Ideal Hierarchical Secret Sharing Schemes
Hierarchical secret sharing is among the most natural generalizations of threshold secret sharing, and it has attracted a lot of attention since the invention of secret sharing until nowadays. Several constructions of ideal hierarchical secret sharing schemes have been proposed, but it was not known...
Saved in:
| Published in: | IEEE transactions on information theory Vol. 58; no. 5; pp. 3273 - 3286 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article Publication |
| Language: | English |
| Published: |
New York, NY
IEEE
01.05.2012
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 0018-9448, 1557-9654 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Hierarchical secret sharing is among the most natural generalizations of threshold secret sharing, and it has attracted a lot of attention since the invention of secret sharing until nowadays. Several constructions of ideal hierarchical secret sharing schemes have been proposed, but it was not known what access structures admit such a scheme. We solve this problem by providing a natural definition for the family of the hierarchical access structures and, more importantly, by presenting a complete characterization of the ideal hierarchical access structures, that is, the ones admitting an ideal secret sharing scheme. Our characterization is based on the well-known connection between ideal secret sharing schemes and matroids and, more specifically, on the connection between ideal multipartite secret sharing schemes and integer polymatroids. In particular, we prove that every hierarchical matroid port admits an ideal linear secret sharing scheme over every large enough finite field. Finally, we use our results to present a new proof for the existing characterization of the ideal weighted threshold access structures. |
|---|---|
| AbstractList | Hierarchical secret sharing is among the most natural generalizations of threshold secret sharing, and it has attracted a lot of attention since the invention of secret sharing until nowadays. Several constructions of ideal hierarchical secret sharing schemes have been proposed, but it was not known what access structures admit such a scheme. We solve this problem by providing a natural definition for the family of the hierarchical access structures and, more importantly, by presenting a complete characterization of the ideal hierarchical access structures, that is, the ones admitting an ideal secret sharing scheme. Our characterization is based on the well-known connection between ideal secret sharing schemes and matroids and, more specifically, on the connection between ideal multipartite secret sharing schemes and integer polymatroids. In particular, we prove that every hierarchical matroid port admits an ideal linear secret sharing scheme over every large enough finite field. Finally, we use our results to present a new proof for the existing characterization of the ideal weighted threshold access structures. Hierarchical secret sharing is among the most natural generalizations of threshold secret sharing, and it has attracted a lot of attention since the invention of secret sharing until nowadays. Several constructions of ideal hierarchical secret sharing schemes have been proposed, but it was not known what access structures admit such a scheme. We solve this problem by providing a natural definition for the family of the hierarchical access structures and, more importantly, by presenting a complete characterization of the ideal hierarchical access structures, that is, the ones admitting an ideal secret sharing scheme. Our characterization is based on the well-known connection between ideal secret sharing schemes and matroids and, more specifically, on the connection between ideal multipartite secret sharing schemes and integer polymatroids. In particular, we prove that every hierarchical matroid port admits an ideal linear secret sharing scheme over every large enough finite field. Finally, we use our results to present a new proof for the existing characterization of the ideal weighted threshold access structures. [PUBLICATION ABSTRACT] Hierarchical secret sharing is among the most natural generalizations of threshold secret sharing, and it has attracted a lot of attention since the invention of secret sharing until nowadays. Several constructions of ideal hierarchical secret sharing schemes have been proposed, but it was not known what access structures admit such a scheme. We solve this problem by providing a natural definition for the family of the hierarchical access structures and, more importantly, by presenting a complete characterization of the ideal hierarchical access structures, that is, the ones admitting an ideal secret sharing scheme. Our characterization is based on the well known connection between ideal secret sharing schemes and matroids and, more specifically, on the connection between ideal multipartite secret sharing schemes and integer polymatroids. In particular, we prove that every hierarchical matroid port admits an ideal linear secret sharing scheme over every large enough finite field. Finally, we use our results to present a new proof for the existing characterization of the ideal weighted threshold access structures. Peer Reviewed |
| Author | Farras, O. Padro, C. |
| Author_xml | – sequence: 1 givenname: O. surname: Farras fullname: Farras, O. email: oriol.farras@urv.cat organization: Univ. Rovira i Virgili, Tarragona, Spain – sequence: 2 givenname: C. surname: Padro fullname: Padro, C. email: carlespl@ntu.edu.sg organization: Nanyang Technol. Univ., Singapore, Singapore |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25827503$$DView record in Pascal Francis |
| BookMark | eNp9kU1LAzEQhoMoWKt3wUtBBD1szcxustmjFD8KgofWc5imszay3dVke_Dfm9Ki4MFDEiY8T5LJeyIO265lIc5BjgFkdTufzscoAcYIBmVeHIgBKFVmlVbFoRhICSarisIci5MY31NZKMCBuJkumZrRk-dAwa28S8WMXeB-NFtR8O3baOZWvOZ4Ko5qaiKf7deheH24n0-esueXx-nk7jlzeaX7DHXOBLUxXLMyqiTlHGOh06aCWhIvDCyVMoxIoLWhcoGKFovlkkrUrsiHAnbnurhxNrDj4Ki3HfnfYjtQlmjRmFxDcq53zkfoPjcce7v20XHTUMvdJlqQiJWESumEXv5B37tNaFNHiZJVnkOZpqG42lMU05fUgVrno_0Ifk3hy6IyWCq55eT-saGLMXD9g4C021xsysVuc7H7XJKi_yjO99T7ru0D-eY_8WInemb-uSd1byrA_BvmgJkm |
| CODEN | IETTAW |
| CitedBy_id | crossref_primary_10_1007_s10623_025_01651_7 crossref_primary_10_1080_09720529_2021_1923920 crossref_primary_10_1137_120886960 crossref_primary_10_1007_s11432_015_5286_x crossref_primary_10_1007_s13226_023_00450_x crossref_primary_10_1016_j_ins_2023_119907 crossref_primary_10_1109_TIT_2016_2555955 crossref_primary_10_1109_TIT_2014_2300113 crossref_primary_10_1016_j_jisa_2020_102724 crossref_primary_10_1016_j_cosrev_2023_100608 crossref_primary_10_1007_s10623_022_01154_9 crossref_primary_10_1007_s11277_014_2208_y crossref_primary_10_1016_j_ins_2020_07_032 crossref_primary_10_1109_TCOMM_2020_3005430 crossref_primary_10_1109_TIFS_2021_3067468 crossref_primary_10_3233_JCS_210065 crossref_primary_10_1007_s10623_019_00657_2 crossref_primary_10_1016_j_ins_2022_01_053 crossref_primary_10_1016_j_tcs_2015_06_029 crossref_primary_10_1007_s00026_024_00716_z crossref_primary_10_3390_en13040881 crossref_primary_10_1109_TIT_2021_3123102 |
| Cites_doi | 10.1016/j.ipl.2005.09.008 10.1023/A:1024741108241 10.1007/BF00196772 10.1145/359168.359176 10.1007/s00145-006-0334-8 10.1007/0-387-34799-2_30 10.1007/978-3-642-25385-0_33 10.1007/s00145-011-9101-6 10.1007/BF00198463 10.1109/TIT.2006.887090 10.1016/S0012-365X(99)00004-7 10.1007/s00145-008-9027-9 10.1007/0-387-34799-2_3 10.1007/s10623-008-9264-9 10.1007/3-540-36478-1_2 10.1049/ip-com:20050073 10.1023/A:1011225330458 10.1016/S0020-0190(99)00070-8 10.1109/TIT.1983.1056621 10.1137/S0895480104445654 10.1007/3-540-39568-7_19 10.1515/jmc.2010.004 10.1007/s001459900029 10.1109/18.887867 10.1049/ip-ifs:20060081 10.1023/A:1021852421716 |
| ContentType | Journal Article Publication |
| Contributor | Universitat Politècnica de Catalunya. MAK - Matemàtica Aplicada a la Criptografia Universitat Politècnica de Catalunya. Departament de Matemàtiques |
| Contributor_xml | – sequence: 1 fullname: Universitat Politècnica de Catalunya. Departament de Matemàtiques – sequence: 2 fullname: Universitat Politècnica de Catalunya. MAK - Matemàtica Aplicada a la Criptografia |
| Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2012 Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/3.0/es |
| Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2012 – notice: Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a> |
| DBID | 97E RIA RIE AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 XX2 |
| DOI | 10.1109/TIT.2011.2182034 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database Recercat |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Government Computer Science Applied Sciences |
| EISSN | 1557-9654 |
| EndPage | 3286 |
| ExternalDocumentID | oai_recercat_cat_2072_288361 2643550801 25827503 10_1109_TIT_2011_2182034 6138912 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 VJK AAYXX CITATION IQODW RIG 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 XX2 |
| ID | FETCH-LOGICAL-c396t-263ea1f88efe5857a5cce246ea151f0aeb81d558e22a1668a7b25abbdda726c43 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 42 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000303204900047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9448 |
| IngestDate | Fri Nov 07 13:53:44 EST 2025 Tue Sep 30 23:59:11 EDT 2025 Sun Nov 30 04:55:32 EST 2025 Mon Jul 21 09:14:53 EDT 2025 Tue Nov 18 22:17:19 EST 2025 Sat Nov 29 03:53:13 EST 2025 Tue Aug 26 17:18:12 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Finite field integer polymatroids hierarchical secret sharing weighted threshold secret sharing Matroid multipartite secret sharing ideal secret sharing schemes Secret sharing Hierarchized structure Boolean polymatroids |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c396t-263ea1f88efe5857a5cce246ea151f0aeb81d558e22a1668a7b25abbdda726c43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://recercat.cat/handle/2072/288361 |
| PQID | 1009331793 |
| PQPubID | 36024 |
| PageCount | 14 |
| ParticipantIDs | pascalfrancis_primary_25827503 crossref_primary_10_1109_TIT_2011_2182034 proquest_miscellaneous_1022901956 ieee_primary_6138912 proquest_journals_1009331793 csuc_recercat_oai_recercat_cat_2072_288361 crossref_citationtrail_10_1109_TIT_2011_2182034 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-05-01 |
| PublicationDateYYYYMMDD | 2012-05-01 |
| PublicationDate_xml | – month: 05 year: 2012 text: 2012-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: New York |
| PublicationTitle | IEEE transactions on information theory |
| PublicationTitleAbbrev | TIT |
| PublicationYear | 2012 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 beimel (ref1) 2011; lncs 6639 ref34 ref12 ref15 ref30 ref33 ref32 welsh (ref36) 1976 ref10 ito (ref17) 1987 fujishige (ref14) 1991; 47 ref2 edmonds (ref11) 2003; 2570 ref16 ref19 ref18 ref24 ref23 ng (ref26) 2003; 30 ref20 oxley (ref29) 1992 ref22 blakley (ref5) 1979 ref21 murota (ref25) 2003 ref28 ref27 ref8 ref7 schrijver (ref31) 2003 ref4 brickell (ref6) 1989; 6 ref3 collins (ref9) 0 |
| References_xml | – ident: ref3 doi: 10.1016/j.ipl.2005.09.008 – volume: 30 start-page: 5 year: 2003 ident: ref26 article-title: A representation of a family of secret sharing matroids publication-title: Des Codes Cryptogr doi: 10.1023/A:1024741108241 – ident: ref7 doi: 10.1007/BF00196772 – start-page: 313 year: 1979 ident: ref5 article-title: Safeguarding cryptographic keys publication-title: Proc Amer Fed Inf Process Soc Conf – ident: ref32 doi: 10.1145/359168.359176 – ident: ref34 doi: 10.1007/s00145-006-0334-8 – ident: ref33 doi: 10.1007/0-387-34799-2_30 – ident: ref13 doi: 10.1007/978-3-642-25385-0_33 – ident: ref12 doi: 10.1007/s00145-011-9101-6 – ident: ref8 doi: 10.1007/BF00198463 – ident: ref23 doi: 10.1109/TIT.2006.887090 – year: 2003 ident: ref25 publication-title: SIAM Monographs on Discrete Mathematics and Applications – ident: ref22 doi: 10.1016/S0012-365X(99)00004-7 – year: 2003 ident: ref31 publication-title: Combinatorial Optimization Polyhedra and Efficiency – ident: ref35 doi: 10.1007/s00145-008-9027-9 – ident: ref4 doi: 10.1007/0-387-34799-2_3 – year: 1976 ident: ref36 publication-title: Matroid Theory – ident: ref20 doi: 10.1007/s10623-008-9264-9 – volume: 2570 start-page: 11 year: 2003 ident: ref11 publication-title: Combinatorial Optimization-Eureka You Shrink! doi: 10.1007/3-540-36478-1_2 – start-page: 99 year: 1987 ident: ref17 article-title: Secret sharing scheme realizing any access structure publication-title: IEEE GLOBECOM 87 – ident: ref27 doi: 10.1049/ip-com:20050073 – ident: ref28 doi: 10.1023/A:1011225330458 – volume: lncs 6639 start-page: 11 year: 2011 ident: ref1 article-title: Secret-sharing schemes: A survey publication-title: Proc 2nd Int Workshop on Coding and Cryptography – year: 1992 ident: ref29 publication-title: Matroid Theory – ident: ref24 doi: 10.1016/S0020-0190(99)00070-8 – year: 0 ident: ref9 publication-title: A note on ideal tripartite access structures – ident: ref18 doi: 10.1109/TIT.1983.1056621 – ident: ref2 doi: 10.1137/S0895480104445654 – volume: 47 year: 1991 ident: ref14 publication-title: Submodular Functions and Optimization Annals of Discrete Mathematics 47 – ident: ref19 doi: 10.1007/3-540-39568-7_19 – volume: 6 start-page: 105 year: 1989 ident: ref6 article-title: Some ideal secret sharing schemes publication-title: J Combin Math Combin Comput – ident: ref21 doi: 10.1515/jmc.2010.004 – ident: ref10 doi: 10.1007/s001459900029 – ident: ref30 doi: 10.1109/18.887867 – ident: ref15 doi: 10.1049/ip-ifs:20060081 – ident: ref16 doi: 10.1023/A:1021852421716 |
| SSID | ssj0014512 |
| Score | 2.2997334 |
| Snippet | Hierarchical secret sharing is among the most natural generalizations of threshold secret sharing, and it has attracted a lot of attention since the invention... |
| SourceID | csuc proquest pascalfrancis crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3273 |
| SubjectTerms | 90 Operations research, mathematical programming 90B Operations research and management science 90C Mathematical programming Applied sciences Bismuth Boolean polymatroids Classificació AMS Code Division Multiple Access Construction Cryptography Electronic mail Exact sciences and technology Government hierarchical secret sharing ideal secret sharing schemes Information sharing Information theory Information, signal and communications theory integer polymatroids Integers Inventions Investigació operativa Joints Matemàtiques i estadística Mathematical analysis multi partite secret sharing multipartite secret sharing Operations research Periodic structures Ports Programació (Matemàtica) Programming (Mathematics) secret sharing Telecommunications and information theory Thresholds Vectors weighted secret sharing schemes weighted threshold secret sharing Àrees temàtiques de la UPC |
| Title | Ideal Hierarchical Secret Sharing Schemes |
| URI | https://ieeexplore.ieee.org/document/6138912 https://www.proquest.com/docview/1009331793 https://www.proquest.com/docview/1022901956 https://recercat.cat/handle/2072/288361 |
| Volume | 58 |
| WOSCitedRecordID | wos000303204900047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9654 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014512 issn: 0018-9448 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9QwDLbGiYfxwOAGojCmIvEyRLkmaZL2ESGmTUITEgfaW5Smrpg07tC1t98_O-0VJhASD5XaJk2bOI7tOv4M8FqYWlckyrKmbMqsaHgdLPI6ExKNbutShYil9-2TvbgoLy-rz3vwdoqFQcS4-Qzf8Wn05TfrsOVfZQsTvWq04N6z1g6xWpPHoNBiQAYXxMBkc-xcknm1WJ4vB6zOiFauijsiaBa6bRhTq_DGSN_R2LRDUos_1ucodE4P_u9zH8HDUblM3w-z4THs4WoOB7vEDenIx3N48BsK4Rz2f-XbPYST84ZUx_TsigOTY56U6_QLq5Z9ytjO9AA18x1_YPcEvp5-XH44y8Z0CllQlekzaRR60ZYltkhGgvU6BJSFoZtatLnHmnRXrUuU0gtjSm9rqX1dN4230oRCPYXZar3CZ5C2njhXy1YY2xDT51WtFJlaeYsKm-BtAovdCLswYo1zyotrF22OvHJEE8c0cSNNEjiZnvg54Gz8o-4bJpojkYCb4HvHENnTBR8yt9JxHmUjEjhkykyNjkRJ4PgOqadyqUuGvFcJHO1o70a27hjguaKe0pqWwKupmBiSvSx-hest12EIfQ7DfP73V7-AfeqNHHZNHsGs32zxJdwPN_1VtzmOs_oW2Azxpg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED5NHRLjYYMORLYxgsTLEFljJ3aSR4SYWlEqJAram-U4FzFptKhJ-f3cOWlgAiHxECmJHSf2-Xx3Od93AC-FLlVBoiyq8iqP0orXwTQuIyFRq7rME-ex9L7Ms8Uiv74uPu7B6yEWBhH95jO85FPvy6_Wbsu_yibae9Vowd1XaSpFF601-AxSJTpscEEsTFbHzikZF5PlbNmhdXq88iS9I4RGrtm6PrkKb420DY1O3aW1-GOF9mLn6uj_PvghHPbqZfimmw-PYA9XYzjapW4Ie04ew4PfcAjHcPAr4-4xXMwqUh7D6Q2HJvtMKbfhJ1Yu25DRnekBauYrfsPmMXy-erd8O436hAqRSwrdRlInaEWd51gjmQmZVc6hTDXdVKKOLZakvSqVo5RWaJ3brJTKlmVV2UxqlyZPYLRar_AphLUl3lWyFjqriO3jokwSMrbiGhOsnM0CmOxG2LgebZyTXtwab3XEhSGaGKaJ6WkSwMXwxPcOaeMfdV8x0QwJBdw42xoGyR4u-JBxJg1nUtYigGOmzNBoT5QAzu-QeiiXKmfQ-ySAsx3tTc_YDUM8F9RTWtUCeDEUE0uyn8WucL3lOgyiz4GYJ39_9XO4P11-mJv5bPH-FA6oZ7LbQ3kGo3azxWdwz_1ob5rNuZ_hPwGNpfTt |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ideal+Hierarchical+Secret+Sharing+Schemes&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Farras%2C+Oriol&rft.au=Padro%2C+Carles&rft.date=2012-05-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=58&rft.issue=5&rft.spage=3273&rft.epage=3286&rft_id=info:doi/10.1109%2FTIT.2011.2182034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIT_2011_2182034 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |