Review on the graphene based optical fiber chemical and biological sensors
Graphene as a novel material has laid a foundation for its applications in optical fiber sensors, due to its unique properties, especially the optical properties. On the other hand, optical fiber sensors have received world-wide attention due to their high sensitivity, small size, good anti-electrom...
Saved in:
| Published in: | Sensors and actuators. B, Chemical Vol. 231; pp. 324 - 340 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.08.2016
|
| Subjects: | |
| ISSN: | 0925-4005, 1873-3077 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Graphene as a novel material has laid a foundation for its applications in optical fiber sensors, due to its unique properties, especially the optical properties. On the other hand, optical fiber sensors have received world-wide attention due to their high sensitivity, small size, good anti-electromagnetism disturbance ability and other potential advantages. In this paper, the developments of graphene in the applications of optical fiber sensors were reviewed from four aspects. Firstly, the common preparation methods of graphene were introduced. Next, the optical properties of graphene have been concluded. And then, some typical optical fiber chemical and biological sensors based on graphene, such as temperature sensors, biological sensors and gas sensors, were reviewed. It was shown that graphene had a great potential in the optical fiber sensing technology. Furthermore, the deficiencies and challenges of the graphene in the applications of optical fiber sensors were analyzed. In a whole, the unique advantages of graphene have present their versatility and importance in the application fields of optical fiber sensors. |
|---|---|
| AbstractList | Graphene as a novel material has laid a foundation for its applications in optical fiber sensors, due to its unique properties, especially the optical properties. On the other hand, optical fiber sensors have received world-wide attention due to their high sensitivity, small size, good anti-electromagnetism disturbance ability and other potential advantages. In this paper, the developments of graphene in the applications of optical fiber sensors were reviewed from four aspects. Firstly, the common preparation methods of graphene were introduced. Next, the optical properties of graphene have been concluded. And then, some typical optical fiber chemical and biological sensors based on graphene, such as temperature sensors, biological sensors and gas sensors, were reviewed. It was shown that graphene had a great potential in the optical fiber sensing technology. Furthermore, the deficiencies and challenges of the graphene in the applications of optical fiber sensors were analyzed. In a whole, the unique advantages of graphene have present their versatility and importance in the application fields of optical fiber sensors. |
| Author | Zhao, Yong Li, Xue-gang Zhang, Ya-nan Zhou, Xue |
| Author_xml | – sequence: 1 givenname: Yong surname: Zhao fullname: Zhao, Yong email: zhaoyong@ise.neu.edu.cn, zhaoyong@tsinghua.org.cn organization: College of Information Science and Engineering, Northeastern University, Shenyang 110819, China – sequence: 2 givenname: Xue-gang surname: Li fullname: Li, Xue-gang organization: College of Information Science and Engineering, Northeastern University, Shenyang 110819, China – sequence: 3 givenname: Xue surname: Zhou fullname: Zhou, Xue organization: College of Information Science and Engineering, Northeastern University, Shenyang 110819, China – sequence: 4 givenname: Ya-nan surname: Zhang fullname: Zhang, Ya-nan organization: College of Information Science and Engineering, Northeastern University, Shenyang 110819, China |
| BookMark | eNp9kMtOwzAQRS1UJNrCB7DLkk3COI7zECtU8VQlJARry49J6yq1g52C-HvSlhULVjNXumekOTMycd4hIZcUMgq0vN5k0aksH9cMWAZ5eUKmtK5YyqCqJmQKTc7TAoCfkVmMGwAoWAlT8vyKnxa_Eu-SYY3JKsh-jQ4TJSOaxPeD1bJLWqswJHqN20OUziTK-s6vDjGiiz7Ec3Layi7ixe-ck_f7u7fFY7p8eXha3C5TzZpySHMFquSKc6OYKWpUjTR10wIvtG4NNSW0FVLaItWMMwVlVWhT8RqkkWXODZuTq-PdPviPHcZBbG3U2HXSod9FQWuoaV4UjI5Veqzq4GMM2Io-2K0M34KC2HsTGzF6E3tvApgYvY1M9YfRdpCD9W4I0nb_kjdHEsfvR6tBRG3RaTQ2oB6E8fYf-gfdzYps |
| CitedBy_id | crossref_primary_10_3390_s20072046 crossref_primary_10_1016_j_apsusc_2019_06_167 crossref_primary_10_1016_j_sna_2018_10_011 crossref_primary_10_1063_1_4971372 crossref_primary_10_3389_fphy_2020_00037 crossref_primary_10_3390_s17010155 crossref_primary_10_3390_coatings15091008 crossref_primary_10_1016_j_sna_2018_02_007 crossref_primary_10_1002_adfm_202202282 crossref_primary_10_3390_s22155748 crossref_primary_10_1016_j_carbon_2024_119533 crossref_primary_10_1016_j_snb_2018_09_118 crossref_primary_10_1016_j_mssp_2021_106247 crossref_primary_10_1109_JLT_2021_3071718 crossref_primary_10_1109_JLT_2021_3085350 crossref_primary_10_1016_j_sna_2017_12_028 crossref_primary_10_1364_AO_385324 crossref_primary_10_3390_s19112595 crossref_primary_10_1109_JLT_2020_3023456 crossref_primary_10_1016_j_ijleo_2018_11_103 crossref_primary_10_1109_JSEN_2019_2906010 crossref_primary_10_3390_s19102319 crossref_primary_10_1109_JLT_2019_2897426 crossref_primary_10_1016_j_snb_2018_04_087 crossref_primary_10_4028_www_scientific_net_JNanoR_53_37 crossref_primary_10_1016_j_microc_2024_111809 crossref_primary_10_1038_s41378_023_00530_2 crossref_primary_10_3390_molecules27082586 crossref_primary_10_1109_JSEN_2021_3094092 crossref_primary_10_35848_1347_4065_ade1df crossref_primary_10_1016_j_matdes_2018_07_043 crossref_primary_10_1016_j_jenvman_2019_109814 crossref_primary_10_1002_adom_202001913 crossref_primary_10_1016_j_sna_2018_03_044 crossref_primary_10_1109_LPT_2018_2845459 crossref_primary_10_1016_j_bios_2019_111563 crossref_primary_10_1016_j_apsusc_2017_11_046 crossref_primary_10_1016_j_snb_2018_02_123 crossref_primary_10_1016_j_snb_2021_130694 crossref_primary_10_1016_j_optlastec_2019_01_045 crossref_primary_10_3390_ma12091542 crossref_primary_10_1088_1361_665X_aaddba crossref_primary_10_1016_j_materresbull_2021_111551 crossref_primary_10_1088_1361_6463_ac4859 crossref_primary_10_3390_ijms20102461 crossref_primary_10_1016_j_measurement_2020_108451 crossref_primary_10_1016_j_yofte_2019_03_017 crossref_primary_10_1007_s13391_022_00384_2 crossref_primary_10_1016_j_yofte_2025_104252 crossref_primary_10_1016_j_yofte_2019_01_022 crossref_primary_10_1016_j_infrared_2021_103685 crossref_primary_10_1038_s41598_022_17616_y crossref_primary_10_1002_lpor_202200009 crossref_primary_10_1002_pssr_201900697 crossref_primary_10_1002_pep2_24184 crossref_primary_10_3390_nano9030422 crossref_primary_10_1002_smm2_1266 crossref_primary_10_1155_2019_5786105 crossref_primary_10_1016_j_sna_2018_07_034 crossref_primary_10_1080_2374068X_2018_1484998 crossref_primary_10_1016_j_snb_2017_07_032 crossref_primary_10_1016_j_sna_2021_113172 crossref_primary_10_1016_j_fmre_2025_08_003 crossref_primary_10_1016_j_surfin_2017_10_001 crossref_primary_10_1016_j_photonics_2018_06_012 crossref_primary_10_1007_s00604_025_07395_4 crossref_primary_10_1016_j_yofte_2020_102449 crossref_primary_10_1016_j_optlastec_2025_113379 crossref_primary_10_1002_ppsc_202100261 crossref_primary_10_1016_j_pnsc_2020_05_007 crossref_primary_10_3390_s22145443 crossref_primary_10_1109_JSEN_2023_3339764 crossref_primary_10_1016_j_snb_2017_07_146 crossref_primary_10_1016_j_apsusc_2018_01_094 crossref_primary_10_1088_1742_6596_1213_4_042076 crossref_primary_10_1016_j_foodcont_2022_108885 crossref_primary_10_1016_j_optcom_2021_127518 crossref_primary_10_1063_1_5060719 crossref_primary_10_1098_rsos_221135 crossref_primary_10_3390_s19224829 crossref_primary_10_1109_JSEN_2024_3402128 crossref_primary_10_3390_s18010058 crossref_primary_10_1021_acs_jpcc_5c02135 crossref_primary_10_3390_s22010064 crossref_primary_10_1007_s12596_025_02571_4 crossref_primary_10_1016_j_yofte_2018_04_006 crossref_primary_10_1016_j_compositesb_2023_111070 crossref_primary_10_1016_j_trac_2017_04_003 crossref_primary_10_1016_j_ccr_2018_08_001 crossref_primary_10_1016_j_apsusc_2020_145637 crossref_primary_10_1016_j_optcom_2018_07_080 crossref_primary_10_3390_mi13081257 crossref_primary_10_1109_JLT_2021_3103508 crossref_primary_10_1007_s00339_019_2872_6 crossref_primary_10_3788_gzxb20255405_0506002 crossref_primary_10_1038_s41377_021_00520_x crossref_primary_10_1016_j_matdes_2022_110971 crossref_primary_10_1088_1757_899X_382_5_052011 crossref_primary_10_3390_ijms23031736 crossref_primary_10_1007_s10854_022_07786_w crossref_primary_10_3390_pr13010209 crossref_primary_10_1016_j_apsusc_2020_145866 crossref_primary_10_1016_j_cej_2021_134066 crossref_primary_10_1002_adma_201805043 crossref_primary_10_1016_j_ijleo_2022_169653 crossref_primary_10_1364_AO_57_007924 crossref_primary_10_1007_s00604_019_3351_7 crossref_primary_10_1016_j_yofte_2018_11_012 crossref_primary_10_1002_adpr_202000211 crossref_primary_10_1002_ppsc_201800105 crossref_primary_10_1016_j_sna_2022_113894 crossref_primary_10_1016_j_sna_2023_114465 crossref_primary_10_3390_nano11020404 crossref_primary_10_1007_s10895_017_2126_y crossref_primary_10_1016_j_apsusc_2022_154806 crossref_primary_10_1088_2053_1591_abcabf crossref_primary_10_1088_2053_1583_ab559f crossref_primary_10_1016_j_nantod_2021_101143 crossref_primary_10_1109_JLT_2017_2756097 crossref_primary_10_3390_electronics12040830 crossref_primary_10_1016_j_ijleo_2019_163181 crossref_primary_10_1007_s10043_023_00834_8 crossref_primary_10_1016_j_yofte_2022_103046 crossref_primary_10_1002_admi_201800886 crossref_primary_10_1002_smll_202505017 crossref_primary_10_1016_j_aca_2019_05_031 crossref_primary_10_1016_j_surfin_2017_08_004 crossref_primary_10_1109_JPHOT_2021_3069396 crossref_primary_10_1016_j_sna_2020_111923 crossref_primary_10_1364_JOSAB_36_000108 crossref_primary_10_1016_j_synthmet_2021_116860 crossref_primary_10_1016_j_matpr_2023_08_178 crossref_primary_10_1088_1674_1056_abb65c crossref_primary_10_1016_j_susmat_2024_e00900 crossref_primary_10_1007_s10853_017_1694_1 crossref_primary_10_1002_adfm_201702891 crossref_primary_10_1016_j_snb_2016_11_119 crossref_primary_10_3390_s23084163 crossref_primary_10_3390_computers14080342 crossref_primary_10_1007_s11468_023_02092_5 crossref_primary_10_1039_D5RA01765C crossref_primary_10_1007_s10946_022_10072_z crossref_primary_10_1002_adom_202301028 crossref_primary_10_1080_10408347_2019_1653165 crossref_primary_10_1016_j_cplett_2017_05_030 crossref_primary_10_1016_j_optmat_2024_115259 crossref_primary_10_1016_j_cis_2020_102160 crossref_primary_10_3390_ijms21051608 crossref_primary_10_1002_adom_202201724 crossref_primary_10_3390_s20040989 crossref_primary_10_3390_ma17020333 crossref_primary_10_3390_mi13030348 crossref_primary_10_1016_j_sna_2018_07_024 crossref_primary_10_1109_LPT_2017_2786292 crossref_primary_10_1177_14613484211068962 crossref_primary_10_1109_JLT_2020_3007176 crossref_primary_10_1016_j_snb_2016_12_025 crossref_primary_10_1109_JSTQE_2023_3319581 crossref_primary_10_1002_app_49222 crossref_primary_10_1016_j_snb_2018_08_065 crossref_primary_10_1016_j_carbpol_2021_118385 crossref_primary_10_1007_s10895_023_03197_0 crossref_primary_10_1088_1361_6528_ac47d0 crossref_primary_10_1134_S0036023622602057 crossref_primary_10_1016_j_yofte_2022_103134 crossref_primary_10_3390_s19204395 crossref_primary_10_1007_s13320_024_0710_8 crossref_primary_10_1109_ACCESS_2019_2901517 crossref_primary_10_1016_j_carbon_2023_118597 crossref_primary_10_1016_j_jmgm_2019_01_007 crossref_primary_10_1103_PhysRevB_107_L081405 crossref_primary_10_1016_j_ymssp_2020_106700 crossref_primary_10_1016_j_yofte_2024_103770 crossref_primary_10_1016_j_commatsci_2018_01_006 crossref_primary_10_1039_D3NH00133D crossref_primary_10_3390_s18040941 crossref_primary_10_1002_lpor_202000526 crossref_primary_10_1016_j_measurement_2024_114391 crossref_primary_10_3390_app12020726 crossref_primary_10_1016_j_optlaseng_2020_106508 crossref_primary_10_1002_wer_1623 crossref_primary_10_1016_j_mseb_2019_114406 crossref_primary_10_1016_j_optlastec_2022_109047 crossref_primary_10_1063_5_0143776 crossref_primary_10_1002_adom_201801433 crossref_primary_10_1002_elan_201900048 crossref_primary_10_1016_j_apsusc_2016_12_221 crossref_primary_10_1016_j_optcom_2025_131489 crossref_primary_10_1016_j_physe_2021_114993 crossref_primary_10_1007_s13320_022_0652_y crossref_primary_10_1016_j_sna_2024_115363 crossref_primary_10_1139_tcsme_2024_0243 crossref_primary_10_1016_j_jallcom_2017_12_106 crossref_primary_10_1016_j_optlastec_2021_107473 crossref_primary_10_1088_1361_6463_aa7d12 crossref_primary_10_1016_j_yofte_2022_102983 crossref_primary_10_1016_j_optlastec_2020_106620 crossref_primary_10_1002_jssc_201601322 crossref_primary_10_1007_s00340_022_07967_9 crossref_primary_10_1016_j_apsusc_2016_12_138 crossref_primary_10_3390_jcs5070181 crossref_primary_10_1016_j_optlaseng_2018_12_013 crossref_primary_10_1016_j_measurement_2019_06_016 crossref_primary_10_1016_j_snr_2025_100326 crossref_primary_10_1016_j_sna_2019_111554 crossref_primary_10_1016_j_bios_2024_116232 crossref_primary_10_1016_j_cplett_2021_138895 crossref_primary_10_1007_s11676_020_01217_4 crossref_primary_10_1109_TNB_2019_2958891 crossref_primary_10_1016_j_ijleo_2021_167566 crossref_primary_10_1016_j_snb_2020_127921 crossref_primary_10_1088_1681_7575_aae757 crossref_primary_10_1007_s10965_020_02209_y crossref_primary_10_1016_j_optlastec_2024_112232 crossref_primary_10_1016_j_sna_2018_08_026 crossref_primary_10_1109_JSEN_2023_3323318 crossref_primary_10_1016_j_mtla_2020_100815 crossref_primary_10_1007_s42765_024_00450_4 crossref_primary_10_1016_j_optcom_2021_126966 crossref_primary_10_1016_j_apmt_2021_100953 crossref_primary_10_1109_LSENS_2018_2849750 |
| Cites_doi | 10.1109/JSEN.2014.2361174 10.1109/JLT.2008.2007507 10.1109/LPT.2014.2315233 10.1364/OL.39.001235 10.1002/adma.201501754 10.1364/OPTICA.2.000468 10.1016/j.snb.2014.03.008 10.1016/j.snb.2015.03.095 10.1038/srep00908 10.1063/1.3115029 10.1109/JSTQE.2013.2263117 10.1016/j.optcom.2014.12.086 10.1007/s11468-015-9912-7 10.1364/OE.22.028154 10.1109/JSEN.2011.2167608 10.1063/1.4776694 10.1016/j.carbon.2007.02.034 10.1021/nl801827v 10.1016/j.physe.2014.04.010 10.1364/OL.30.002218 10.1016/j.snb.2015.06.152 10.1364/OE.16.005764 10.1039/C1CS15078B 10.1021/nl2006005 10.1016/j.compscitech.2012.05.005 10.1088/1612-2011/11/3/035901 10.1126/science.1158877 10.1016/j.mssp.2014.02.047 10.1109/JSEN.2015.2442276 10.1021/nl902200b 10.1016/j.ssc.2009.01.036 10.1364/OE.22.023829 10.1109/JSEN.2014.2302900 10.1016/j.snb.2013.01.040 10.1126/science.1102896 10.1016/j.snb.2015.07.070 10.1109/LPT.2013.2256343 10.1016/j.ssc.2012.04.022 10.1364/OL.37.002493 10.1016/j.snb.2015.08.108 10.1021/ar300009f 10.1109/JPHOT.2015.2488278 10.1007/s13320-014-0216-x 10.1016/j.ceramint.2015.09.138 10.1016/j.optlastec.2009.09.008 10.1016/j.snb.2015.09.128 10.1016/j.snb.2014.01.029 10.1049/el:19960349 10.1109/JSEN.2015.2438063 10.1016/j.snb.2013.12.085 10.1007/s11468-015-9914-5 10.1364/OE.23.020971 10.1007/s10043-015-0075-8 10.1016/j.bios.2015.07.002 10.1016/j.ssc.2007.04.023 10.1364/OE.21.029818 10.1016/j.snb.2014.05.067 10.1039/C4RA12766H 10.1063/1.3675481 10.1021/nl5012036 10.1557/mrs2010.552 10.1109/LPT.2015.2392795 10.1016/j.optlaseng.2009.04.002 10.1103/PhysRevB.77.125416 10.1103/RevModPhys.81.109 10.1364/AO.43.001216 10.1016/j.sna.2013.10.023 10.1016/j.cplett.2008.07.039 10.1016/j.snb.2012.07.092 10.1109/JSEN.2011.2107737 10.1016/j.snb.2015.04.062 10.1016/j.carbon.2009.07.040 10.1016/j.cej.2013.04.070 10.1364/OE.23.027494 10.1063/1.4928247 10.1016/j.carbon.2012.03.041 10.1109/LPT.2015.2466614 10.1016/j.pmatsci.2011.03.003 10.1063/1.4720074 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier B.V. |
| Copyright_xml | – notice: 2016 Elsevier B.V. |
| DBID | AAYXX CITATION 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M |
| DOI | 10.1016/j.snb.2016.03.026 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-3077 |
| EndPage | 340 |
| ExternalDocumentID | 10_1016_j_snb_2016_03_026 S0925400516303203 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AJQLL AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HMU HVGLF HZ~ IHE J1W JJJVA KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SCB SCC SCH SDF SDG SDP SES SEW SPC SPCBC SSK SST SSZ T5K TN5 WUQ XFK YK3 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M |
| ID | FETCH-LOGICAL-c396t-2b0b65b55db3d48eb9ad89f054ccfd1d60f7e11fe1c353b0674cd7580ada625d3 |
| ISICitedReferencesCount | 282 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000374330900037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-4005 |
| IngestDate | Thu Oct 02 11:10:06 EDT 2025 Tue Nov 18 21:53:58 EST 2025 Sat Nov 29 04:18:16 EST 2025 Fri Feb 23 02:27:15 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | GCNT CNT FP FBG SiC GBG SA SC SPR GMHW Optical properties OSA HOPG GMMI FSR POF GO MMI eFBG DOS GMFBG SMF DXB CVD Optical fiber sensors Sensitivity Graphene GQDs PVA MFBG Rgo MZI PDMS |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c396t-2b0b65b55db3d48eb9ad89f054ccfd1d60f7e11fe1c353b0674cd7580ada625d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1808124431 |
| PQPubID | 23500 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_1808124431 crossref_primary_10_1016_j_snb_2016_03_026 crossref_citationtrail_10_1016_j_snb_2016_03_026 elsevier_sciencedirect_doi_10_1016_j_snb_2016_03_026 |
| PublicationCentury | 2000 |
| PublicationDate | August 2016 2016-08-00 20160801 |
| PublicationDateYYYYMMDD | 2016-08-01 |
| PublicationDate_xml | – month: 08 year: 2016 text: August 2016 |
| PublicationDecade | 2010 |
| PublicationTitle | Sensors and actuators. B, Chemical |
| PublicationYear | 2016 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Zhang, Liao, Jin (bib0015) 2014; 11 X. Cai, Z. Chen, J. Tang, J. Yu, Y. Xiao, J. Zhang, G. Liao, H. Lu, Graphene fiber-based optic temperature sensor for semiconductor device, comprises ordinary circular optical fiber section having specific length, fiber sensing area, sensing area portion and graphene oxide film[P]. CN103335741-A, 02 Oct 2013. Ma, Xuan, Ho (bib0435) 2013; 10 Lu, Men, Sooley (bib0335) 2009; 94 Li, Feng, Qiao (bib0020) 2015; 15 Wei, Han, Li (bib0295) 2008; 16 Xing, Liu, Deng (bib0240) 2012; 2 Song, Luo, Zhu (bib0415) 2016; 76 Kim, Peng, Banerji (bib0320) 2005; 30 Kavinkumar, Manivannan (bib0130) 2016; 42 Dash, Jha (bib0050) 2014; 26 Yavari, Castillo, Gullapalli (bib0365) 2012; 100 Chatterjee, Chatterjee, Ray (bib0405) 2015; 221 Mishra, Tripathi, Choudhary (bib0105) 2015; 10 De Heer, Berger, Wu (bib0175) 2007; 143 Sadeghi, Pettes, Shi (bib0220) 2012; 152 Tian, Yam (bib0340) 2009; 27 Anand, Singh, Singh (bib0140) 2014; 195 Y. Lin, A. Zhamu, B.Z. Jang, Highly conducting and transparent film and process for producing same, US20140235123[P]. 21, Aug, 2014. Zhao, Cai, Li (bib0350) 2014; 205 Stankovich, Dikin, Piner (bib0155) 2007; 45 Leenaerts, Partoens, Peeters (bib0255) 2008; 77 Fu, Zhang, Chen (bib0030) 2015; 15 Gao, Lu, Cheng (bib0075) 2016; 222 Hill, Vijayaragahvan, Novoselov (bib0400) 2011; 11 Yao, Wu, Chen (bib0080) 2012; 8421 Phuc, Hieu (bib0250) 2015; 344 Paliwal, Sharma, Tomar (bib0395) 2015; 216 Singh, Joung, Zhai (bib0195) 2011; 56 Zhang, Wu, Yao (bib0375) 2015; 5 Schroeder, Ecke, Willsch (bib0390) 2009; 47 Nemade, Waghuley (bib0270) 2014; 24 Huang, Qi, Boey (bib0160) 2012; 41 Basu, Bhattacharyya (bib0420) 2012; 173 Wu, Yao, Cheng (bib0360) 2014; 20 Benítez-Martínez, Valcárcel (bib0275) 2014; 197 Tian, Lu, Yang (bib0110) 2015; 27 Girei, Shabaneh, Hong (bib0065) 2015; 22 Yu, Baicheng, Anqi (bib0095) 2014; 39 Cai, Liu, Guo (bib0345) 2015; 23 Dash, Jha (bib0035) 2015; 10 Zangwill, Vvedensky (bib0170) 2011; 11 First, de Heer, Seyller (bib0165) 2010; 35 Calizo, Ghosh, Bao (bib0230) 2009; 149 Ao, Yang, Li (bib0135) 2008; 461 Yanzhen, Fan, Jun (bib0430) 2015 Homola, Slavik (bib0305) 1996; 32 Varghese, Lonkar, Singh (bib0410) 2015; 218 T.Y. Winarski, Graphene coated fiber optics, US20150125122[P]. 07, May, 2015. Wang, Wang, Park (bib0200) 2009; 47 Yao, Wu, Zhang (bib0090) 2014; 22 Peng, Shi, Zhou (bib0315) 2015; 7 Novoselov, Geim, Morozov (bib0005) 2004; 306 Tafulo, Jorge, Santos (bib0290) 2012; 12 Gan, Zhao, Wang (bib0225) 2015; 2 Green, Hersam (bib0150) 2009; 9 Reina, Jia, Ho (bib0180) 2008; 9 Chong, Kim, Ohodnicki (bib0385) 2015; 15 Ma, Jin, Ho (bib0425) 2012; 37 Kavinkumar, Sastikumar, Manivannan (bib0125) 2015; 5 Kalbac, Frank, Kavan (bib0190) 2012; 50 Yan, Zheng, Chen (bib0440) 2015; 107 Sansone, Malachovska, La Manna (bib0115) 2014; 202 Young, Kinloch, Gong (bib0210) 2012; 72 Zeng, Sreekanth, Shang (bib0045) 2015; 27 Li, Liu, Peng (bib0025) 2015; 23 Sridevi, Vasu, Bhat (bib0100) 2016; 223 Addou, Dahal, Sutter (bib0185) 2012; 100 Yao, Wu, Cheng (bib0085) 2014; 194 Yao, Wu, Webb (bib0070) 2015; 27 Rani, Dubey, Jindal (bib0260) 2014; 62 Yao, Wu, Wang (bib0370) 2013; 21 Coleman (bib0145) 2012; 46 Neto, Guinea, Peres (bib0245) 2007; 81 Woo-Hu, Yu-Cheng, Jiu-Kai (bib0325) 2010; 42 Geim (bib0010) 2009; 324 Xing, Meng, Zhang (bib0055) 2014; 14 Ma, Xuan, Ho (bib0215) 2013; 25 Kim, Hwang, Dugasani (bib0040) 2013; 187 T.Y. Winarski, T. Winarski, Nanotube fiber optic cable, WO2014042704[P]. 20, Mar, 2014. Ye, Wang, Liu (bib0235) 2013; 102 Wang, Sun, Ang (bib0355) 2013; 226 Dash, Jha (bib0265) 2014; 26 Yao, Wu, Zhang (bib0380) 2014; 22 Batumalay, Harun, Ahmad (bib0060) 2014; 14 Xing, Liu, Deng (bib0330) 2012; 2 Nayak, Parhi, Jha (bib0120) 2015; 221 Monzón-Hernández, Villatoro, Talavera (bib0310) 2004; 43 Monzón-Hernández (10.1016/j.snb.2016.03.026_bib0310) 2004; 43 Dash (10.1016/j.snb.2016.03.026_bib0035) 2015; 10 Yao (10.1016/j.snb.2016.03.026_bib0380) 2014; 22 Chong (10.1016/j.snb.2016.03.026_bib0385) 2015; 15 Hill (10.1016/j.snb.2016.03.026_bib0400) 2011; 11 Nayak (10.1016/j.snb.2016.03.026_bib0120) 2015; 221 Ao (10.1016/j.snb.2016.03.026_bib0135) 2008; 461 Ma (10.1016/j.snb.2016.03.026_bib0435) 2013; 10 Xing (10.1016/j.snb.2016.03.026_bib0240) 2012; 2 Li (10.1016/j.snb.2016.03.026_bib0020) 2015; 15 Paliwal (10.1016/j.snb.2016.03.026_bib0395) 2015; 216 Yao (10.1016/j.snb.2016.03.026_bib0085) 2014; 194 Mishra (10.1016/j.snb.2016.03.026_bib0105) 2015; 10 Yavari (10.1016/j.snb.2016.03.026_bib0365) 2012; 100 Kavinkumar (10.1016/j.snb.2016.03.026_bib0125) 2015; 5 Homola (10.1016/j.snb.2016.03.026_bib0305) 1996; 32 Peng (10.1016/j.snb.2016.03.026_bib0315) 2015; 7 Calizo (10.1016/j.snb.2016.03.026_bib0230) 2009; 149 10.1016/j.snb.2016.03.026_bib0300 Tian (10.1016/j.snb.2016.03.026_bib0340) 2009; 27 Benítez-Martínez (10.1016/j.snb.2016.03.026_bib0275) 2014; 197 Zhao (10.1016/j.snb.2016.03.026_bib0350) 2014; 205 Kalbac (10.1016/j.snb.2016.03.026_bib0190) 2012; 50 Zeng (10.1016/j.snb.2016.03.026_bib0045) 2015; 27 Schroeder (10.1016/j.snb.2016.03.026_bib0390) 2009; 47 Li (10.1016/j.snb.2016.03.026_bib0025) 2015; 23 Stankovich (10.1016/j.snb.2016.03.026_bib0155) 2007; 45 Tafulo (10.1016/j.snb.2016.03.026_bib0290) 2012; 12 Gao (10.1016/j.snb.2016.03.026_bib0075) 2016; 222 Ma (10.1016/j.snb.2016.03.026_bib0425) 2012; 37 Coleman (10.1016/j.snb.2016.03.026_bib0145) 2012; 46 Leenaerts (10.1016/j.snb.2016.03.026_bib0255) 2008; 77 Singh (10.1016/j.snb.2016.03.026_bib0195) 2011; 56 Sridevi (10.1016/j.snb.2016.03.026_bib0100) 2016; 223 Tian (10.1016/j.snb.2016.03.026_bib0110) 2015; 27 Yanzhen (10.1016/j.snb.2016.03.026_bib0430) 2015 Neto (10.1016/j.snb.2016.03.026_bib0245) 2007; 81 Zhang (10.1016/j.snb.2016.03.026_bib0375) 2015; 5 Girei (10.1016/j.snb.2016.03.026_bib0065) 2015; 22 Yu (10.1016/j.snb.2016.03.026_bib0095) 2014; 39 Wu (10.1016/j.snb.2016.03.026_bib0360) 2014; 20 Wang (10.1016/j.snb.2016.03.026_bib0200) 2009; 47 Dash (10.1016/j.snb.2016.03.026_bib0050) 2014; 26 10.1016/j.snb.2016.03.026_bib0205 Basu (10.1016/j.snb.2016.03.026_bib0420) 2012; 173 Yan (10.1016/j.snb.2016.03.026_bib0440) 2015; 107 Kavinkumar (10.1016/j.snb.2016.03.026_bib0130) 2016; 42 De Heer (10.1016/j.snb.2016.03.026_bib0175) 2007; 143 Dash (10.1016/j.snb.2016.03.026_bib0265) 2014; 26 Zhang (10.1016/j.snb.2016.03.026_bib0015) 2014; 11 Zangwill (10.1016/j.snb.2016.03.026_bib0170) 2011; 11 Gan (10.1016/j.snb.2016.03.026_bib0225) 2015; 2 Wang (10.1016/j.snb.2016.03.026_bib0355) 2013; 226 Kim (10.1016/j.snb.2016.03.026_bib0040) 2013; 187 Anand (10.1016/j.snb.2016.03.026_bib0140) 2014; 195 Addou (10.1016/j.snb.2016.03.026_bib0185) 2012; 100 Nemade (10.1016/j.snb.2016.03.026_bib0270) 2014; 24 Wei (10.1016/j.snb.2016.03.026_bib0295) 2008; 16 Varghese (10.1016/j.snb.2016.03.026_bib0410) 2015; 218 10.1016/j.snb.2016.03.026_bib0280 Rani (10.1016/j.snb.2016.03.026_bib0260) 2014; 62 Yao (10.1016/j.snb.2016.03.026_bib0090) 2014; 22 Geim (10.1016/j.snb.2016.03.026_bib0010) 2009; 324 Yao (10.1016/j.snb.2016.03.026_bib0080) 2012; 8421 10.1016/j.snb.2016.03.026_bib0285 Yao (10.1016/j.snb.2016.03.026_bib0070) 2015; 27 Batumalay (10.1016/j.snb.2016.03.026_bib0060) 2014; 14 Young (10.1016/j.snb.2016.03.026_bib0210) 2012; 72 Lu (10.1016/j.snb.2016.03.026_bib0335) 2009; 94 Green (10.1016/j.snb.2016.03.026_bib0150) 2009; 9 Yao (10.1016/j.snb.2016.03.026_bib0370) 2013; 21 Sansone (10.1016/j.snb.2016.03.026_bib0115) 2014; 202 Cai (10.1016/j.snb.2016.03.026_bib0345) 2015; 23 Xing (10.1016/j.snb.2016.03.026_bib0055) 2014; 14 Ma (10.1016/j.snb.2016.03.026_bib0215) 2013; 25 Fu (10.1016/j.snb.2016.03.026_bib0030) 2015; 15 Sadeghi (10.1016/j.snb.2016.03.026_bib0220) 2012; 152 Novoselov (10.1016/j.snb.2016.03.026_bib0005) 2004; 306 Woo-Hu (10.1016/j.snb.2016.03.026_bib0325) 2010; 42 Ye (10.1016/j.snb.2016.03.026_bib0235) 2013; 102 Huang (10.1016/j.snb.2016.03.026_bib0160) 2012; 41 Chatterjee (10.1016/j.snb.2016.03.026_bib0405) 2015; 221 Phuc (10.1016/j.snb.2016.03.026_bib0250) 2015; 344 First (10.1016/j.snb.2016.03.026_bib0165) 2010; 35 Reina (10.1016/j.snb.2016.03.026_bib0180) 2008; 9 Xing (10.1016/j.snb.2016.03.026_bib0330) 2012; 2 Song (10.1016/j.snb.2016.03.026_bib0415) 2016; 76 Kim (10.1016/j.snb.2016.03.026_bib0320) 2005; 30 |
| References_xml | – volume: 39 start-page: 1235 year: 2014 end-page: 1237 ident: bib0095 article-title: Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing publication-title: Opt. Lett. – reference: X. Cai, Z. Chen, J. Tang, J. Yu, Y. Xiao, J. Zhang, G. Liao, H. Lu, Graphene fiber-based optic temperature sensor for semiconductor device, comprises ordinary circular optical fiber section having specific length, fiber sensing area, sensing area portion and graphene oxide film[P]. CN103335741-A, 02 Oct 2013. – year: 2015 ident: bib0430 article-title: All-fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector publication-title: International Conference on Optical Fibre Sensors (OFS24). International Society for Optics and Photonics – volume: 223 start-page: 481 year: 2016 end-page: 486 ident: bib0100 article-title: Ultra sensitive NO publication-title: Sens. Actuators B: Chem. – volume: 62 start-page: 28 year: 2014 end-page: 35 ident: bib0260 article-title: DFT study of optical properties of pure and doped graphene publication-title: Physica E – volume: 23 start-page: 20971 year: 2015 end-page: 20976 ident: bib0345 article-title: Evanescently coupled optical fiber refractometer based a tilted fiber Bragg grating and a D-shaped fiber publication-title: Opt. Express – volume: 2 start-page: 468 year: 2015 end-page: 471 ident: bib0225 article-title: Graphene-assisted all-fiber phase shifter and switching publication-title: Optica – volume: 221 start-page: 835 year: 2015 end-page: 841 ident: bib0120 article-title: Graphene oxide encapsulated gold nanoparticle based stable fibre optic sucrose sensor publication-title: Sens. Actuators B: Chem. – volume: 43 start-page: 1216 year: 2004 end-page: 1220 ident: bib0310 article-title: Optical-fiber surface-plasmon resonance sensor with multiple resonance peaks publication-title: Appl. Opt. – volume: 27 start-page: 2399 year: 2015 end-page: 2402 ident: bib0070 article-title: Graphene-based D-shaped polymer FBG for highly sensitive erythrocyte detection publication-title: IEEE Photonics Technol. Lett. – volume: 152 start-page: 1321 year: 2012 end-page: 1330 ident: bib0220 article-title: Thermal transport in graphene publication-title: Solid State Commun. – volume: 23 start-page: 27494 year: 2015 end-page: 27502 ident: bib0025 article-title: Analyzing the temperature sensitivity of Fabry–Perot sensor using multilayer graphene diaphragm publication-title: Opt. Express – volume: 187 start-page: 426 year: 2013 end-page: 433 ident: bib0040 article-title: Graphene based fiber optic surface plasmon resonance for bio-chemical sensor applications publication-title: Sens. Actuators B: Chem. – volume: 12 start-page: 8 year: 2012 end-page: 12 ident: bib0290 article-title: Intrinsic Fabry–Pérot cavity sensor based on etched multimode graded index fiber for strain and temperature measurement publication-title: Sens. J. IEEE – volume: 149 start-page: 1132 year: 2009 end-page: 1135 ident: bib0230 article-title: Raman nanometrology of graphene: temperature and substrate effects publication-title: Solid State Commun. – volume: 14 start-page: 1704 year: 2014 end-page: 1709 ident: bib0060 article-title: Tapered plastic optical fiber coated with graphene for uric acid detection publication-title: IEEE Sens. J. – volume: 202 start-page: 523 year: 2014 end-page: 526 ident: bib0115 article-title: Nanochemical fabrication of a graphene oxide-based nanohybrid for label-free optical sensing with fiber optics publication-title: Sens. Actuators B: Chem. – volume: 15 start-page: 505 year: 2015 end-page: 509 ident: bib0020 article-title: Ultrahigh sensitive temperature sensor based on Fabry–Pérot interference assisted by a graphene diaphragm publication-title: IEEE Sens. J. – volume: 30 start-page: 2218 year: 2005 end-page: 2220 ident: bib0320 article-title: Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases publication-title: Opt. Lett. – volume: 7 start-page: 1 year: 2015 end-page: 9 ident: bib0315 article-title: A surface plasmon biosensor based on a d-shaped microstructured optical fiber with rectangular lattice publication-title: Photonics J. IEEE – volume: 197 start-page: 350 year: 2014 end-page: 357 ident: bib0275 article-title: Graphene quantum dots as sensor for phenols in olive oil publication-title: Sens. Actuators B: Chem. – volume: 173 start-page: 1 year: 2012 end-page: 21 ident: bib0420 article-title: Recent developments on graphene and graphene oxide based solid state gas sensors publication-title: Sens. Actuators B: Chem. – volume: 306 start-page: 666 year: 2004 end-page: 669 ident: bib0005 article-title: Electric field effect in atomically thin carbon films publication-title: Science – volume: 11 start-page: 2092 year: 2011 end-page: 2095 ident: bib0170 article-title: Novel growth mechanism of epitaxial graphene on metals publication-title: Nano Lett. – volume: 9 start-page: 4031 year: 2009 end-page: 4036 ident: bib0150 article-title: Solution phase production of graphene with controlled thickness via density differentiation publication-title: Nano Lett. – volume: 77 start-page: 125416 year: 2008 ident: bib0255 article-title: Adsorption of H publication-title: Phys. Rev. B – volume: 205 start-page: 186 year: 2014 end-page: 190 ident: bib0350 article-title: Investigation of the high sensitivity RI sensor based on SMS fiber structure publication-title: Sens. Actuators A: Phys. – volume: 26 start-page: 1092 year: 2014 end-page: 1095 ident: bib0050 article-title: Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance publication-title: Photonics Technol. Lett. IEEE – volume: 2 start-page: 908 year: 2012 ident: bib0330 article-title: Sensitive real-time monitoring of refractive indexes using a novel graphene-based optical sensor publication-title: Sci. Rep. – volume: 47 start-page: 3242 year: 2009 end-page: 3246 ident: bib0200 article-title: Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation publication-title: Carbon – volume: 10 start-page: 932 year: 2013 end-page: 935 ident: bib0435 article-title: Fiber-optic Fabry–Perot acoustic sensor with multilayer graphene diaphragm publication-title: IEEE Photonics Technol. Lett. – volume: 11 start-page: 035901 year: 2014 ident: bib0015 article-title: All-fiber-optic temperature sensor based on reduced graphene oxide publication-title: Laser Phys. Lett. – volume: 195 start-page: 409 year: 2014 end-page: 415 ident: bib0140 article-title: Hydrogen sensor based on graphene/ZnO nanocomposite publication-title: Sens. Actuators B: Chem. – volume: 8421 year: 2012 ident: bib0080 article-title: Graphene-based microfiber gas sensor publication-title: Proc. SPIE – volume: 46 start-page: 14 year: 2012 end-page: 22 ident: bib0145 article-title: Liquid exfoliation of defect-free graphene publication-title: Acc. Chem. Res. – volume: 41 start-page: 666 year: 2012 end-page: 686 ident: bib0160 article-title: Graphene-based composites publication-title: Chem. Soc. Rev. – volume: 32 start-page: 480 year: 1996 end-page: 482 ident: bib0305 article-title: Fibre-optic sensor based on surface plasmon resonance publication-title: Electron. Lett. – volume: 50 start-page: 3682 year: 2012 end-page: 3687 ident: bib0190 article-title: The control of graphene double-layer formation in copper-catalyzed chemical vapor deposition publication-title: Carbon – volume: 76 start-page: 195 year: 2016 end-page: 212 ident: bib0415 article-title: Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials publication-title: Biosens. Bioelectron. – volume: 107 start-page: 053502 year: 2015 ident: bib0440 article-title: Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator publication-title: Appl. Phys. Lett. – volume: 94 year: 2009 ident: bib0335 article-title: Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature publication-title: Appl. Phys. Lett. – volume: 221 start-page: 1170 year: 2015 end-page: 1181 ident: bib0405 article-title: Graphene–metal oxide nanohybrids for toxic gas sensor: a review publication-title: Sens. Actuators B: Chem. – volume: 194 start-page: 142 year: 2014 end-page: 148 ident: bib0085 article-title: All-optical Mach–Zehnder interferometric NH publication-title: Sens. Actuators B: Chem. – volume: 37 start-page: 2493 year: 2012 end-page: 2495 ident: bib0425 article-title: High-sensitivity fiber-tip pressure sensor with graphene diaphragm publication-title: Opt. Lett. – volume: 5 start-page: 10816 year: 2015 end-page: 10825 ident: bib0125 article-title: Effect of functional groups on dielectric: optical gas sensing properties of graphene oxide and reduced graphene oxide at room temperature publication-title: RSC Adv. – volume: 216 start-page: 497 year: 2015 end-page: 503 ident: bib0395 article-title: Room temperature detection of NO publication-title: Sens. Actuators B: Chem. – volume: 100 start-page: 021601 year: 2012 ident: bib0185 article-title: Monolayer graphene growth on Ni (111) by low temperature chemical vapor deposition publication-title: Appl. Phys. Lett. – volume: 5 start-page: 84 year: 2015 end-page: 90 ident: bib0375 article-title: Optimization study on graphene-coated microfiber Bragg grating structures for ammonia gas sensing publication-title: Photonic Sens. – volume: 22 year: 2014 ident: bib0090 article-title: Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing publication-title: Opt. Express – volume: 10 start-page: 1123 year: 2015 end-page: 1131 ident: bib0035 article-title: On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance publication-title: Plasmonics – volume: 27 start-page: 798 year: 2015 end-page: 801 ident: bib0110 article-title: Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing publication-title: Photonics Technol. Lett. IEEE – volume: 42 start-page: 1769 year: 2016 end-page: 1776 ident: bib0130 article-title: Uniform decoration of silver nanoparticle on exfoliated graphene oxide sheets and its ammonia gas detection publication-title: Ceram. Int. – volume: 461 start-page: 276 year: 2008 end-page: 279 ident: bib0135 article-title: Enhancement of CO detection in Al doped graphene publication-title: Chem. Phys. Lett. – volume: 226 start-page: 336 year: 2013 end-page: 347 ident: bib0355 article-title: Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials publication-title: Chem. Eng. J. – volume: 27 start-page: 2296 year: 2009 end-page: 2306 ident: bib0340 article-title: In-line single-mode optical fiber interferometric refractive index sensors publication-title: J. Lightwave Technol. – volume: 218 start-page: 160 year: 2015 end-page: 183 ident: bib0410 article-title: Recent advances in graphene based gas sensors publication-title: Sens. Actuators B: Chem. – volume: 21 start-page: 29818 year: 2013 end-page: 29826 ident: bib0370 article-title: Demonstration of complex refractive index of graphene waveguide by microfiber-based Mach–Zehnder interferometer publication-title: Opt. Express – volume: 15 start-page: 1 year: 2015 ident: bib0385 article-title: Ultra-short near-infrared fiber-optic sensors for carbon dioxide detection publication-title: IEEE Sens. J. – volume: 35 start-page: 296 year: 2010 end-page: 305 ident: bib0165 article-title: Epitaxial graphenes on silicon carbide publication-title: MRS Bull. – volume: 143 start-page: 92 year: 2007 end-page: 100 ident: bib0175 article-title: Epitaxial graphene publication-title: Solid State Commun. – volume: 2 start-page: 908 year: 2012 end-page: 912 ident: bib0240 article-title: Sensitive real-time monitoring of refractive indexes using a novel graphene-based optical sensor publication-title: Sci. Rep. – volume: 56 start-page: 1178 year: 2011 end-page: 1271 ident: bib0195 article-title: Graphene based materials: past, present and future publication-title: Prog. Mater. Sci. – volume: 24 start-page: 126 year: 2014 end-page: 131 ident: bib0270 article-title: In situ synthesis of graphene/SnO2 quantum dots composites for chemiresistive gas sensing publication-title: Mater. Sci. Semicond. Process. – volume: 15 start-page: 5478 year: 2015 end-page: 5482 ident: bib0030 article-title: Graphene enhances the sensitivity of fiber-optic surface plasmon resonance biosensor publication-title: Sens. J. IEEE – volume: 10 start-page: 1 year: 2015 end-page: 11 ident: bib0105 article-title: Surface plasmon resonance-based fiber optic methane gas sensor utilizing graphene-carbon nanotubes-poly (methyl methacrylate) hybrid nanocomposite publication-title: Plasmonics – volume: 72 start-page: 1459 year: 2012 end-page: 1476 ident: bib0210 article-title: The mechanics of graphene nanocomposites: a review publication-title: Compos. Sci. Technol. – volume: 81 start-page: 109 year: 2007 end-page: 162 ident: bib0245 article-title: The electronic properties of graphene publication-title: Rev. Mod. Phys. – volume: 42 start-page: 453 year: 2010 end-page: 456 ident: bib0325 article-title: Multi-step structure of side-polished fiber sensor to enhance SPR effect publication-title: Opt. Laser Technol. – volume: 102 year: 2013 ident: bib0235 article-title: Polarization-dependent optical absorption of graphene under total internal reflection publication-title: Appl. Phys. Lett. – volume: 27 start-page: 6163 year: 2015 end-page: 6169 ident: bib0045 article-title: Graphene–gold metasurface architectures for ultrasensitive plasmonic biosensing publication-title: Adv. Mater. – reference: T.Y. Winarski, Graphene coated fiber optics, US20150125122[P]. 07, May, 2015. – volume: 25 start-page: 932 year: 2013 end-page: 935 ident: bib0215 article-title: Fiber-optic fabry-pérot acoustic sensor with multilayer graphene diaphragm publication-title: Photonics Technol. Lett. IEEE – reference: T.Y. Winarski, T. Winarski, Nanotube fiber optic cable, WO2014042704[P]. 20, Mar, 2014. – volume: 26 start-page: 1092 year: 2014 end-page: 1095 ident: bib0265 article-title: Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance publication-title: IEEE Photonics Technol. Lett. – volume: 20 start-page: 49 year: 2014 end-page: 54 ident: bib0360 article-title: Hybrid graphene-microfiber waveguide for chemical gas sensing publication-title: IEEE J. Sel. Top. Quantum Electron. – volume: 11 start-page: 3161 year: 2011 end-page: 3170 ident: bib0400 article-title: Graphene sensors publication-title: IEEE Sens. J. – volume: 9 start-page: 30 year: 2008 end-page: 35 ident: bib0180 article-title: Large area: few-layer graphene films on arbitrary substrates by chemical vapor deposition publication-title: Nano Lett. – volume: 47 start-page: 1018 year: 2009 end-page: 1022 ident: bib0390 article-title: Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer publication-title: Opt. Lasers Eng. – volume: 16 start-page: 5764 year: 2008 end-page: 5769 ident: bib0295 article-title: Temperature-insensitive miniaturized fiber inline Fabry–Perot interferometer for highly sensitive refractive index measurement publication-title: Opt. Express – volume: 14 start-page: 3563 year: 2014 end-page: 3569 ident: bib0055 article-title: Ultrasensitive flow sensing of a single cell using graphene-based optical sensors publication-title: Nano Lett. – volume: 22 start-page: 23829 year: 2014 end-page: 23835 ident: bib0380 article-title: Graphene Bragg gratings on microfiber publication-title: Opt. Express – volume: 45 start-page: 1558 year: 2007 end-page: 1565 ident: bib0155 article-title: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide publication-title: Carbon – reference: Y. Lin, A. Zhamu, B.Z. Jang, Highly conducting and transparent film and process for producing same, US20140235123[P]. 21, Aug, 2014. – volume: 324 start-page: 1530 year: 2009 end-page: 1534 ident: bib0010 article-title: Graphene: status and prospects publication-title: Science – volume: 22 start-page: 1 year: 2015 end-page: 8 ident: bib0065 article-title: Tapered optical fiber coated with graphene based nanomaterials for measurement of ethanol concentrations in water publication-title: Opt. Rev. – volume: 222 start-page: 618 year: 2016 end-page: 624 ident: bib0075 article-title: Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide publication-title: Sens. Actuators B: Chem. – volume: 100 year: 2012 ident: bib0365 article-title: High sensitivity detection of NO publication-title: Appl. Phys. Lett. – volume: 344 start-page: 12 year: 2015 end-page: 16 ident: bib0250 article-title: Nonlinear optical absorption in graphene via two-photon absorption process publication-title: Opt. Commun. – ident: 10.1016/j.snb.2016.03.026_bib0285 – volume: 15 start-page: 505 issue: 1 year: 2015 ident: 10.1016/j.snb.2016.03.026_bib0020 article-title: Ultrahigh sensitive temperature sensor based on Fabry–Pérot interference assisted by a graphene diaphragm publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2014.2361174 – volume: 27 start-page: 2296 issue: 13 year: 2009 ident: 10.1016/j.snb.2016.03.026_bib0340 article-title: In-line single-mode optical fiber interferometric refractive index sensors publication-title: J. Lightwave Technol. doi: 10.1109/JLT.2008.2007507 – volume: 26 start-page: 1092 issue: 11 year: 2014 ident: 10.1016/j.snb.2016.03.026_bib0050 article-title: Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance publication-title: Photonics Technol. Lett. IEEE doi: 10.1109/LPT.2014.2315233 – volume: 39 start-page: 1235 issue: 5 year: 2014 ident: 10.1016/j.snb.2016.03.026_bib0095 article-title: Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing publication-title: Opt. Lett. doi: 10.1364/OL.39.001235 – ident: 10.1016/j.snb.2016.03.026_bib0300 – volume: 27 start-page: 6163 issue: 40 year: 2015 ident: 10.1016/j.snb.2016.03.026_bib0045 article-title: Graphene–gold metasurface architectures for ultrasensitive plasmonic biosensing publication-title: Adv. Mater. doi: 10.1002/adma.201501754 – volume: 26 start-page: 1092 issue: 11 year: 2014 ident: 10.1016/j.snb.2016.03.026_bib0265 article-title: Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2014.2315233 – volume: 2 start-page: 468 issue: 5 year: 2015 ident: 10.1016/j.snb.2016.03.026_bib0225 article-title: Graphene-assisted all-fiber phase shifter and switching publication-title: Optica doi: 10.1364/OPTICA.2.000468 – volume: 197 start-page: 350 year: 2014 ident: 10.1016/j.snb.2016.03.026_bib0275 article-title: Graphene quantum dots as sensor for phenols in olive oil publication-title: Sens. Actuators B: Chem. doi: 10.1016/j.snb.2014.03.008 – volume: 216 start-page: 497 year: 2015 ident: 10.1016/j.snb.2016.03.026_bib0395 article-title: Room temperature detection of NO2 gas using optical sensor based on Surface Plasmon Resonance technique publication-title: Sens. Actuators B: Chem. doi: 10.1016/j.snb.2015.03.095 – volume: 2 start-page: 908 year: 2012 ident: 10.1016/j.snb.2016.03.026_bib0330 article-title: Sensitive real-time monitoring of refractive indexes using a novel graphene-based optical sensor publication-title: Sci. Rep. doi: 10.1038/srep00908 – volume: 94 issue: 13 year: 2009 ident: 10.1016/j.snb.2016.03.026_bib0335 article-title: Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature publication-title: Appl. Phys. Lett. doi: 10.1063/1.3115029 – volume: 20 start-page: 49 issue: 1 year: 2014 ident: 10.1016/j.snb.2016.03.026_bib0360 article-title: Hybrid graphene-microfiber waveguide for chemical gas sensing publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2013.2263117 – volume: 344 start-page: 12 year: 2015 ident: 10.1016/j.snb.2016.03.026_bib0250 article-title: Nonlinear optical absorption in graphene via two-photon absorption process publication-title: Opt. Commun. doi: 10.1016/j.optcom.2014.12.086 – volume: 10 start-page: 1123 issue: 5 year: 2015 ident: 10.1016/j.snb.2016.03.026_bib0035 article-title: On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance publication-title: Plasmonics doi: 10.1007/s11468-015-9912-7 – volume: 22 issue: 23 year: 2014 ident: 10.1016/j.snb.2016.03.026_bib0090 article-title: Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing publication-title: Opt. Express doi: 10.1364/OE.22.028154 – volume: 11 start-page: 3161 issue: 12 year: 2011 ident: 10.1016/j.snb.2016.03.026_bib0400 article-title: Graphene sensors publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2011.2167608 – volume: 102 issue: 2 year: 2013 ident: 10.1016/j.snb.2016.03.026_bib0235 article-title: Polarization-dependent optical absorption of graphene under total internal reflection publication-title: Appl. Phys. Lett. doi: 10.1063/1.4776694 – ident: 10.1016/j.snb.2016.03.026_bib0205 – volume: 45 start-page: 1558 issue: 7 year: 2007 ident: 10.1016/j.snb.2016.03.026_bib0155 article-title: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide publication-title: Carbon doi: 10.1016/j.carbon.2007.02.034 – volume: 9 start-page: 30 issue: 1 year: 2008 ident: 10.1016/j.snb.2016.03.026_bib0180 article-title: Large area: few-layer graphene films on arbitrary substrates by chemical vapor deposition publication-title: Nano Lett. doi: 10.1021/nl801827v – volume: 62 start-page: 28 year: 2014 ident: 10.1016/j.snb.2016.03.026_bib0260 article-title: DFT study of optical properties of pure and doped graphene publication-title: Physica E doi: 10.1016/j.physe.2014.04.010 – volume: 30 start-page: 2218 issue: 17 year: 2005 ident: 10.1016/j.snb.2016.03.026_bib0320 article-title: Tapered fiber optic surface plasmon resonance sensor for analyses of vapor and liquid phases publication-title: Opt. Lett. doi: 10.1364/OL.30.002218 – volume: 221 start-page: 835 year: 2015 ident: 10.1016/j.snb.2016.03.026_bib0120 article-title: Graphene oxide encapsulated gold nanoparticle based stable fibre optic sucrose sensor publication-title: Sens. Actuators B: Chem. doi: 10.1016/j.snb.2015.06.152 – volume: 16 start-page: 5764 issue: 8 year: 2008 ident: 10.1016/j.snb.2016.03.026_bib0295 article-title: Temperature-insensitive miniaturized fiber inline Fabry–Perot interferometer for highly sensitive refractive index measurement publication-title: Opt. Express doi: 10.1364/OE.16.005764 – volume: 41 start-page: 666 issue: 19 year: 2012 ident: 10.1016/j.snb.2016.03.026_bib0160 article-title: Graphene-based composites publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15078B – volume: 8421 year: 2012 ident: 10.1016/j.snb.2016.03.026_bib0080 article-title: Graphene-based microfiber gas sensor publication-title: Proc. SPIE – volume: 11 start-page: 2092 issue: 5 year: 2011 ident: 10.1016/j.snb.2016.03.026_bib0170 article-title: Novel growth mechanism of epitaxial graphene on metals publication-title: Nano Lett. doi: 10.1021/nl2006005 – volume: 72 start-page: 1459 issue: 12 year: 2012 ident: 10.1016/j.snb.2016.03.026_bib0210 article-title: The mechanics of graphene nanocomposites: a review publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2012.05.005 – volume: 11 start-page: 035901 issue: 3 year: 2014 ident: 10.1016/j.snb.2016.03.026_bib0015 article-title: All-fiber-optic temperature sensor based on reduced graphene oxide publication-title: Laser Phys. Lett. doi: 10.1088/1612-2011/11/3/035901 – volume: 324 start-page: 1530 issue: 5934 year: 2009 ident: 10.1016/j.snb.2016.03.026_bib0010 article-title: Graphene: status and prospects publication-title: Science doi: 10.1126/science.1158877 – volume: 24 start-page: 126 year: 2014 ident: 10.1016/j.snb.2016.03.026_bib0270 article-title: In situ synthesis of graphene/SnO2 quantum dots composites for chemiresistive gas sensing publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2014.02.047 – volume: 15 start-page: 5478 issue: 10 year: 2015 ident: 10.1016/j.snb.2016.03.026_bib0030 article-title: Graphene enhances the sensitivity of fiber-optic surface plasmon resonance biosensor publication-title: Sens. J. IEEE doi: 10.1109/JSEN.2015.2442276 – volume: 9 start-page: 4031 issue: 12 year: 2009 ident: 10.1016/j.snb.2016.03.026_bib0150 article-title: Solution phase production of graphene with controlled thickness via density differentiation publication-title: Nano Lett. doi: 10.1021/nl902200b – volume: 149 start-page: 1132 issue: 27 year: 2009 ident: 10.1016/j.snb.2016.03.026_bib0230 article-title: Raman nanometrology of graphene: temperature and substrate effects publication-title: Solid State Commun. doi: 10.1016/j.ssc.2009.01.036 – volume: 22 start-page: 23829 issue: 20 year: 2014 ident: 10.1016/j.snb.2016.03.026_bib0380 article-title: Graphene Bragg gratings on microfiber publication-title: Opt. Express doi: 10.1364/OE.22.023829 – volume: 14 start-page: 1704 issue: 5 year: 2014 ident: 10.1016/j.snb.2016.03.026_bib0060 article-title: Tapered plastic optical fiber coated with graphene for uric acid detection publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2014.2302900 – volume: 187 start-page: 426 issue: 4 year: 2013 ident: 10.1016/j.snb.2016.03.026_bib0040 article-title: Graphene based fiber optic surface plasmon resonance for bio-chemical sensor applications publication-title: Sens. Actuators B: Chem. doi: 10.1016/j.snb.2013.01.040 – volume: 306 start-page: 666 issue: 5696 year: 2004 ident: 10.1016/j.snb.2016.03.026_bib0005 article-title: Electric field effect in atomically thin carbon films publication-title: Science doi: 10.1126/science.1102896 – volume: 221 start-page: 1170 year: 2015 ident: 10.1016/j.snb.2016.03.026_bib0405 article-title: Graphene–metal oxide nanohybrids for toxic gas sensor: a review publication-title: Sens. Actuators B: Chem. doi: 10.1016/j.snb.2015.07.070 – volume: 10 start-page: 932 issue: 25 year: 2013 ident: 10.1016/j.snb.2016.03.026_bib0435 article-title: Fiber-optic Fabry–Perot acoustic sensor with multilayer graphene diaphragm publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2013.2256343 – volume: 152 start-page: 1321 issue: 15 year: 2012 ident: 10.1016/j.snb.2016.03.026_bib0220 article-title: Thermal transport in graphene publication-title: Solid State Commun. doi: 10.1016/j.ssc.2012.04.022 – volume: 37 start-page: 2493 issue: 13 year: 2012 ident: 10.1016/j.snb.2016.03.026_bib0425 article-title: High-sensitivity fiber-tip pressure sensor with graphene diaphragm publication-title: Opt. Lett. doi: 10.1364/OL.37.002493 – volume: 222 start-page: 618 year: 2016 ident: 10.1016/j.snb.2016.03.026_bib0075 article-title: Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide publication-title: Sens. Actuators B: Chem. doi: 10.1016/j.snb.2015.08.108 – volume: 46 start-page: 14 issue: 1 year: 2012 ident: 10.1016/j.snb.2016.03.026_bib0145 article-title: Liquid exfoliation of defect-free graphene publication-title: Acc. Chem. Res. doi: 10.1021/ar300009f – volume: 7 start-page: 1 issue: 5 year: 2015 ident: 10.1016/j.snb.2016.03.026_bib0315 article-title: A surface plasmon biosensor based on a d-shaped microstructured optical fiber with rectangular lattice publication-title: Photonics J. IEEE doi: 10.1109/JPHOT.2015.2488278 – volume: 5 start-page: 84 issue: 1 year: 2015 ident: 10.1016/j.snb.2016.03.026_bib0375 article-title: Optimization study on graphene-coated microfiber Bragg grating structures for ammonia gas sensing publication-title: Photonic Sens. doi: 10.1007/s13320-014-0216-x – volume: 42 start-page: 1769 issue: 1 year: 2016 ident: 10.1016/j.snb.2016.03.026_bib0130 article-title: Uniform decoration of silver nanoparticle on exfoliated graphene oxide sheets and its ammonia gas detection publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.09.138 – volume: 42 start-page: 453 issue: 3 year: 2010 ident: 10.1016/j.snb.2016.03.026_bib0325 article-title: Multi-step structure of side-polished fiber sensor to enhance SPR effect publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2009.09.008 – volume: 223 start-page: 481 year: 2016 ident: 10.1016/j.snb.2016.03.026_bib0100 article-title: Ultra sensitive NO2 gas detection using the reduced graphene oxide coated etched fiber Bragg gratings publication-title: Sens. Actuators B: Chem. doi: 10.1016/j.snb.2015.09.128 – volume: 195 start-page: 409 issue: 5 year: 2014 ident: 10.1016/j.snb.2016.03.026_bib0140 article-title: Hydrogen sensor based on graphene/ZnO nanocomposite publication-title: Sens. Actuators B: Chem. doi: 10.1016/j.snb.2014.01.029 – volume: 32 start-page: 480 issue: 5 year: 1996 ident: 10.1016/j.snb.2016.03.026_bib0305 article-title: Fibre-optic sensor based on surface plasmon resonance publication-title: Electron. Lett. doi: 10.1049/el:19960349 – volume: 15 start-page: 1 issue: 9 year: 2015 ident: 10.1016/j.snb.2016.03.026_bib0385 article-title: Ultra-short near-infrared fiber-optic sensors for carbon dioxide detection publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2015.2438063 – volume: 194 start-page: 142 issue: 4 year: 2014 ident: 10.1016/j.snb.2016.03.026_bib0085 article-title: All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide publication-title: Sens. Actuators B: Chem. doi: 10.1016/j.snb.2013.12.085 – year: 2015 ident: 10.1016/j.snb.2016.03.026_bib0430 article-title: All-fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector publication-title: International Conference on Optical Fibre Sensors (OFS24). International Society for Optics and Photonics – volume: 10 start-page: 1 issue: 5 year: 2015 ident: 10.1016/j.snb.2016.03.026_bib0105 article-title: Surface plasmon resonance-based fiber optic methane gas sensor utilizing graphene-carbon nanotubes-poly (methyl methacrylate) hybrid nanocomposite publication-title: Plasmonics doi: 10.1007/s11468-015-9914-5 – volume: 23 start-page: 20971 issue: 16 year: 2015 ident: 10.1016/j.snb.2016.03.026_bib0345 article-title: Evanescently coupled optical fiber refractometer based a tilted fiber Bragg grating and a D-shaped fiber publication-title: Opt. Express doi: 10.1364/OE.23.020971 – volume: 22 start-page: 1 issue: 3 year: 2015 ident: 10.1016/j.snb.2016.03.026_bib0065 article-title: Tapered optical fiber coated with graphene based nanomaterials for measurement of ethanol concentrations in water publication-title: Opt. Rev. doi: 10.1007/s10043-015-0075-8 – volume: 76 start-page: 195 year: 2016 ident: 10.1016/j.snb.2016.03.026_bib0415 article-title: Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2015.07.002 – volume: 143 start-page: 92 issue: 1 year: 2007 ident: 10.1016/j.snb.2016.03.026_bib0175 article-title: Epitaxial graphene publication-title: Solid State Commun. doi: 10.1016/j.ssc.2007.04.023 – volume: 21 start-page: 29818 issue: 24 year: 2013 ident: 10.1016/j.snb.2016.03.026_bib0370 article-title: Demonstration of complex refractive index of graphene waveguide by microfiber-based Mach–Zehnder interferometer publication-title: Opt. Express doi: 10.1364/OE.21.029818 – volume: 202 start-page: 523 year: 2014 ident: 10.1016/j.snb.2016.03.026_bib0115 article-title: Nanochemical fabrication of a graphene oxide-based nanohybrid for label-free optical sensing with fiber optics publication-title: Sens. Actuators B: Chem. doi: 10.1016/j.snb.2014.05.067 – volume: 5 start-page: 10816 issue: 14 year: 2015 ident: 10.1016/j.snb.2016.03.026_bib0125 article-title: Effect of functional groups on dielectric: optical gas sensing properties of graphene oxide and reduced graphene oxide at room temperature publication-title: RSC Adv. doi: 10.1039/C4RA12766H – volume: 100 start-page: 021601 issue: 2 year: 2012 ident: 10.1016/j.snb.2016.03.026_bib0185 article-title: Monolayer graphene growth on Ni (111) by low temperature chemical vapor deposition publication-title: Appl. Phys. Lett. doi: 10.1063/1.3675481 – volume: 14 start-page: 3563 issue: 6 year: 2014 ident: 10.1016/j.snb.2016.03.026_bib0055 article-title: Ultrasensitive flow sensing of a single cell using graphene-based optical sensors publication-title: Nano Lett. doi: 10.1021/nl5012036 – volume: 35 start-page: 296 issue: 04 year: 2010 ident: 10.1016/j.snb.2016.03.026_bib0165 article-title: Epitaxial graphenes on silicon carbide publication-title: MRS Bull. doi: 10.1557/mrs2010.552 – volume: 27 start-page: 798 issue: 7 year: 2015 ident: 10.1016/j.snb.2016.03.026_bib0110 article-title: Microfiber with methyl blue-functionalized reduced graphene oxide and violet light sensing publication-title: Photonics Technol. Lett. IEEE doi: 10.1109/LPT.2015.2392795 – volume: 47 start-page: 1018 issue: 10 year: 2009 ident: 10.1016/j.snb.2016.03.026_bib0390 article-title: Optical fiber Bragg grating hydrogen sensor based on evanescent-field interaction with palladium thin-film transducer publication-title: Opt. Lasers Eng. doi: 10.1016/j.optlaseng.2009.04.002 – volume: 2 start-page: 908 issue: 11 year: 2012 ident: 10.1016/j.snb.2016.03.026_bib0240 article-title: Sensitive real-time monitoring of refractive indexes using a novel graphene-based optical sensor publication-title: Sci. Rep. doi: 10.1038/srep00908 – volume: 77 start-page: 125416 issue: 12 year: 2008 ident: 10.1016/j.snb.2016.03.026_bib0255 article-title: Adsorption of H2O, NH3, CO, NO2 and NO on graphene: a first-principles study publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.125416 – volume: 81 start-page: 109 issue: 1 year: 2007 ident: 10.1016/j.snb.2016.03.026_bib0245 article-title: The electronic properties of graphene publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.81.109 – volume: 43 start-page: 1216 issue: 6 year: 2004 ident: 10.1016/j.snb.2016.03.026_bib0310 article-title: Optical-fiber surface-plasmon resonance sensor with multiple resonance peaks publication-title: Appl. Opt. doi: 10.1364/AO.43.001216 – volume: 205 start-page: 186 year: 2014 ident: 10.1016/j.snb.2016.03.026_bib0350 article-title: Investigation of the high sensitivity RI sensor based on SMS fiber structure publication-title: Sens. Actuators A: Phys. doi: 10.1016/j.sna.2013.10.023 – volume: 461 start-page: 276 year: 2008 ident: 10.1016/j.snb.2016.03.026_bib0135 article-title: Enhancement of CO detection in Al doped graphene publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2008.07.039 – volume: 173 start-page: 1 year: 2012 ident: 10.1016/j.snb.2016.03.026_bib0420 article-title: Recent developments on graphene and graphene oxide based solid state gas sensors publication-title: Sens. Actuators B: Chem. doi: 10.1016/j.snb.2012.07.092 – volume: 12 start-page: 8 issue: 1 year: 2012 ident: 10.1016/j.snb.2016.03.026_bib0290 article-title: Intrinsic Fabry–Pérot cavity sensor based on etched multimode graded index fiber for strain and temperature measurement publication-title: Sens. J. IEEE doi: 10.1109/JSEN.2011.2107737 – volume: 218 start-page: 160 year: 2015 ident: 10.1016/j.snb.2016.03.026_bib0410 article-title: Recent advances in graphene based gas sensors publication-title: Sens. Actuators B: Chem. doi: 10.1016/j.snb.2015.04.062 – volume: 47 start-page: 3242 issue: 14 year: 2009 ident: 10.1016/j.snb.2016.03.026_bib0200 article-title: Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation publication-title: Carbon doi: 10.1016/j.carbon.2009.07.040 – volume: 226 start-page: 336 issue: 24 year: 2013 ident: 10.1016/j.snb.2016.03.026_bib0355 article-title: Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.04.070 – volume: 23 start-page: 27494 issue: 21 year: 2015 ident: 10.1016/j.snb.2016.03.026_bib0025 article-title: Analyzing the temperature sensitivity of Fabry–Perot sensor using multilayer graphene diaphragm publication-title: Opt. Express doi: 10.1364/OE.23.027494 – volume: 107 start-page: 053502 issue: 5 year: 2015 ident: 10.1016/j.snb.2016.03.026_bib0440 article-title: Optical electrical current sensor utilizing a graphene-microfiber-integrated coil resonator publication-title: Appl. Phys. Lett. doi: 10.1063/1.4928247 – volume: 25 start-page: 932 issue: 10 year: 2013 ident: 10.1016/j.snb.2016.03.026_bib0215 article-title: Fiber-optic fabry-pérot acoustic sensor with multilayer graphene diaphragm publication-title: Photonics Technol. Lett. IEEE doi: 10.1109/LPT.2013.2256343 – ident: 10.1016/j.snb.2016.03.026_bib0280 – volume: 50 start-page: 3682 issue: 10 year: 2012 ident: 10.1016/j.snb.2016.03.026_bib0190 article-title: The control of graphene double-layer formation in copper-catalyzed chemical vapor deposition publication-title: Carbon doi: 10.1016/j.carbon.2012.03.041 – volume: 27 start-page: 2399 issue: 22 year: 2015 ident: 10.1016/j.snb.2016.03.026_bib0070 article-title: Graphene-based D-shaped polymer FBG for highly sensitive erythrocyte detection publication-title: IEEE Photonics Technol. Lett. doi: 10.1109/LPT.2015.2466614 – volume: 56 start-page: 1178 issue: 8 year: 2011 ident: 10.1016/j.snb.2016.03.026_bib0195 article-title: Graphene based materials: past, present and future publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2011.03.003 – volume: 100 issue: 20 year: 2012 ident: 10.1016/j.snb.2016.03.026_bib0365 article-title: High sensitivity detection of NO2 and NH3 in air using chemical vapor deposition grown graphene publication-title: Appl. Phys. Lett. doi: 10.1063/1.4720074 |
| SSID | ssj0004360 |
| Score | 2.6190116 |
| SecondaryResourceType | review_article |
| Snippet | Graphene as a novel material has laid a foundation for its applications in optical fiber sensors, due to its unique properties, especially the optical... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 324 |
| SubjectTerms | Actuators Biological Chemical sensors Disturbances Graphene Optical fiber sensors Optical fibers Optical properties Sensitivity Sensors |
| Title | Review on the graphene based optical fiber chemical and biological sensors |
| URI | https://dx.doi.org/10.1016/j.snb.2016.03.026 https://www.proquest.com/docview/1808124431 |
| Volume | 231 |
| WOSCitedRecordID | wos000374330900037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-3077 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004360 issn: 0925-4005 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgy4EeEE_R8pCROBG5SuI4iY8FFUGFKiQK2nKx7NguVMhZdXdRfz7jR7KrLa3ogUu0Gm1G2cy345nxzGeEXvNCSc54SyrVKFI1pSHcqJpYW_NScSqbUNP99qk5OmqnU_45VZXm4TiBxrn24oLP_qupQQbG9qOzNzD3qBQE8BmMDlcwO1z_yfCJKj9uAmSBkBr8WeaXK531szSz6BtFsm6dLSDSMcUpScht-7TNkwLXL1EUuV390Ik_pWcvexu37KOatSJ0KMCe9GlZ9A0_oWtgujTkVK6k33_0yyS_VME-kcQl6KaqRFGPPXFjebFkkJvmbN3TlsnhR19J4_B0WnZpZG265NFjceFsb-6Ub8SrAyVt-Rf27I1Vbew1HNrYzgSoEF6FyKkAFbfRVtkATCdoa__jwfRwNU5Lw3D5-BOGzfDQFrjxHFeFMxsLe4hWju-jeynNwPsRHg_QLeMeou018slH6DACBfcOA1DwABQcgIITUHAACh6AgsH8eAUUnIDyGH19f3D87gNJJ2uQjvJ6QUqVq5opxrSiumqN4lK33EL43nVWF7rObWOKwpqio4wqiGiqTkNmmUstIWHW9AmauN6ZpwjnpVXcJ9q2bqtCWsms51vyoSbTVdXtoHx4QaJLtPP-9JNf4krD7KA34y2zyLly3Zer4a2LFDTGYFAAgq677dVgIQEO1e-SSWf65VwU_iwaCHppsXuT53iG7q7-B8_RZHG-NC_Qne734uf8_GWC2B8ycZco |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+on+the+graphene+based+optical+fiber+chemical+and+biological+sensors&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Zhao%2C+Yong&rft.au=Li%2C+Xue-gang&rft.au=Zhou%2C+Xue&rft.au=Zhang%2C+Ya-nan&rft.date=2016-08-01&rft.issn=0925-4005&rft.volume=231&rft.spage=324&rft.epage=340&rft_id=info:doi/10.1016%2Fj.snb.2016.03.026&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_snb_2016_03_026 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon |