Ideal Hierarchical Secret Sharing Schemes

Hierarchical secret sharing is among the most natural generalizations of threshold secret sharing, and it has attracted a lot of attention since the invention of secret sharing until nowadays. Several constructions of ideal hierarchical secret sharing schemes have been proposed, but it was not known...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory Vol. 58; no. 5; pp. 3273 - 3286
Main Authors: Farras, O., Padro, C.
Format: Journal Article Publication
Language:English
Published: New York, NY IEEE 01.05.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9448, 1557-9654
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Hierarchical secret sharing is among the most natural generalizations of threshold secret sharing, and it has attracted a lot of attention since the invention of secret sharing until nowadays. Several constructions of ideal hierarchical secret sharing schemes have been proposed, but it was not known what access structures admit such a scheme. We solve this problem by providing a natural definition for the family of the hierarchical access structures and, more importantly, by presenting a complete characterization of the ideal hierarchical access structures, that is, the ones admitting an ideal secret sharing scheme. Our characterization is based on the well-known connection between ideal secret sharing schemes and matroids and, more specifically, on the connection between ideal multipartite secret sharing schemes and integer polymatroids. In particular, we prove that every hierarchical matroid port admits an ideal linear secret sharing scheme over every large enough finite field. Finally, we use our results to present a new proof for the existing characterization of the ideal weighted threshold access structures.
AbstractList Hierarchical secret sharing is among the most natural generalizations of threshold secret sharing, and it has attracted a lot of attention since the invention of secret sharing until nowadays. Several constructions of ideal hierarchical secret sharing schemes have been proposed, but it was not known what access structures admit such a scheme. We solve this problem by providing a natural definition for the family of the hierarchical access structures and, more importantly, by presenting a complete characterization of the ideal hierarchical access structures, that is, the ones admitting an ideal secret sharing scheme. Our characterization is based on the well-known connection between ideal secret sharing schemes and matroids and, more specifically, on the connection between ideal multipartite secret sharing schemes and integer polymatroids. In particular, we prove that every hierarchical matroid port admits an ideal linear secret sharing scheme over every large enough finite field. Finally, we use our results to present a new proof for the existing characterization of the ideal weighted threshold access structures.
Hierarchical secret sharing is among the most natural generalizations of threshold secret sharing, and it has attracted a lot of attention since the invention of secret sharing until nowadays. Several constructions of ideal hierarchical secret sharing schemes have been proposed, but it was not known what access structures admit such a scheme. We solve this problem by providing a natural definition for the family of the hierarchical access structures and, more importantly, by presenting a complete characterization of the ideal hierarchical access structures, that is, the ones admitting an ideal secret sharing scheme. Our characterization is based on the well-known connection between ideal secret sharing schemes and matroids and, more specifically, on the connection between ideal multipartite secret sharing schemes and integer polymatroids. In particular, we prove that every hierarchical matroid port admits an ideal linear secret sharing scheme over every large enough finite field. Finally, we use our results to present a new proof for the existing characterization of the ideal weighted threshold access structures. [PUBLICATION ABSTRACT]
Hierarchical secret sharing is among the most natural generalizations of threshold secret sharing, and it has attracted a lot of attention since the invention of secret sharing until nowadays. Several constructions of ideal hierarchical secret sharing schemes have been proposed, but it was not known what access structures admit such a scheme. We solve this problem by providing a natural definition for the family of the hierarchical access structures and, more importantly, by presenting a complete characterization of the ideal hierarchical access structures, that is, the ones admitting an ideal secret sharing scheme. Our characterization is based on the well known connection between ideal secret sharing schemes and matroids and, more specifically, on the connection between ideal multipartite secret sharing schemes and integer polymatroids. In particular, we prove that every hierarchical matroid port admits an ideal linear secret sharing scheme over every large enough finite field. Finally, we use our results to present a new proof for the existing characterization of the ideal weighted threshold access structures. Peer Reviewed
Author Farras, O.
Padro, C.
Author_xml – sequence: 1
  givenname: O.
  surname: Farras
  fullname: Farras, O.
  email: oriol.farras@urv.cat
  organization: Univ. Rovira i Virgili, Tarragona, Spain
– sequence: 2
  givenname: C.
  surname: Padro
  fullname: Padro, C.
  email: carlespl@ntu.edu.sg
  organization: Nanyang Technol. Univ., Singapore, Singapore
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25827503$$DView record in Pascal Francis
BookMark eNp9kU1LAzEQhoMoWKt3wUtBBD1szcxustmjFD8KgofWc5imszay3dVke_Dfm9Ki4MFDEiY8T5LJeyIO265lIc5BjgFkdTufzscoAcYIBmVeHIgBKFVmlVbFoRhICSarisIci5MY31NZKMCBuJkumZrRk-dAwa28S8WMXeB-NFtR8O3baOZWvOZ4Ko5qaiKf7deheH24n0-esueXx-nk7jlzeaX7DHXOBLUxXLMyqiTlHGOh06aCWhIvDCyVMoxIoLWhcoGKFovlkkrUrsiHAnbnurhxNrDj4Ki3HfnfYjtQlmjRmFxDcq53zkfoPjcce7v20XHTUMvdJlqQiJWESumEXv5B37tNaFNHiZJVnkOZpqG42lMU05fUgVrno_0Ifk3hy6IyWCq55eT-saGLMXD9g4C021xsysVuc7H7XJKi_yjO99T7ru0D-eY_8WInemb-uSd1byrA_BvmgJkm
CODEN IETTAW
CitedBy_id crossref_primary_10_1007_s10623_025_01651_7
crossref_primary_10_1080_09720529_2021_1923920
crossref_primary_10_1137_120886960
crossref_primary_10_1007_s11432_015_5286_x
crossref_primary_10_1007_s13226_023_00450_x
crossref_primary_10_1016_j_ins_2023_119907
crossref_primary_10_1109_TIT_2016_2555955
crossref_primary_10_1109_TIT_2014_2300113
crossref_primary_10_1016_j_jisa_2020_102724
crossref_primary_10_1016_j_cosrev_2023_100608
crossref_primary_10_1007_s10623_022_01154_9
crossref_primary_10_1007_s11277_014_2208_y
crossref_primary_10_1016_j_ins_2020_07_032
crossref_primary_10_1109_TCOMM_2020_3005430
crossref_primary_10_1109_TIFS_2021_3067468
crossref_primary_10_3233_JCS_210065
crossref_primary_10_1007_s10623_019_00657_2
crossref_primary_10_1016_j_ins_2022_01_053
crossref_primary_10_1016_j_tcs_2015_06_029
crossref_primary_10_1007_s00026_024_00716_z
crossref_primary_10_3390_en13040881
crossref_primary_10_1109_TIT_2021_3123102
Cites_doi 10.1016/j.ipl.2005.09.008
10.1023/A:1024741108241
10.1007/BF00196772
10.1145/359168.359176
10.1007/s00145-006-0334-8
10.1007/0-387-34799-2_30
10.1007/978-3-642-25385-0_33
10.1007/s00145-011-9101-6
10.1007/BF00198463
10.1109/TIT.2006.887090
10.1016/S0012-365X(99)00004-7
10.1007/s00145-008-9027-9
10.1007/0-387-34799-2_3
10.1007/s10623-008-9264-9
10.1007/3-540-36478-1_2
10.1049/ip-com:20050073
10.1023/A:1011225330458
10.1016/S0020-0190(99)00070-8
10.1109/TIT.1983.1056621
10.1137/S0895480104445654
10.1007/3-540-39568-7_19
10.1515/jmc.2010.004
10.1007/s001459900029
10.1109/18.887867
10.1049/ip-ifs:20060081
10.1023/A:1021852421716
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. MAK - Matemàtica Aplicada a la Criptografia
Universitat Politècnica de Catalunya. Departament de Matemàtiques
Contributor_xml – sequence: 1
  fullname: Universitat Politècnica de Catalunya. Departament de Matemàtiques
– sequence: 2
  fullname: Universitat Politècnica de Catalunya. MAK - Matemàtica Aplicada a la Criptografia
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2012
Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/3.0/es
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2012
– notice: Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
XX2
DOI 10.1109/TIT.2011.2182034
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Recercat
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Technology Research Database


Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Government
Computer Science
Applied Sciences
EISSN 1557-9654
EndPage 3286
ExternalDocumentID oai_recercat_cat_2072_288361
2643550801
25827503
10_1109_TIT_2011_2182034
6138912
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
XX2
ID FETCH-LOGICAL-c396t-263ea1f88efe5857a5cce246ea151f0aeb81d558e22a1668a7b25abbdda726c43
IEDL.DBID RIE
ISICitedReferencesCount 42
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000303204900047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Fri Nov 07 13:53:44 EST 2025
Tue Sep 30 23:59:11 EDT 2025
Sun Nov 30 04:55:32 EST 2025
Mon Jul 21 09:14:53 EDT 2025
Tue Nov 18 22:17:19 EST 2025
Sat Nov 29 03:53:13 EST 2025
Tue Aug 26 17:18:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Finite field
integer polymatroids
hierarchical secret sharing
weighted threshold secret sharing
Matroid
multipartite secret sharing
ideal secret sharing schemes
Secret sharing
Hierarchized structure
Boolean polymatroids
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-263ea1f88efe5857a5cce246ea151f0aeb81d558e22a1668a7b25abbdda726c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://recercat.cat/handle/2072/288361
PQID 1009331793
PQPubID 36024
PageCount 14
ParticipantIDs pascalfrancis_primary_25827503
crossref_primary_10_1109_TIT_2011_2182034
proquest_miscellaneous_1022901956
ieee_primary_6138912
proquest_journals_1009331793
csuc_recercat_oai_recercat_cat_2072_288361
crossref_citationtrail_10_1109_TIT_2011_2182034
PublicationCentury 2000
PublicationDate 2012-05-01
PublicationDateYYYYMMDD 2012-05-01
PublicationDate_xml – month: 05
  year: 2012
  text: 2012-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2012
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
beimel (ref1) 2011; lncs 6639
ref34
ref12
ref15
ref30
ref33
ref32
welsh (ref36) 1976
ref10
ito (ref17) 1987
fujishige (ref14) 1991; 47
ref2
edmonds (ref11) 2003; 2570
ref16
ref19
ref18
ref24
ref23
ng (ref26) 2003; 30
ref20
oxley (ref29) 1992
ref22
blakley (ref5) 1979
ref21
murota (ref25) 2003
ref28
ref27
ref8
ref7
schrijver (ref31) 2003
ref4
brickell (ref6) 1989; 6
ref3
collins (ref9) 0
References_xml – ident: ref3
  doi: 10.1016/j.ipl.2005.09.008
– volume: 30
  start-page: 5
  year: 2003
  ident: ref26
  article-title: A representation of a family of secret sharing matroids
  publication-title: Des Codes Cryptogr
  doi: 10.1023/A:1024741108241
– ident: ref7
  doi: 10.1007/BF00196772
– start-page: 313
  year: 1979
  ident: ref5
  article-title: Safeguarding cryptographic keys
  publication-title: Proc Amer Fed Inf Process Soc Conf
– ident: ref32
  doi: 10.1145/359168.359176
– ident: ref34
  doi: 10.1007/s00145-006-0334-8
– ident: ref33
  doi: 10.1007/0-387-34799-2_30
– ident: ref13
  doi: 10.1007/978-3-642-25385-0_33
– ident: ref12
  doi: 10.1007/s00145-011-9101-6
– ident: ref8
  doi: 10.1007/BF00198463
– ident: ref23
  doi: 10.1109/TIT.2006.887090
– year: 2003
  ident: ref25
  publication-title: SIAM Monographs on Discrete Mathematics and Applications
– ident: ref22
  doi: 10.1016/S0012-365X(99)00004-7
– year: 2003
  ident: ref31
  publication-title: Combinatorial Optimization Polyhedra and Efficiency
– ident: ref35
  doi: 10.1007/s00145-008-9027-9
– ident: ref4
  doi: 10.1007/0-387-34799-2_3
– year: 1976
  ident: ref36
  publication-title: Matroid Theory
– ident: ref20
  doi: 10.1007/s10623-008-9264-9
– volume: 2570
  start-page: 11
  year: 2003
  ident: ref11
  publication-title: Combinatorial Optimization-Eureka You Shrink!
  doi: 10.1007/3-540-36478-1_2
– start-page: 99
  year: 1987
  ident: ref17
  article-title: Secret sharing scheme realizing any access structure
  publication-title: IEEE GLOBECOM 87
– ident: ref27
  doi: 10.1049/ip-com:20050073
– ident: ref28
  doi: 10.1023/A:1011225330458
– volume: lncs 6639
  start-page: 11
  year: 2011
  ident: ref1
  article-title: Secret-sharing schemes: A survey
  publication-title: Proc 2nd Int Workshop on Coding and Cryptography
– year: 1992
  ident: ref29
  publication-title: Matroid Theory
– ident: ref24
  doi: 10.1016/S0020-0190(99)00070-8
– year: 0
  ident: ref9
  publication-title: A note on ideal tripartite access structures
– ident: ref18
  doi: 10.1109/TIT.1983.1056621
– ident: ref2
  doi: 10.1137/S0895480104445654
– volume: 47
  year: 1991
  ident: ref14
  publication-title: Submodular Functions and Optimization Annals of Discrete Mathematics 47
– ident: ref19
  doi: 10.1007/3-540-39568-7_19
– volume: 6
  start-page: 105
  year: 1989
  ident: ref6
  article-title: Some ideal secret sharing schemes
  publication-title: J Combin Math Combin Comput
– ident: ref21
  doi: 10.1515/jmc.2010.004
– ident: ref10
  doi: 10.1007/s001459900029
– ident: ref30
  doi: 10.1109/18.887867
– ident: ref15
  doi: 10.1049/ip-ifs:20060081
– ident: ref16
  doi: 10.1023/A:1021852421716
SSID ssj0014512
Score 2.2997334
Snippet Hierarchical secret sharing is among the most natural generalizations of threshold secret sharing, and it has attracted a lot of attention since the invention...
SourceID csuc
proquest
pascalfrancis
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3273
SubjectTerms 90 Operations research, mathematical programming
90B Operations research and management science
90C Mathematical programming
Applied sciences
Bismuth
Boolean polymatroids
Classificació AMS
Code Division Multiple Access
Construction
Cryptography
Electronic mail
Exact sciences and technology
Government
hierarchical secret sharing
ideal secret sharing schemes
Information sharing
Information theory
Information, signal and communications theory
integer polymatroids
Integers
Inventions
Investigació operativa
Joints
Matemàtiques i estadística
Mathematical analysis
multi partite secret sharing
multipartite secret sharing
Operations research
Periodic structures
Ports
Programació (Matemàtica)
Programming (Mathematics)
secret sharing
Telecommunications and information theory
Thresholds
Vectors
weighted secret sharing schemes
weighted threshold secret sharing
Àrees temàtiques de la UPC
Title Ideal Hierarchical Secret Sharing Schemes
URI https://ieeexplore.ieee.org/document/6138912
https://www.proquest.com/docview/1009331793
https://www.proquest.com/docview/1022901956
https://recercat.cat/handle/2072/288361
Volume 58
WOSCitedRecordID wos000303204900047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9QwDLbGiYfxwOAGojCmIvEyRLkmaZL2ESGmTUITEgfaW5Smrpg07tC1t98_O-0VJhASD5XaJk2bOI7tOv4M8FqYWlckyrKmbMqsaHgdLPI6ExKNbutShYil9-2TvbgoLy-rz3vwdoqFQcS4-Qzf8Wn05TfrsOVfZQsTvWq04N6z1g6xWpPHoNBiQAYXxMBkc-xcknm1WJ4vB6zOiFauijsiaBa6bRhTq_DGSN_R2LRDUos_1ucodE4P_u9zH8HDUblM3w-z4THs4WoOB7vEDenIx3N48BsK4Rz2f-XbPYST84ZUx_TsigOTY56U6_QLq5Z9ytjO9AA18x1_YPcEvp5-XH44y8Z0CllQlekzaRR60ZYltkhGgvU6BJSFoZtatLnHmnRXrUuU0gtjSm9rqX1dN4230oRCPYXZar3CZ5C2njhXy1YY2xDT51WtFJlaeYsKm-BtAovdCLswYo1zyotrF22OvHJEE8c0cSNNEjiZnvg54Gz8o-4bJpojkYCb4HvHENnTBR8yt9JxHmUjEjhkykyNjkRJ4PgOqadyqUuGvFcJHO1o70a27hjguaKe0pqWwKupmBiSvSx-hest12EIfQ7DfP73V7-AfeqNHHZNHsGs32zxJdwPN_1VtzmOs_oW2Azxpg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED5NHRLjYYMORLYxgsTLEFljJ3aSR4SYWlEqJAram-U4FzFptKhJ-f3cOWlgAiHxECmJHSf2-Xx3Od93AC-FLlVBoiyq8iqP0orXwTQuIyFRq7rME-ex9L7Ms8Uiv74uPu7B6yEWBhH95jO85FPvy6_Wbsu_yibae9Vowd1XaSpFF601-AxSJTpscEEsTFbHzikZF5PlbNmhdXq88iS9I4RGrtm6PrkKb420DY1O3aW1-GOF9mLn6uj_PvghHPbqZfimmw-PYA9XYzjapW4Ie04ew4PfcAjHcPAr4-4xXMwqUh7D6Q2HJvtMKbfhJ1Yu25DRnekBauYrfsPmMXy-erd8O436hAqRSwrdRlInaEWd51gjmQmZVc6hTDXdVKKOLZakvSqVo5RWaJ3brJTKlmVV2UxqlyZPYLRar_AphLUl3lWyFjqriO3jokwSMrbiGhOsnM0CmOxG2LgebZyTXtwab3XEhSGaGKaJ6WkSwMXwxPcOaeMfdV8x0QwJBdw42xoGyR4u-JBxJg1nUtYigGOmzNBoT5QAzu-QeiiXKmfQ-ySAsx3tTc_YDUM8F9RTWtUCeDEUE0uyn8WucL3lOgyiz4GYJ39_9XO4P11-mJv5bPH-FA6oZ7LbQ3kGo3azxWdwz_1ob5rNuZ_hPwGNpfTt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ideal+Hierarchical+Secret+Sharing+Schemes&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Farras%2C+Oriol&rft.au=Padro%2C+Carles&rft.date=2012-05-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=58&rft.issue=5&rft.spage=3273&rft.epage=3286&rft_id=info:doi/10.1109%2FTIT.2011.2182034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2011_2182034
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon