna_2021_113172
crossref_primary_10_1016_j_fmre_2025_08_003
crossref_primary_10_1016_j_surfin_2017_10_001
crossref_primary_10_1016_j_photonics_2018_06_012
crossref_primary_10_1007_s00604_025_07395_4
crossref_primary_10_1016_j_yofte_2020_102449
crossref_primary_10_1016_j_optlastec_2025_113379
crossref_primary_10_1002_ppsc_202100261
crossref_primary_10_1016_j_pnsc_2020_05_007
crossref_primary_10_3390_s22145443
crossref_primary_10_1109_JSEN_2023_3339764
crossref_primary_10_1016_j_snb_2017_07_146
crossref_primary_10_1016_j_apsusc_2018_01_094
crossref_primary_10_1088_1742_6596_1213_4_042076
crossref_primary_10_1016_j_foodcont_2022_108885
crossref_primary_10_1016_j_optcom_2021_127518
crossref_primary_10_1063_1_5060719
crossref_primary_10_1098_rsos_221135
crossref_primary_10_3390_s19224829
crossref_primary_10_1109_JSEN_2024_3402128
crossref_primary_10_3390_s18010058
crossref_primary_10_1021_acs_jpcc_5c02135
crossref_primary_10_3390_s22010064
crossref_primary_10_1007_s12596_025_02571_4
crossref_primary_10_1016_j_yofte_2018_04_006
crossref_primary_10_1016_j_compositesb_2023_111070
crossref_primary_10_1016_j_trac_2017_04_003
crossref_primary_10_1016_j_ccr_2018_08_001
crossref_primary_10_1016_j_apsusc_2020_145637
crossref_primary_10_1016_j_optcom_2018_07_080
crossref_primary_10_3390_mi13081257
crossref_primary_10_1109_JLT_2021_3103508
crossref_primary_10_1007_s00339_019_2872_6
crossref_primary_10_3788_gzxb20255405_0506002
crossref_primary_10_1038_s41377_021_00520_x
crossref_primary_10_1016_j_matdes_2022_110971
crossref_primary_10_1088_1757_899X_382_5_052011
crossref_primary_10_3390_ijms23031736
crossref_primary_10_1007_s10854_022_07786_w
crossref_primary_10_3390_pr13010209
crossref_primary_10_1016_j_apsusc_2020_145866
crossref_primary_10_1016_j_cej_2021_134066
crossref_primary_10_1002_adma_201805043
crossref_primary_10_1016_j_ijleo_2022_169653
crossref_primary_10_1364_AO_57_007924
crossref_primary_10_1007_s00604_019_3351_7
crossref_primary_10_1016_j_yofte_2018_11_012
crossref_primary_10_1002_adpr_202000211
crossref_primary_10_1002_ppsc_201800105
crossref_primary_10_1016_j_sna_2022_113894
crossref_primary_10_1016_j_sna_2023_114465
crossref_primary_10_3390_nano11020404
crossref_primary_10_1007_s10895_017_2126_y
crossref_primary_10_1016_j_apsusc_2022_154806
crossref_primary_10_1088_2053_1591_abcabf
crossref_primary_10_1088_2053_1583_ab559f
crossref_primary_10_1016_j_nantod_2021_101143
crossref_primary_10_1109_JLT_2017_2756097
crossref_primary_10_3390_electronics12040830
crossref_primary_10_1016_j_ijleo_2019_163181
crossref_primary_10_1007_s10043_023_00834_8
crossref_primary_10_1016_j_yofte_2022_103046
crossref_primary_10_1002_admi_201800886
crossref_primary_10_1002_smll_202505017
crossref_primary_10_1016_j_aca_2019_05_031
crossref_primary_10_1016_j_surfin_2017_08_004
crossref_primary_10_1109_JPHOT_2021_3069396
crossref_primary_10_1016_j_sna_2020_111923
crossref_primary_10_1364_JOSAB_36_000108
crossref_primary_10_1016_j_synthmet_2021_116860
crossref_primary_10_1016_j_matpr_2023_08_178
crossref_primary_10_1088_1674_1056_abb65c
crossref_primary_10_1016_j_susmat_2024_e00900
crossref_primary_10_1007_s10853_017_1694_1
crossref_primary_10_1002_adfm_201702891
crossref_primary_10_1016_j_snb_2016_11_119
crossref_primary_10_3390_s23084163
crossref_primary_10_3390_computers14080342
crossref_primary_10_1007_s11468_023_02092_5
crossref_primary_10_1039_D5RA01765C
crossref_primary_10_1007_s10946_022_10072_z
crossref_primary_10_1002_adom_202301028
crossref_primary_10_1080_10408347_2019_1653165
crossref_primary_10_1016_j_cplett_2017_05_030
crossref_primary_10_1016_j_optmat_2024_115259
crossref_primary_10_1016_j_cis_2020_102160
crossref_primary_10_3390_ijms21051608
crossref_primary_10_1002_adom_202201724
crossref_primary_10_3390_s20040989
crossref_primary_10_3390_ma17020333
crossref_primary_10_3390_mi13030348
crossref_primary_10_1016_j_sna_2018_07_024
crossref_primary_10_1109_LPT_2017_2786292
crossref_primary_10_1177_14613484211068962
crossref_primary_10_1109_JLT_2020_3007176
crossref_primary_10_1016_j_snb_2016_12_025
crossref_primary_10_1109_JSTQE_2023_3319581
crossref_primary_10_1002_app_49222
crossref_primary_10_1016_j_snb_2018_08_065
crossref_primary_10_1016_j_carbpol_2021_118385
crossref_primary_10_1007_s10895_023_03197_0
crossref_primary_10_1088_1361_6528_ac47d0
crossref_primary_10_1134_S0036023622602057
crossref_primary_10_1016_j_yofte_2022_103134
crossref_primary_10_3390_s19204395
crossref_primary_10_1007_s13320_024_0710_8
crossref_primary_10_1109_ACCESS_2019_2901517
crossref_primary_10_1016_j_carbon_2023_118597
crossref_primary_10_1016_j_jmgm_2019_01_007
crossref_primary_10_1103_PhysRevB_107_L081405
crossref_primary_10_1016_j_ymssp_2020_106700
crossref_primary_10_1016_j_yofte_2024_103770
crossref_primary_10_1016_j_commatsci_2018_01_006
crossref_primary_10_1039_D3NH00133D
crossref_primary_10_3390_s18040941
crossref_primary_10_1002_lpor_202000526
crossref_primary_10_1016_j_measurement_2024_114391
crossref_primary_10_3390_app12020726
crossref_primary_10_1016_j_optlaseng_2020_106508
crossref_primary_10_1002_wer_1623
crossref_primary_10_1016_j_mseb_2019_114406
crossref_primary_10_1016_j_optlastec_2022_109047
crossref_primary_10_1063_5_0143776
crossref_primary_10_1002_adom_201801433
crossref_primary_10_1002_elan_201900048
crossref_primary_10_1016_j_apsusc_2016_12_221
crossref_primary_10_1016_j_optcom_2025_131489
crossref_primary_10_1016_j_physe_2021_114993
crossref_primary_10_1007_s13320_022_0652_y
crossref_primary_10_1016_j_sna_2024_115363
crossref_primary_10_1139_tcsme_2024_0243
crossref_primary_10_1016_j_jallcom_2017_12_106
crossref_primary_10_1016_j_optlastec_2021_107473
crossref_primary_10_1088_1361_6463_aa7d12
crossref_primary_10_1016_j_yofte_2022_102983
crossref_primary_10_1016_j_optlastec_2020_106620
crossref_primary_10_1002_jssc_201601322
crossref_primary_10_1007_s00340_022_07967_9
crossref_primary_10_1016_j_apsusc_2016_12_138
crossref_primary_10_3390_jcs5070181
crossref_primary_10_1016_j_optlaseng_2018_12_013
crossref_primary_10_1016_j_measurement_2019_06_016
crossref_primary_10_1016_j_snr_2025_100326
crossref_primary_10_1016_j_sna_2019_111554
crossref_primary_10_1016_j_bios_2024_116232
crossref_primary_10_1016_j_cplett_2021_138895
crossref_primary_10_1007_s11676_020_01217_4
crossref_primary_10_1109_TNB_2019_2958891
crossref_primary_10_1016_j_ijleo_2021_167566
crossref_primary_10_1016_j_snb_2020_127921
crossref_primary_10_1088_1681_7575_aae757
crossref_primary_10_1007_s10965_020_02209_y
crossref_primary_10_1016_j_optlastec_2024_112232
crossref_primary_10_1016_j_sna_2018_08_026
crossref_primary_10_1109_JSEN_2023_3323318
crossref_primary_10_1016_j_mtla_2020_100815
crossref_primary_10_1007_s42765_024_00450_4
crossref_primary_10_1016_j_optcom_2021_126966
crossref_primary_10_1016_j_apmt_2021_100953
crossref_primary_10_1109_LSENS_2018_2849750
Cites_doi 10.1109/JSEN.2014.2361174
10.1109/JLT.2008.2007507
10.1109/LPT.2014.2315233
10.1364/OL.39.001235
10.1002/adma.201501754
10.1364/OPTICA.2.000468
10.1016/j.snb.2014.03.008
10.1016/j.snb.2015.03.095
10.1038/srep00908
10.1063/1.3115029
10.1109/JSTQE.2013.2263117
10.1016/j.optcom.2014.12.086
10.1007/s11468-015-9912-7
10.1364/OE.22.028154
10.1109/JSEN.2011.2167608
10.1063/1.4776694
10.1016/j.carbon.2007.02.034
10.1021/nl801827v
10.1016/j.physe.2014.04.010
10.1364/OL.30.002218
10.1016/j.snb.2015.06.152
10.1364/OE.16.005764
10.1039/C1CS15078B
10.1021/nl2006005
10.1016/j.compscitech.2012.05.005
10.1088/1612-2011/11/3/035901
10.1126/science.1158877
10.1016/j.mssp.2014.02.047
10.1109/JSEN.2015.2442276
10.1021/nl902200b
10.1016/j.ssc.2009.01.036
10.1364/OE.22.023829
10.1109/JSEN.2014.2302900
10.1016/j.snb.2013.01.040
10.1126/science.1102896
10.1016/j.snb.2015.07.070
10.1109/LPT.2013.2256343
10.1016/j.ssc.2012.04.022
10.1364/OL.37.002493
10.1016/j.snb.2015.08.108
10.1021/ar300009f
10.1109/JPHOT.2015.2488278
10.1007/s13320-014-0216-x
10.1016/j.ceramint.2015.09.138
10.1016/j.optlastec.2009.09.008
10.1016/j.snb.2015.09.128
10.1016/j.snb.2014.01.029
10.1049/el:19960349
10.1109/JSEN.2015.2438063
10.1016/j.snb.2013.12.085
10.1007/s11468-015-9914-5
10.1364/OE.23.020971
10.1007/s10043-015-0075-8
10.1016/j.bios.2015.07.002
10.1016/j.ssc.2007.04.023
10.1364/OE.21.029818
10.1016/j.snb.2014.05.067
10.1039/C4RA12766H
10.1063/1.3675481
10.1021/nl5012036
10.1557/mrs2010.552
10.1109/LPT.2015.2392795
10.1016/j.optlaseng.2009.04.002
10.1103/PhysRevB.77.125416
10.1103/RevModPhys.81.109
10.1364/AO.43.001216
10.1016/j.sna.2013.10.023
10.1016/j.cplett.2008.07.039
10.1016/j.snb.2012.07.092
10.1109/JSEN.2011.2107737
10.1016/j.snb.2015.04.062
10.1016/j.carbon.2009.07.040
10.1016/j.cej.2013.04.070
10.1364/OE.23.027494
10.1063/1.4928247
10.1016/j.carbon.2012.03.041
10.1109/LPT.2015.2466614
10.1016/j.pmatsci.2011.03.003
10.1063/1.4720074
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
DOI 10.1016/j.snb.2016.03.026
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3077
EndPage 340
ExternalDocumentID 10_1016_j_snb_2016_03_026
S0925400516303203
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJQLL
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HMU
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCC
SCH
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SST
SSZ
T5K
TN5
WUQ
XFK
YK3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
ID FETCH-LOGICAL-c396t-2b0b65b55db3d48eb9ad89f054ccfd1d60f7e11fe1c353b0674cd7580ada625d3
ISICitedReferencesCount 282
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000374330900037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-4005
IngestDate Thu Oct 02 11:10:06 EDT 2025
Tue Nov 18 21:53:58 EST 2025
Sat Nov 29 04:18:16 EST 2025
Fri Feb 23 02:27:15 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords GCNT
CNT
FP
FBG
SiC
GBG
SA
SC
SPR
GMHW
Optical properties
OSA
HOPG
GMMI
FSR
POF
GO
MMI
eFBG
DOS
GMFBG
SMF
DXB
CVD
Optical fiber sensors
Sensitivity
Graphene
GQDs
PVA
MFBG
Rgo
MZI
PDMS
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c396t-2b0b65b55db3d48eb9ad89f054ccfd1d60f7e11fe1c353b0674cd7580ada625d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1808124431
PQPubID 23500
PageCount 17
ParticipantIDs proquest_miscellaneous_1808124431
crossref_primary_10_1016_j_snb_2016_03_026
crossref_citationtrail_10_1016_j_snb_2016_03_026
elsevier_sciencedirect_doi_10_1016_j_snb_2016_03_026
PublicationCentury 2000
PublicationDate August 2016
2016-08-00
20160801
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: August 2016
PublicationDecade 2010
PublicationTitle Sensors and actuators. B, Chemical
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Liao, Jin (bib0015) 2014; 11
X. Cai, Z. Chen, J. Tang, J. Yu, Y. Xiao, J. Zhang, G. Liao, H. Lu, Graphene fiber-based optic temperature sensor for semiconductor device, comprises ordinary circular optical fiber section having specific length, fiber sensing area, sensing area portion and graphene oxide film[P]. CN103335741-A, 02 Oct 2013.
Ma, Xuan, Ho (bib0435) 2013; 10
Lu, Men, Sooley (bib0335) 2009; 94
Li, Feng, Qiao (bib0020) 2015; 15
Wei, Han, Li (bib0295) 2008; 16
Xing, Liu, Deng (bib0240) 2012; 2
Song, Luo, Zhu (bib0415) 2016; 76
Kim, Peng, Banerji (bib0320) 2005; 30
Kavinkumar, Manivannan (bib0130) 2016; 42
Dash, Jha (bib0050) 2014; 26
Yavari, Castillo, Gullapalli (bib0365) 2012; 100
Chatterjee, Chatterjee, Ray (bib0405) 2015; 221
Mishra, Tripathi, Choudhary (bib0105) 2015; 10
De Heer, Berger, Wu (bib0175) 2007; 143
Sadeghi, Pettes, Shi (bib0220) 2012; 152
Tian, Yam (bib0340) 2009; 27
Anand, Singh, Singh (bib0140) 2014; 195
Y. Lin, A. Zhamu, B.Z. Jang, Highly conducting and transparent film and process for producing same, US20140235123[P]. 21, Aug, 2014.
Zhao, Cai, Li (bib0350) 2014; 205
Stankovich, Dikin, Piner (bib0155) 2007; 45
Leenaerts, Partoens, Peeters (bib0255) 2008; 77
Fu, Zhang, Chen (bib0030) 2015; 15
Gao, Lu, Cheng (bib0075) 2016; 222
Hill, Vijayaragahvan, Novoselov (bib0400) 2011; 11
Yao, Wu, Chen (bib0080) 2012; 8421
Phuc, Hieu (bib0250) 2015; 344
Paliwal, Sharma, Tomar (bib0395) 2015; 216
Singh, Joung, Zhai (bib0195) 2011; 56
Zhang, Wu, Yao (bib0375) 2015; 5
Schroeder, Ecke, Willsch (bib0390) 2009; 47
Nemade, Waghuley (bib0270) 2014; 24
Huang, Qi, Boey (bib0160) 2012; 41
Basu, Bhattacharyya (bib0420) 2012; 173
Wu, Yao, Cheng (bib0360) 2014; 20
Benítez-Martínez, Valcárcel (bib0275) 2014; 197
Tian, Lu, Yang (bib0110) 2015; 27
Girei, Shabaneh, Hong (bib0065) 2015; 22
Yu, Baicheng, Anqi (bib0095) 2014; 39
Cai, Liu, Guo (bib0345) 2015; 23
Dash, Jha (bib0035) 2015; 10
Zangwill, Vvedensky (bib0170) 2011; 11
First, de Heer, Seyller (bib0165) 2010; 35
Calizo, Ghosh, Bao (bib0230) 2009; 149
Ao, Yang, Li (bib0135) 2008; 461
Yanzhen, Fan, Jun (bib0430) 2015
Homola, Slavik (bib0305) 1996; 32
Varghese, Lonkar, Singh (bib0410) 2015; 218
T.Y. Winarski, Graphene coated fiber optics, US20150125122[P]. 07, May, 2015.
Wang, Wang, Park (bib0200) 2009; 47
Yao, Wu, Zhang (bib0090) 2014; 22
Peng, Shi, Zhou (bib0315) 2015; 7
Novoselov, Geim, Morozov (bib0005) 2004; 306
Tafulo, Jorge, Santos (bib0290) 2012; 12
Gan, Zhao, Wang (bib0225) 2015; 2
Green, Hersam (bib0150) 2009; 9
Reina, Jia, Ho (bib0180) 2008; 9
Chong, Kim, Ohodnicki (bib0385) 2015; 15
Ma, Jin, Ho (bib0425) 2012; 37
Kavinkumar, Sastikumar, Manivannan (bib0125) 2015; 5
Kalbac, Frank, Kavan (bib0190) 2012; 50
Yan, Zheng, Chen (bib0440) 2015; 107
Sansone, Malachovska, La Manna (bib0115) 2014; 202
Young, Kinloch, Gong (bib0210) 2012; 72
Zeng, Sreekanth, Shang (bib0045) 2015; 27
Li, Liu, Peng (bib0025) 2015; 23
Sridevi, Vasu, Bhat (bib0100) 2016; 223
Addou, Dahal, Sutter (bib0185) 2012; 100
Yao, Wu, Cheng (bib0085) 2014; 194
Yao, Wu, Webb (bib0070) 2015; 27
Rani, Dubey, Jindal (bib0260) 2014; 62
Yao, Wu, Wang (bib0370) 2013; 21
Coleman (bib0145) 2012; 46
Neto, Guinea, Peres (bib0245) 2007; 81
Woo-Hu, Yu-Cheng, Jiu-Kai (bib0325) 2010; 42
Geim (bib0010) 2009; 324
Xing, Meng, Zhang (bib0055) 2014; 14
Ma, Xuan, Ho (bib0215) 2013; 25
Kim, Hwang, Dugasani (bib0040) 2013; 187
T.Y. Winarski, T. Winarski, Nanotube fiber optic cable, WO2014042704[P]. 20, Mar, 2014.
Ye, Wang, Liu (bib0235) 2013; 102
Wang, Sun, Ang (bib0355) 2013; 226
Dash, Jha (bib0265) 2014; 26
Yao, Wu, Zhang (bib0380) 2014; 22
Batumalay, Harun, Ahmad (bib0060) 2014; 14
Xing, Liu, Deng (bib0330) 2012; 2
Nayak, Parhi, Jha (bib0120) 2015; 221
Monzón-Hernández, Villatoro, Talavera (bib0310) 2004; 43
Monzón-Hernández (10.1016/j.snb.2016.03.026_bib0310) 2004; 43
Dash (10.1016/j.snb.2016.03.026_bib0035) 2015; 10
Yao (10.1016/j.snb.2016.03.026_bib0380) 2014; 22
Chong (10.1016/j.snb.2016.03.026_bib0385) 2015; 15
Hill (10.1016/j.snb.2016.03.026_bib0400) 2011; 11
Nayak (10.1016/j.snb.2016.03.026_bib0120) 2015; 221
Ao (10.1016/j.snb.2016.03.026_bib0135) 2008; 461
Ma (10.1016/j.snb.2016.03.026_bib0435) 2013; 10
Xing (10.1016/j.snb.2016.03.026_bib0240) 2012; 2
Li (10.1016/j.snb.2016.03.026_bib0020) 2015; 15
Paliwal (10.1016/j.snb.2016.03.026_bib0395) 2015; 216
Yao (10.1016/j.snb.2016.03.026_bib0085) 2014; 194
Mishra (10.1016/j.snb.2016.03.026_bib0105) 2015; 10
Yavari (10.1016/j.snb.2016.03.026_bib0365) 2012; 100
Kavinkumar (10.1016/j.snb.2016.03.026_bib0125) 2015; 5
Homola (10.1016/j.snb.2016.03.026_bib0305) 1996; 32
Peng (10.1016/j.snb.2016.03.026_bib0315) 2015; 7
Calizo (10.1016/j.snb.2016.03.026_bib0230) 2009; 149
10.1016/j.snb.2016.03.026_bib0300
Tian (10.1016/j.snb.2016.03.026_bib0340) 2009; 27
Benítez-Martínez (10.1016/j.snb.2016.03.026_bib0275) 2014; 197
Zhao (10.1016/j.snb.2016.03.026_bib0350) 2014; 205
Kalbac (10.1016/j.snb.2016.03.026_bib0190) 2012; 50
Zeng (10.1016/j.snb.2016.03.026_bib0045) 2015; 27
Schroeder (10.1016/j.snb.2016.03.026_bib0390) 2009; 47
Li (10.1016/j.snb.2016.03.026_bib0025) 2015; 23
Stankovich (10.1016/j.snb.2016.03.026_bib0155) 2007; 45
Tafulo (10.1016/j.snb.2016.03.026_bib0290) 2012; 12
Gao (10.1016/j.snb.2016.03.026_bib0075) 2016; 222
Ma (10.1016/j.snb.2016.03.026_bib0425) 2012; 37
Coleman (10.1016/j.snb.2016.03.026_bib0145) 2012; 46
Leenaerts (10.1016/j.snb.2016.03.026_bib0255) 2008; 77
Singh (10.1016/j.snb.2016.03.026_bib0195) 2011; 56
Sridevi (10.1016/j.snb.2016.03.026_bib0100) 2016; 223
Tian (10.1016/j.snb.2016.03.026_bib0110) 2015; 27
Yanzhen (10.1016/j.snb.2016.03.026_bib0430) 2015
Neto (10.1016/j.snb.2016.03.026_bib0245) 2007; 81
Zhang (10.1016/j.snb.2016.03.026_bib0375) 2015; 5
Girei (10.1016/j.snb.2016.03.026_bib0065) 2015; 22
Yu (10.1016/j.snb.2016.03.026_bib0095) 2014; 39
Wu (10.1016/j.snb.2016.03.026_bib0360) 2014; 20
Wang (10.1016/j.snb.2016.03.026_bib0200) 2009; 47
Dash (10.1016/j.snb.2016.03.026_bib0050) 2014; 26
10.1016/j.snb.2016.03.026_bib0205
Basu (10.1016/j.snb.2016.03.026_bib0420) 2012; 173
Yan (10.1016/j.snb.2016.03.026_bib0440) 2015; 107
Kavinkumar (10.1016/j.snb.2016.03.026_bib0130) 2016; 42
De Heer (10.1016/j.snb.2016.03.026_bib0175) 2007; 143
Dash (10.1016/j.snb.2016.03.026_bib0265) 2014; 26
Zhang (10.1016/j.snb.2016.03.026_bib0015) 2014; 11
Zangwill (10.1016/j.snb.2016.03.026_bib0170) 2011; 11
Gan (10.1016/j.snb.2016.03.026_bib0225) 2015; 2
Wang (10.1016/j.snb.2016.03.026_bib0355) 2013; 226
Kim (10.1016/j.snb.2016.03.026_bib0040) 2013; 187
Anand (10.1016/j.snb.2016.03.026_bib0140) 2014; 195
Addou (10.1016/j.snb.2016.03.026_bib0185) 2012; 100
Nemade (10.1016/j.snb.2016.03.026_bib0270) 2014; 24
Wei (10.1016/j.snb.2016.03.026_bib0295) 2008; 16
Varghese (10.1016/j.snb.2016.03.026_bib0410) 2015; 218
10.1016/j.snb.2016.03.026_bib0280
Rani (10.1016/j.snb.2016.03.026_bib0260) 2014; 62
Yao (10.1016/j.snb.2016.03.026_bib0090) 2014; 22
Geim (10.1016/j.snb.2016.03.026_bib0010) 2009; 324
Yao (10.1016/j.snb.2016.03.026_bib0080) 2012; 8421
10.1016/j.snb.2016.03.026_bib0285
Yao (10.1016/j.snb.2016.03.026_bib0070) 2015; 27
Batumalay (10.1016/j.snb.2016.03.026_bib0060) 2014; 14
Young (10.1016/j.snb.2016.03.026_bib0210) 2012; 72
Lu (10.1016/j.snb.2016.03.026_bib0335) 2009; 94
Green (10.1016/j.snb.2016.03.026_bib0150) 2009; 9
Yao (10.1016/j.snb.2016.03.026_bib0370) 2013; 21
Sansone (10.1016/j.snb.2016.03.026_bib0115) 2014; 202
Cai (10.1016/j.snb.2016.03.026_bib0345) 2015; 23
Xing (10.1016/j.snb.2016.03.026_bib0055) 2014; 14
Ma (10.1016/j.snb.2016.03.026_bib0215) 2013; 25
Fu (10.1016/j.snb.2016.03.026_bib0030) 2015; 15
Sadeghi (10.1016/j.snb.2016.03.026_bib0220) 2012; 152
Novoselov (10.1016/j.snb.2016.03.026_bib0005) 2004; 306
Woo-Hu (10.1016/j.snb.2016.03.026_bib0325) 2010; 42
Ye (10.1016/j.snb.2016.03.026_bib0235) 2013; 102
Huang (10.1016/j.snb.2016.03.026_bib0160) 2012; 41
Chatterjee (10.1016/j.snb.2016.03.026_bib0405) 2015; 221
Phuc (10.1016/j.snb.2016.03.026_bib0250) 2015; 344
First (10.1016/j.snb.2016.03.026_bib0165) 2010; 35
Reina (10.1016/j.snb.2016.03.026_bib0180) 2008; 9
Xing (10.1016/j.snb.2016.03.026_bib0330) 2012; 2
Song (10.1016/j.snb.2016.03.026_bib0415) 2016; 76
Kim (10.1016/j.snb.2016.03.026_bib0320) 2005; 30
References_xml – volume: 39
  start-page: 1235
  year: 2014
  end-page: 1237
  ident: bib0095
  article-title: Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing
  publication-title: Opt. Lett.
– reference: X. Cai, Z. Chen, J. Tang, J. Yu, Y. Xiao, J. Zhang, G. Liao, H. Lu, Graphene fiber-based optic temperature sensor for semiconductor device, comprises ordinary circular optical fiber section having specific length, fiber sensing area, sensing area portion and graphene oxide film[P]. CN103335741-A, 02 Oct 2013.
– year: 2015
  ident: bib0430
  article-title: All-fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector
  publication-title: International Conference on Optical Fibre Sensors (OFS24). International Society for Optics and Photonics
– volume: 223
  start-page: 481
  year: 2016
  end-page: 486
  ident: bib0100
  article-title: Ultra sensitive NO
  publication-title: Sens. Actuators B: Chem.
– volume: 62
  start-page: 28
  year: 2014
  end-page: 35
  ident: bib0260
  article-title: DFT study of optical properties of pure and doped graphene
  publication-title: Physica E
– volume: 23
  start-page: 20971
  year: 2015
  end-page: 20976
  ident: bib0345
  article-title: Evanescently coupled optical fiber refractometer based a tilted fiber Bragg grating and a D-shaped fiber
  publication-title: Opt. Express
– volume: 2
  start-page: 468
  year: 2015
  end-page: 471
  ident: bib0225
  article-title: Graphene-assisted all-fiber phase shifter and switching
  publication-title: Optica
– volume: 221
  start-page: 835
  year: 2015
  end-page: 841
  ident: bib0120
  article-title: Graphene oxide encapsulated gold nanoparticle based stable fibre optic sucrose sensor
  publication-title: Sens. Actuators B: Chem.
– volume: 43
  start-page: 1216
  year: 2004
  end-page: 1220
  ident: bib0310
  article-title: Optical-fiber surface-plasmon resonance sensor with multiple resonance peaks
  publication-title: Appl. Opt.
– volume: 27
  start-page: 2399
  year: 2015
  end-page: 2402
  ident: bib0070
  article-title: Graphene-based D-shaped polymer FBG for highly sensitive erythrocyte detection
  publication-title: IEEE Photonics Technol. Lett.
– volume: 152
  start-page: 1321
  year: 2012
  end-page: 1330
  ident: bib0220
  article-title: Thermal transport in graphene
  publication-title: Solid State Commun.
– volume: 23
  start-page: 27494
  year: 2015
  end-page: 27502
  ident: bib0025
  article-title: Analyzing the temperature sensitivity of Fabry–Perot sensor using multilayer graphene diaphragm
  publication-title: Opt. Express
– volume: 187
  start-page: 426
  year: 2013
  end-page: 433
  ident: bib0040
  article-title: Graphene based fiber optic surface plasmon resonance for bio-chemical sensor applications
  publication-title: Sens. Actuators B: Chem.
– volume: 12
  start-page: 8
  year: 2012
  end-page: 12
  ident: bib0290
  article-title: Intrinsic Fabry–Pérot cavity sensor based on etched multimode graded index fiber for strain and temperature measurement
  publication-title: Sens. J. IEEE
– volume: 149
  start-page: 1132
  year: 2009
  end-page: 1135
  ident: bib0230
  article-title: Raman nanometrology of graphene: temperature and substrate effects
  publication-title: Solid State Commun.
– volume: 14
  start-page: 1704
  year: 2014
  end-page: 1709
  ident: bib0060
  article-title: Tapered plastic optical fiber coated with graphene for uric acid detection
  publication-title: IEEE Sens. J.
– volume: 202
  start-page: 523
  year: 2014
  end-page: 526
  ident: bib0115
  article-title: Nanochemical fabrication of a graphene oxide-based nanohybrid for label-free optical sensing with fiber optics
  publication-title: Sens. Actuators B: Chem.
– volume: 15
  start-page: 505
  year: 2015
  end-page: 509
  ident: bib0020
  article-title: Ultrahigh sensitive temperature sensor based on Fabry–Pérot interference assisted by a graphene diaphragm
  publication-title: IEEE Sens. J.
– volume: 30
  start-page: 2218
  year: 2005
  end-page: 2220
  ident: bib0320
  article-title: Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases
  publication-title: Opt. Lett.
– volume: 7
  start-page: 1
  year: 2015
  end-page: 9
  ident: bib0315
  article-title: A surface plasmon biosensor based on a d-shaped microstructured optical fiber with rectangular lattice
  publication-title: Photonics J. IEEE
– volume: 197
  start-page: 350
  year: 2014
  end-page: 357
  ident: bib0275
  article-title: Graphene quantum dots as sensor for phenols in olive oil
  publication-title: Sens. Actuators B: Chem.
– volume: 173
  start-page: 1
  year: 2012
  end-page: 21
  ident: bib0420
  article-title: Recent developments on graphene and graphene oxide based solid state gas sensors
  publication-title: Sens. Actuators B: Chem.
– volume: 306
  start-page: 666
  year: 2004
  end-page: 669
  ident: bib0005
  article-title: Electric field effect in atomically thin carbon films
  publication-title: Science
– volume: 11
  start-page: 2092
  year: 2011
  end-page: 2095
  ident: bib0170
  article-title: Novel growth mechanism of epitaxial graphene on metals
  publication-title: Nano Lett.
– volume: 9
  start-page: 4031
  year: 2009
  end-page: 4036
  ident: bib0150
  article-title: Solution phase production of graphene with controlled thickness via density differentiation
  publication-title: Nano Lett.
– volume: 77
  start-page: 125416
  year: 2008
  ident: bib0255
  article-title: Adsorption of H
  publication-title: Phys. Rev. B
– volume: 205
  start-page: 186
  year: 2014
  end-page: 190
  ident: bib0350
  article-title: Investigation of the high sensitivity RI sensor based on SMS fiber structure
  publication-title: Sens. Actuators A: Phys.
– volume: 26
  start-page: 1092
  year: 2014
  end-page: 1095
  ident: bib0050
  article-title: Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance
  publication-title: Photonics Technol. Lett. IEEE
– volume: 2
  start-page: 908
  year: 2012
  ident: bib0330
  article-title: Sensitive real-time monitoring of refractive indexes using a novel graphene-based optical sensor
  publication-title: Sci. Rep.
– volume: 47
  start-page: 3242
  year: 2009
  end-page: 3246
  ident: bib0200
  article-title: Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation
  publication-title: Carbon
– volume: 10
  start-page: 932
  year: 2013
  end-page: 935
  ident: bib0435
  article-title: Fiber-optic Fabry–Perot acoustic sensor with multilayer graphene diaphragm
  publication-title: IEEE Photonics Technol. Lett.
– volume: 11
  start-page: 035901
  year: 2014
  ident: bib0015
  article-title: All-fiber-optic temperature sensor based on reduced graphene oxide
  publication-title: Laser Phys. Lett.
– volume: 195
  start-page: 409
  year: 2014
  end-page: 415
  ident: bib0140
  article-title: Hydrogen sensor based on graphene/ZnO nanocomposite
  publication-title: Sens. Actuators B: Chem.
– volume: 8421
  year: 2012
  ident: bib0080
  article-title: Graphene-based microfiber gas sensor
  publication-title: Proc. SPIE
– volume: 46
  start-page: 14
  year: 2012
  end-page: 22
  ident: bib0145
  article-title: Liquid exfoliation of defect-free graphene
  publication-title: Acc. Chem. Res.
– volume: 41
  start-page: 666
  year: 2012
  end-page: 686
  ident: bib0160
  article-title: Graphene-based composites
  publication-title: Chem. Soc. Rev.
– volume: 32
  start-page: 480
  year: 1996
  end-page: 482
  ident: bib0305
  article-title: Fibre-optic sensor based on surface plasmon resonance
  publication-title: Electron. Lett.
– volume: 50
  start-page: 3682
  year: 2012
  end-page: 3687
  ident: bib0190
  article-title: The control of graphene double-layer formation in copper-catalyzed chemical vapor deposition
  publication-title: Carbon
– volume: 76
  start-page: 195
  year: 2016
  end-page: 212
  ident: bib0415
  article-title: Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials
  publication-title: Biosens. Bioelectron.
– volume: 107
  start-page: 053502
  year: 2015
  ident: bib0440
  article-title: Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator
  publication-title: Appl. Phys. Lett.
– volume: 94
  year: 2009
  ident: bib0335
  article-title: Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature
  publication-title: Appl. Phys. Lett.
– volume: 221
  start-page: 1170
  year: 2015
  end-page: 1181
  ident: bib0405
  article-title: Graphene–metal oxide nanohybrids for toxic gas sensor: a review
  publication-title: Sens. Actuators B: Chem.
– volume: 194
  start-page: 142
  year: 2014
  end-page: 148
  ident: bib0085
  article-title: All-optical Mach–Zehnder interferometric NH
  publication-title: Sens. Actuators B: Chem.
– volume: 37
  start-page: 2493
  year: 2012
  end-page: 2495
  ident: bib0425
  article-title: High-sensitivity fiber-tip pressure sensor with graphene diaphragm
  publication-title: Opt. Lett.
– volume: 5
  start-page: 10816
  year: 2015
  end-page: 10825
  ident: bib0125
  article-title: Effect of functional groups on dielectric: optical gas sensing properties of graphene oxide and reduced graphene oxide at room temperature
  publication-title: RSC Adv.
– volume: 216
  start-page: 497
  year: 2015
  end-page: 503
  ident: bib0395
  article-title: Room temperature detection of NO
  publication-title: Sens. Actuators B: Chem.
– volume: 100
  start-page: 021601
  year: 2012
  ident: bib0185
  article-title: Monolayer graphene growth on Ni (111) by low temperature chemical vapor deposition
  publication-title: Appl. Phys. Lett.
– volume: 5
  start-page: 84
  year: 2015
  end-page: 90
  ident: bib0375
  article-title: Optimization study on graphene-coated microfiber Bragg grating structures for ammonia gas sensing
  publication-title: Photonic Sens.
– volume: 22
  year: 2014
  ident: bib0090
  article-title: Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing
  publication-title: Opt. Express
– volume: 10
  start-page: 1123
  year: 2015
  end-page: 1131
  ident: bib0035
  article-title: On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance
  publication-title: Plasmonics
– volume: 27
  start-page: 798
  year: 2015
  end-page: 801
  ident: bib0110
  article-title: Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing
  publication-title: Photonics Technol. Lett. IEEE
– volume: 42
  start-page: 1769
  year: 2016
  end-page: 1776
  ident: bib0130
  article-title: Uniform decoration of silver nanoparticle on exfoliated graphene oxide sheets and its ammonia gas detection
  publication-title: Ceram. Int.
– volume: 461
  start-page: 276
  year: 2008
  end-page: 279
  ident: bib0135
  article-title: Enhancement of CO detection in Al doped graphene
  publication-title: Chem. Phys. Lett.
– volume: 226
  start-page: 336
  year: 2013
  end-page: 347
  ident: bib0355
  article-title: Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials
  publication-title: Chem. Eng. J.
– volume: 27
  start-page: 2296
  year: 2009
  end-page: 2306
  ident: bib0340
  article-title: In-line single-mode optical fiber interferometric refractive index sensors
  publication-title: J. Lightwave Technol.
– volume: 218
  start-page: 160
  year: 2015
  end-page: 183
  ident: bib0410
  article-title: Recent advances in graphene based gas sensors
  publication-title: Sens. Actuators B: Chem.
– volume: 21
  start-page: 29818
  year: 2013
  end-page: 29826
  ident: bib0370
  article-title: Demonstration of complex refractive index of graphene waveguide by microfiber-based Mach–Zehnder interferometer
  publication-title: Opt. Express
– volume: 15
  start-page: 1
  year: 2015
  ident: bib0385
  article-title: Ultra-short near-infrared fiber-optic sensors for carbon dioxide detection
  publication-title: IEEE Sens. J.
– volume: 35
  start-page: 296
  year: 2010
  end-page: 305
  ident: bib0165
  article-title: Epitaxial graphenes on silicon carbide
  publication-title: MRS Bull.
– volume: 143
  start-page: 92
  year: 2007
  end-page: 100
  ident: bib0175
  article-title: Epitaxial graphene
  publication-title: Solid State Commun.
– volume: 2
  start-page: 908
  year: 2012
  end-page: 912
  ident: bib0240
  article-title: Sensitive real-time monitoring of refractive indexes using a novel graphene-based optical sensor
  publication-title: Sci. Rep.
– volume: 56
  start-page: 1178
  year: 2011
  end-page: 1271
  ident: bib0195
  article-title: Graphene based materials: past, present and future
  publication-title: Prog. Mater. Sci.
– volume: 24
  start-page: 126
  year: 2014
  end-page: 131
  ident: bib0270
  article-title: In situ synthesis of graphene/SnO2 quantum dots composites for chemiresistive gas sensing
  publication-title: Mater. Sci. Semicond. Process.
– volume: 15
  start-page: 5478
  year: 2015
  end-page: 5482
  ident: bib0030
  article-title: Graphene enhances the sensitivity of fiber-optic surface plasmon resonance biosensor
  publication-title: Sens. J. IEEE
– volume: 10
  start-page: 1
  year: 2015
  end-page: 11
  ident: bib0105
  article-title: Surface plasmon resonance-based fiber optic methane gas sensor utilizing graphene-carbon nanotubes-poly (methyl methacrylate) hybrid nanocomposite
  publication-title: Plasmonics
– volume: 72
  start-page: 1459
  year: 2012
  end-page: 1476
  ident: bib0210
  article-title: The mechanics of graphene nanocomposites: a review
  publication-title: Compos. Sci. Technol.
– volume: 81
  start-page: 109
  year: 2007
  end-page: 162
  ident: bib0245
  article-title: The electronic properties of graphene
  publication-title: Rev. Mod. Phys.
– volume: 42
  start-page: 453
  year: 2010
  end-page: 456
  ident: bib0325
  article-title: Multi-step structure of side-polished fiber sensor to enhance SPR effect
  publication-title: Opt. Laser Technol.
– volume: 102
  year: 2013
  ident: bib0235
  article-title: Polarization-dependent optical absorption of graphene under total internal reflection
  publication-title: Appl. Phys. Lett.
– volume: 27
  start-page: 6163
  year: 2015
  end-page: 6169
  ident: bib0045
  article-title: Graphene–gold metasurface architectures for ultrasensitive plasmonic biosensing
  publication-title: Adv. Mater.
– reference: T.Y. Winarski, Graphene coated fiber optics, US20150125122[P]. 07, May, 2015.
– volume: 25
  start-page: 932
  year: 2013
  end-page: 935
  ident: bib0215
  article-title: Fiber-optic fabry-pérot acoustic sensor with multilayer graphene diaphragm
  publication-title: Photonics Technol. Lett. IEEE
– reference: T.Y. Winarski, T. Winarski, Nanotube fiber optic cable, WO2014042704[P]. 20, Mar, 2014.
– volume: 26
  start-page: 1092
  year: 2014
  end-page: 1095
  ident: bib0265
  article-title: Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance
  publication-title: IEEE Photonics Technol. Lett.
– volume: 20
  start-page: 49
  year: 2014
  end-page: 54
  ident: bib0360
  article-title: Hybrid graphene-microfiber waveguide for chemical gas sensing
  publication-title: IEEE J. Sel. Top. Quantum Electron.
– volume: 11
  start-page: 3161
  year: 2011
  end-page: 3170
  ident: bib0400
  article-title: Graphene sensors
  publication-title: IEEE Sens. J.
– volume: 9
  start-page: 30
  year: 2008
  end-page: 35
  ident: bib0180
  article-title: Large area: few-layer graphene films on arbitrary substrates by chemical vapor deposition
  publication-title: Nano Lett.
– volume: 47
  start-page: 1018
  year: 2009
  end-page: 1022
  ident: bib0390
  article-title: Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer
  publication-title: Opt. Lasers Eng.
– volume: 16
  start-page: 5764
  year: 2008
  end-page: 5769
  ident: bib0295
  article-title: Temperature-insensitive miniaturized fiber inline Fabry–Perot interferometer for highly sensitive refractive index measurement
  publication-title: Opt. Express
– volume: 14
  start-page: 3563
  year: 2014
  end-page: 3569
  ident: bib0055
  article-title: Ultrasensitive flow sensing of a single cell using graphene-based optical sensors
  publication-title: Nano Lett.
– volume: 22
  start-page: 23829
  year: 2014
  end-page: 23835
  ident: bib0380
  article-title: Graphene Bragg gratings on microfiber
  publication-title: Opt. Express
– volume: 45
  start-page: 1558
  year: 2007
  end-page: 1565
  ident: bib0155
  article-title: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide
  publication-title: Carbon
– reference: Y. Lin, A. Zhamu, B.Z. Jang, Highly conducting and transparent film and process for producing same, US20140235123[P]. 21, Aug, 2014.
– volume: 324
  start-page: 1530
  year: 2009
  end-page: 1534
  ident: bib0010
  article-title: Graphene: status and prospects
  publication-title: Science
– volume: 22
  start-page: 1
  year: 2015
  end-page: 8
  ident: bib0065
  article-title: Tapered optical fiber coated with graphene based nanomaterials for measurement of ethanol concentrations in water
  publication-title: Opt. Rev.
– volume: 222
  start-page: 618
  year: 2016
  end-page: 624
  ident: bib0075
  article-title: Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide
  publication-title: Sens. Actuators B: Chem.
– volume: 100
  year: 2012
  ident: bib0365
  article-title: High sensitivity detection of NO
  publication-title: Appl. Phys. Lett.
– volume: 344
  start-page: 12
  year: 2015
  end-page: 16
  ident: bib0250
  article-title: Nonlinear optical absorption in graphene via two-photon absorption process
  publication-title: Opt. Commun.
– ident: 10.1016/j.snb.2016.03.026_bib0285
– volume: 15
  start-page: 505
  issue: 1
  year: 2015
  ident: 10.1016/j.snb.2016.03.026_bib0020
  article-title: Ultrahigh sensitive temperature sensor based on Fabry–Pérot interference assisted by a graphene diaphragm
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2014.2361174
– volume: 27
  start-page: 2296
  issue: 13
  year: 2009
  ident: 10.1016/j.snb.2016.03.026_bib0340
  article-title: In-line single-mode optical fiber interferometric refractive index sensors
  publication-title: J. Lightwave Technol.
  doi: 10.1109/JLT.2008.2007507
– volume: 26
  start-page: 1092
  issue: 11
  year: 2014
  ident: 10.1016/j.snb.2016.03.026_bib0050
  article-title: Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance
  publication-title: Photonics Technol. Lett. IEEE
  doi: 10.1109/LPT.2014.2315233
– volume: 39
  start-page: 1235
  issue: 5
  year: 2014
  ident: 10.1016/j.snb.2016.03.026_bib0095
  article-title: Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing
  publication-title: Opt. Lett.
  doi: 10.1364/OL.39.001235
– ident: 10.1016/j.snb.2016.03.026_bib0300
– volume: 27
  start-page: 6163
  issue: 40
  year: 2015
  ident: 10.1016/j.snb.2016.03.026_bib0045
  article-title: Graphene–gold metasurface architectures for ultrasensitive plasmonic biosensing
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501754
– volume: 26
  start-page: 1092
  issue: 11
  year: 2014
  ident: 10.1016/j.snb.2016.03.026_bib0265
  article-title: Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2014.2315233
– volume: 2
  start-page: 468
  issue: 5
  year: 2015
  ident: 10.1016/j.snb.2016.03.026_bib0225
  article-title: Graphene-assisted all-fiber phase shifter and switching
  publication-title: Optica
  doi: 10.1364/OPTICA.2.000468
– volume: 197
  start-page: 350
  year: 2014
  ident: 10.1016/j.snb.2016.03.026_bib0275
  article-title: Graphene quantum dots as sensor for phenols in olive oil
  publication-title: Sens. Actuators B: Chem.
  doi: 10.1016/j.snb.2014.03.008
– volume: 216
  start-page: 497
  year: 2015
  ident: 10.1016/j.snb.2016.03.026_bib0395
  article-title: Room temperature detection of NO2 gas using optical sensor based on Surface Plasmon Resonance technique
  publication-title: Sens. Actuators B: Chem.
  doi: 10.1016/j.snb.2015.03.095
– volume: 2
  start-page: 908
  year: 2012
  ident: 10.1016/j.snb.2016.03.026_bib0330
  article-title: Sensitive real-time monitoring of refractive indexes using a novel graphene-based optical sensor
  publication-title: Sci. Rep.
  doi: 10.1038/srep00908
– volume: 94
  issue: 13
  year: 2009
  ident: 10.1016/j.snb.2016.03.026_bib0335
  article-title: Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3115029
– volume: 20
  start-page: 49
  issue: 1
  year: 2014
  ident: 10.1016/j.snb.2016.03.026_bib0360
  article-title: Hybrid graphene-microfiber waveguide for chemical gas sensing
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2013.2263117
– volume: 344
  start-page: 12
  year: 2015
  ident: 10.1016/j.snb.2016.03.026_bib0250
  article-title: Nonlinear optical absorption in graphene via two-photon absorption process
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2014.12.086
– volume: 10
  start-page: 1123
  issue: 5
  year: 2015
  ident: 10.1016/j.snb.2016.03.026_bib0035
  article-title: On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance
  publication-title: Plasmonics
  doi: 10.1007/s11468-015-9912-7
– volume: 22
  issue: 23
  year: 2014
  ident: 10.1016/j.snb.2016.03.026_bib0090
  article-title: Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing
  publication-title: Opt. Express
  doi: 10.1364/OE.22.028154
– volume: 11
  start-page: 3161
  issue: 12
  year: 2011
  ident: 10.1016/j.snb.2016.03.026_bib0400
  article-title: Graphene sensors
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2011.2167608
– volume: 102
  issue: 2
  year: 2013
  ident: 10.1016/j.snb.2016.03.026_bib0235
  article-title: Polarization-dependent optical absorption of graphene under total internal reflection
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4776694
– ident: 10.1016/j.snb.2016.03.026_bib0205
– volume: 45
  start-page: 1558
  issue: 7
  year: 2007
  ident: 10.1016/j.snb.2016.03.026_bib0155
  article-title: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide
  publication-title: Carbon
  doi: 10.1016/j.carbon.2007.02.034
– volume: 9
  start-page: 30
  issue: 1
  year: 2008
  ident: 10.1016/j.snb.2016.03.026_bib0180
  article-title: Large area: few-layer graphene films on arbitrary substrates by chemical vapor deposition
  publication-title: Nano Lett.
  doi: 10.1021/nl801827v
– volume: 62
  start-page: 28
  year: 2014
  ident: 10.1016/j.snb.2016.03.026_bib0260
  article-title: DFT study of optical properties of pure and doped graphene
  publication-title: Physica E
  doi: 10.1016/j.physe.2014.04.010
– volume: 30
  start-page: 2218
  issue: 17
  year: 2005
  ident: 10.1016/j.snb.2016.03.026_bib0320
  article-title: Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases
  publication-title: Opt. Lett.
  doi: 10.1364/OL.30.002218
– volume: 221
  start-page: 835
  year: 2015
  ident: 10.1016/j.snb.2016.03.026_bib0120
  article-title: Graphene oxide encapsulated gold nanoparticle based stable fibre optic sucrose sensor
  publication-title: Sens. Actuators B: Chem.
  doi: 10.1016/j.snb.2015.06.152
– volume: 16
  start-page: 5764
  issue: 8
  year: 2008
  ident: 10.1016/j.snb.2016.03.026_bib0295
  article-title: Temperature-insensitive miniaturized fiber inline Fabry–Perot interferometer for highly sensitive refractive index measurement
  publication-title: Opt. Express
  doi: 10.1364/OE.16.005764
– volume: 41
  start-page: 666
  issue: 19
  year: 2012
  ident: 10.1016/j.snb.2016.03.026_bib0160
  article-title: Graphene-based composites
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15078B
– volume: 8421
  year: 2012
  ident: 10.1016/j.snb.2016.03.026_bib0080
  article-title: Graphene-based microfiber gas sensor
  publication-title: Proc. SPIE
– volume: 11
  start-page: 2092
  issue: 5
  year: 2011
  ident: 10.1016/j.snb.2016.03.026_bib0170
  article-title: Novel growth mechanism of epitaxial graphene on metals
  publication-title: Nano Lett.
  doi: 10.1021/nl2006005
– volume: 72
  start-page: 1459
  issue: 12
  year: 2012
  ident: 10.1016/j.snb.2016.03.026_bib0210
  article-title: The mechanics of graphene nanocomposites: a review
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2012.05.005
– volume: 11
  start-page: 035901
  issue: 3
  year: 2014
  ident: 10.1016/j.snb.2016.03.026_bib0015
  article-title: All-fiber-optic temperature sensor based on reduced graphene oxide
  publication-title: Laser Phys. Lett.
  doi: 10.1088/1612-2011/11/3/035901
– volume: 324
  start-page: 1530
  issue: 5934
  year: 2009
  ident: 10.1016/j.snb.2016.03.026_bib0010
  article-title: Graphene: status and prospects
  publication-title: Science
  doi: 10.1126/science.1158877
– volume: 24
  start-page: 126
  year: 2014
  ident: 10.1016/j.snb.2016.03.026_bib0270
  article-title: In situ synthesis of graphene/SnO2 quantum dots composites for chemiresistive gas sensing
  publication-title: Mater. Sci. Semicond. Process.
  doi: 10.1016/j.mssp.2014.02.047
– volume: 15
  start-page: 5478
  issue: 10
  year: 2015
  ident: 10.1016/j.snb.2016.03.026_bib0030
  article-title: Graphene enhances the sensitivity of fiber-optic surface plasmon resonance biosensor
  publication-title: Sens. J. IEEE
  doi: 10.1109/JSEN.2015.2442276
– volume: 9
  start-page: 4031
  issue: 12
  year: 2009
  ident: 10.1016/j.snb.2016.03.026_bib0150
  article-title: Solution phase production of graphene with controlled thickness via density differentiation
  publication-title: Nano Lett.
  doi: 10.1021/nl902200b
– volume: 149
  start-page: 1132
  issue: 27
  year: 2009
  ident: 10.1016/j.snb.2016.03.026_bib0230
  article-title: Raman nanometrology of graphene: temperature and substrate effects
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2009.01.036
– volume: 22
  start-page: 23829
  issue: 20
  year: 2014
  ident: 10.1016/j.snb.2016.03.026_bib0380
  article-title: Graphene Bragg gratings on microfiber
  publication-title: Opt. Express
  doi: 10.1364/OE.22.023829
– volume: 14
  start-page: 1704
  issue: 5
  year: 2014
  ident: 10.1016/j.snb.2016.03.026_bib0060
  article-title: Tapered plastic optical fiber coated with graphene for uric acid detection
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2014.2302900
– volume: 187
  start-page: 426
  issue: 4
  year: 2013
  ident: 10.1016/j.snb.2016.03.026_bib0040
  article-title: Graphene based fiber optic surface plasmon resonance for bio-chemical sensor applications
  publication-title: Sens. Actuators B: Chem.
  doi: 10.1016/j.snb.2013.01.040
– volume: 306
  start-page: 666
  issue: 5696
  year: 2004
  ident: 10.1016/j.snb.2016.03.026_bib0005
  article-title: Electric field effect in atomically thin carbon films
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 221
  start-page: 1170
  year: 2015
  ident: 10.1016/j.snb.2016.03.026_bib0405
  article-title: Graphene–metal oxide nanohybrids for toxic gas sensor: a review
  publication-title: Sens. Actuators B: Chem.
  doi: 10.1016/j.snb.2015.07.070
– volume: 10
  start-page: 932
  issue: 25
  year: 2013
  ident: 10.1016/j.snb.2016.03.026_bib0435
  article-title: Fiber-optic Fabry–Perot acoustic sensor with multilayer graphene diaphragm
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2013.2256343
– volume: 152
  start-page: 1321
  issue: 15
  year: 2012
  ident: 10.1016/j.snb.2016.03.026_bib0220
  article-title: Thermal transport in graphene
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2012.04.022
– volume: 37
  start-page: 2493
  issue: 13
  year: 2012
  ident: 10.1016/j.snb.2016.03.026_bib0425
  article-title: High-sensitivity fiber-tip pressure sensor with graphene diaphragm
  publication-title: Opt. Lett.
  doi: 10.1364/OL.37.002493
– volume: 222
  start-page: 618
  year: 2016
  ident: 10.1016/j.snb.2016.03.026_bib0075
  article-title: Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide
  publication-title: Sens. Actuators B: Chem.
  doi: 10.1016/j.snb.2015.08.108
– volume: 46
  start-page: 14
  issue: 1
  year: 2012
  ident: 10.1016/j.snb.2016.03.026_bib0145
  article-title: Liquid exfoliation of defect-free graphene
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300009f
– volume: 7
  start-page: 1
  issue: 5
  year: 2015
  ident: 10.1016/j.snb.2016.03.026_bib0315
  article-title: A surface plasmon biosensor based on a d-shaped microstructured optical fiber with rectangular lattice
  publication-title: Photonics J. IEEE
  doi: 10.1109/JPHOT.2015.2488278
– volume: 5
  start-page: 84
  issue: 1
  year: 2015
  ident: 10.1016/j.snb.2016.03.026_bib0375
  article-title: Optimization study on graphene-coated microfiber Bragg grating structures for ammonia gas sensing
  publication-title: Photonic Sens.
  doi: 10.1007/s13320-014-0216-x
– volume: 42
  start-page: 1769
  issue: 1
  year: 2016
  ident: 10.1016/j.snb.2016.03.026_bib0130
  article-title: Uniform decoration of silver nanoparticle on exfoliated graphene oxide sheets and its ammonia gas detection
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2015.09.138
– volume: 42
  start-page: 453
  issue: 3
  year: 2010
  ident: 10.1016/j.snb.2016.03.026_bib0325
  article-title: Multi-step structure of side-polished fiber sensor to enhance SPR effect
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2009.09.008
– volume: 223
  start-page: 481
  year: 2016
  ident: 10.1016/j.snb.2016.03.026_bib0100
  article-title: Ultra sensitive NO2 gas detection using the reduced graphene oxide coated etched fiber Bragg gratings
  publication-title: Sens. Actuators B: Chem.
  doi: 10.1016/j.snb.2015.09.128
– volume: 195
  start-page: 409
  issue: 5
  year: 2014
  ident: 10.1016/j.snb.2016.03.026_bib0140
  article-title: Hydrogen sensor based on graphene/ZnO nanocomposite
  publication-title: Sens. Actuators B: Chem.
  doi: 10.1016/j.snb.2014.01.029
– volume: 32
  start-page: 480
  issue: 5
  year: 1996
  ident: 10.1016/j.snb.2016.03.026_bib0305
  article-title: Fibre-optic sensor based on surface plasmon resonance
  publication-title: Electron. Lett.
  doi: 10.1049/el:19960349
– volume: 15
  start-page: 1
  issue: 9
  year: 2015
  ident: 10.1016/j.snb.2016.03.026_bib0385
  article-title: Ultra-short near-infrared fiber-optic sensors for carbon dioxide detection
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2015.2438063
– volume: 194
  start-page: 142
  issue: 4
  year: 2014
  ident: 10.1016/j.snb.2016.03.026_bib0085
  article-title: All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide
  publication-title: Sens. Actuators B: Chem.
  doi: 10.1016/j.snb.2013.12.085
– year: 2015
  ident: 10.1016/j.snb.2016.03.026_bib0430
  article-title: All-fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector
  publication-title: International Conference on Optical Fibre Sensors (OFS24). International Society for Optics and Photonics
– volume: 10
  start-page: 1
  issue: 5
  year: 2015
  ident: 10.1016/j.snb.2016.03.026_bib0105
  article-title: Surface plasmon resonance-based fiber optic methane gas sensor utilizing graphene-carbon nanotubes-poly (methyl methacrylate) hybrid nanocomposite
  publication-title: Plasmonics
  doi: 10.1007/s11468-015-9914-5
– volume: 23
  start-page: 20971
  issue: 16
  year: 2015
  ident: 10.1016/j.snb.2016.03.026_bib0345
  article-title: Evanescently coupled optical fiber refractometer based a tilted fiber Bragg grating and a D-shaped fiber
  publication-title: Opt. Express
  doi: 10.1364/OE.23.020971
– volume: 22
  start-page: 1
  issue: 3
  year: 2015
  ident: 10.1016/j.snb.2016.03.026_bib0065
  article-title: Tapered optical fiber coated with graphene based nanomaterials for measurement of ethanol concentrations in water
  publication-title: Opt. Rev.
  doi: 10.1007/s10043-015-0075-8
– volume: 76
  start-page: 195
  year: 2016
  ident: 10.1016/j.snb.2016.03.026_bib0415
  article-title: Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2015.07.002
– volume: 143
  start-page: 92
  issue: 1
  year: 2007
  ident: 10.1016/j.snb.2016.03.026_bib0175
  article-title: Epitaxial graphene
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2007.04.023
– volume: 21
  start-page: 29818
  issue: 24
  year: 2013
  ident: 10.1016/j.snb.2016.03.026_bib0370
  article-title: Demonstration of complex refractive index of graphene waveguide by microfiber-based Mach–Zehnder interferometer
  publication-title: Opt. Express
  doi: 10.1364/OE.21.029818
– volume: 202
  start-page: 523
  year: 2014
  ident: 10.1016/j.snb.2016.03.026_bib0115
  article-title: Nanochemical fabrication of a graphene oxide-based nanohybrid for label-free optical sensing with fiber optics
  publication-title: Sens. Actuators B: Chem.
  doi: 10.1016/j.snb.2014.05.067
– volume: 5
  start-page: 10816
  issue: 14
  year: 2015
  ident: 10.1016/j.snb.2016.03.026_bib0125
  article-title: Effect of functional groups on dielectric: optical gas sensing properties of graphene oxide and reduced graphene oxide at room temperature
  publication-title: RSC Adv.
  doi: 10.1039/C4RA12766H
– volume: 100
  start-page: 021601
  issue: 2
  year: 2012
  ident: 10.1016/j.snb.2016.03.026_bib0185
  article-title: Monolayer graphene growth on Ni (111) by low temperature chemical vapor deposition
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3675481
– volume: 14
  start-page: 3563
  issue: 6
  year: 2014
  ident: 10.1016/j.snb.2016.03.026_bib0055
  article-title: Ultrasensitive flow sensing of a single cell using graphene-based optical sensors
  publication-title: Nano Lett.
  doi: 10.1021/nl5012036
– volume: 35
  start-page: 296
  issue: 04
  year: 2010
  ident: 10.1016/j.snb.2016.03.026_bib0165
  article-title: Epitaxial graphenes on silicon carbide
  publication-title: MRS Bull.
  doi: 10.1557/mrs2010.552
– volume: 27
  start-page: 798
  issue: 7
  year: 2015
  ident: 10.1016/j.snb.2016.03.026_bib0110
  article-title: Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing
  publication-title: Photonics Technol. Lett. IEEE
  doi: 10.1109/LPT.2015.2392795
– volume: 47
  start-page: 1018
  issue: 10
  year: 2009
  ident: 10.1016/j.snb.2016.03.026_bib0390
  article-title: Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2009.04.002
– volume: 2
  start-page: 908
  issue: 11
  year: 2012
  ident: 10.1016/j.snb.2016.03.026_bib0240
  article-title: Sensitive real-time monitoring of refractive indexes using a novel graphene-based optical sensor
  publication-title: Sci. Rep.
  doi: 10.1038/srep00908
– volume: 77
  start-page: 125416
  issue: 12
  year: 2008
  ident: 10.1016/j.snb.2016.03.026_bib0255
  article-title: Adsorption of H2O, NH3, CO, NO2 and NO on graphene: a first-principles study
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.125416
– volume: 81
  start-page: 109
  issue: 1
  year: 2007
  ident: 10.1016/j.snb.2016.03.026_bib0245
  article-title: The electronic properties of graphene
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.81.109
– volume: 43
  start-page: 1216
  issue: 6
  year: 2004
  ident: 10.1016/j.snb.2016.03.026_bib0310
  article-title: Optical-fiber surface-plasmon resonance sensor with multiple resonance peaks
  publication-title: Appl. Opt.
  doi: 10.1364/AO.43.001216
– volume: 205
  start-page: 186
  year: 2014
  ident: 10.1016/j.snb.2016.03.026_bib0350
  article-title: Investigation of the high sensitivity RI sensor based on SMS fiber structure
  publication-title: Sens. Actuators A: Phys.
  doi: 10.1016/j.sna.2013.10.023
– volume: 461
  start-page: 276
  year: 2008
  ident: 10.1016/j.snb.2016.03.026_bib0135
  article-title: Enhancement of CO detection in Al doped graphene
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2008.07.039
– volume: 173
  start-page: 1
  year: 2012
  ident: 10.1016/j.snb.2016.03.026_bib0420
  article-title: Recent developments on graphene and graphene oxide based solid state gas sensors
  publication-title: Sens. Actuators B: Chem.
  doi: 10.1016/j.snb.2012.07.092
– volume: 12
  start-page: 8
  issue: 1
  year: 2012
  ident: 10.1016/j.snb.2016.03.026_bib0290
  article-title: Intrinsic Fabry–Pérot cavity sensor based on etched multimode graded index fiber for strain and temperature measurement
  publication-title: Sens. J. IEEE
  doi: 10.1109/JSEN.2011.2107737
– volume: 218
  start-page: 160
  year: 2015
  ident: 10.1016/j.snb.2016.03.026_bib0410
  article-title: Recent advances in graphene based gas sensors
  publication-title: Sens. Actuators B: Chem.
  doi: 10.1016/j.snb.2015.04.062
– volume: 47
  start-page: 3242
  issue: 14
  year: 2009
  ident: 10.1016/j.snb.2016.03.026_bib0200
  article-title: Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation
  publication-title: Carbon
  doi: 10.1016/j.carbon.2009.07.040
– volume: 226
  start-page: 336
  issue: 24
  year: 2013
  ident: 10.1016/j.snb.2016.03.026_bib0355
  article-title: Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.04.070
– volume: 23
  start-page: 27494
  issue: 21
  year: 2015
  ident: 10.1016/j.snb.2016.03.026_bib0025
  article-title: Analyzing the temperature sensitivity of Fabry–Perot sensor using multilayer graphene diaphragm
  publication-title: Opt. Express
  doi: 10.1364/OE.23.027494
– volume: 107
  start-page: 053502
  issue: 5
  year: 2015
  ident: 10.1016/j.snb.2016.03.026_bib0440
  article-title: Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4928247
– volume: 25
  start-page: 932
  issue: 10
  year: 2013
  ident: 10.1016/j.snb.2016.03.026_bib0215
  article-title: Fiber-optic fabry-pérot acoustic sensor with multilayer graphene diaphragm
  publication-title: Photonics Technol. Lett. IEEE
  doi: 10.1109/LPT.2013.2256343
– ident: 10.1016/j.snb.2016.03.026_bib0280
– volume: 50
  start-page: 3682
  issue: 10
  year: 2012
  ident: 10.1016/j.snb.2016.03.026_bib0190
  article-title: The control of graphene double-layer formation in copper-catalyzed chemical vapor deposition
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.03.041
– volume: 27
  start-page: 2399
  issue: 22
  year: 2015
  ident: 10.1016/j.snb.2016.03.026_bib0070
  article-title: Graphene-based D-shaped polymer FBG for highly sensitive erythrocyte detection
  publication-title: IEEE Photonics Technol. Lett.
  doi: 10.1109/LPT.2015.2466614
– volume: 56
  start-page: 1178
  issue: 8
  year: 2011
  ident: 10.1016/j.snb.2016.03.026_bib0195
  article-title: Graphene based materials: past, present and future
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2011.03.003
– volume: 100
  issue: 20
  year: 2012
  ident: 10.1016/j.snb.2016.03.026_bib0365
  article-title: High sensitivity detection of NO2 and NH3 in air using chemical vapor deposition grown graphene
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4720074
SSID ssj0004360
Score 2.6190116
SecondaryResourceType review_article
Snippet Graphene as a novel material has laid a foundation for its applications in optical fiber sensors, due to its unique properties, especially the optical...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 324
SubjectTerms Actuators
Biological
Chemical sensors
Disturbances
Graphene
Optical fiber sensors
Optical fibers
Optical properties
Sensitivity
Sensors
Title Review on the graphene based optical fiber chemical and biological sensors
URI https://dx.doi.org/10.1016/j.snb.2016.03.026
https://www.proquest.com/docview/1808124431
Volume 231
WOSCitedRecordID wos000374330900037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3077
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004360
  issn: 0925-4005
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB7WrQ_6IF6xVmUEnwwpSeaS5LFKRftQhFbY-jLMLWopk6W7W_rif--ZS3aXXSwq-BKWIckOc76cOXMu30HoLalVzdrG5LLiLKedNHlrJM911WmuCS0sNaHZRH183Ewm7ZfR6NdQC3N1UTvXXF-30_8qahgDYfvS2b8Q9_KlMAC_QehwBbHD9Y8En6jyYxAgC4TUoM8yv12ZrJ-mmkWfKJLpdbaASMcUqyThbNunME8yXE_iUOR29UUnvkvPfvY-huzja9ac0MEBe9anbdEn_ISsgcnC5t_lavTbj36Rxrc82Gcydwm6yStR8mVOXHKVbZXLRJ9jBXgoihjGtlHjNjXxDrB6XSVXaWeISpXEKuu0P5NI77Sl-qMX4nx_5pTP2OOBu7baoNkOG_eJn4efBtiivn88uYN2Ko_YMdo5-Hw4OVoV1pJQZr6c9xAWDwmCG3_0O8NmY4sPdsvpQ_QgHTjwQQTKIzSy7jG6v0ZD-QQdRcjg3mGADB4ggwNkcIIMDpDBA2QwAAGvIIMTZJ6irx8PTz98ylOPjVyTls_zShWKM8WYUcTQxqpWmqbtwJDXujOl4UVX27LsbKkJIwpsG6oNnDELCV90xQx5hsaud_Y5wh31xE2sI7W0lNZWtlwzMKmrQtlGK7qLimGBhE4E9L4PyoUYMg3PBayp8GsqCiJgTXfRu-Uj08i-ctvNdFh1kczHaBYKgMhtj70ZJCRAtfp4mXS2X8xE6bvSgPlLyhf_9uo9dG_1bbxE4_nlwr5Cd_XV_Ofs8nUC2w3i_Z4L
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+on+the+graphene+based+optical+fiber+chemical+and+biological+sensors&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Zhao%2C+Yong&rft.au=Li%2C+Xue-gang&rft.au=Zhou%2C+Xue&rft.au=Zhang%2C+Ya-nan&rft.date=2016-08-01&rft.pub=Elsevier+B.V&rft.issn=0925-4005&rft.eissn=1873-3077&rft.volume=231&rft.spage=324&rft.epage=340&rft_id=info:doi/10.1016%2Fj.snb.2016.03.026&rft.externalDocID=S0925400516303203
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon