A novel framework for automated water level estimation using CCTV imagery in Yongseong Agricultural Reservoir, South Korea
The study region is Yongseong Reservoir, located in Gyeongsangbuk-do, South Korea, a small agricultural reservoir primarily used for irrigation and is subject to pronounced hydrological seasonality. This study proposes a novel framework for estimating water levels in ungauged agricultural reservoirs...
Uloženo v:
| Vydáno v: | Journal of hydrology. Regional studies Ročník 61; s. 102631 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.10.2025
Elsevier |
| Témata: | |
| ISSN: | 2214-5818, 2214-5818 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The study region is Yongseong Reservoir, located in Gyeongsangbuk-do, South Korea, a small agricultural reservoir primarily used for irrigation and is subject to pronounced hydrological seasonality.
This study proposes a novel framework for estimating water levels in ungauged agricultural reservoirs using images from CCTVs originally installed for security purposes. The method integrates a U-Net-based water-body segmentation model with four machine learning regression algorithms (support vector regression, SVR; random forest, RF; extreme gradient boosting, XGB; and light gradient boosting machine, LGBM) to predict reservoir water levels from segmented water pixel counts. Importantly, we assess the potential of region of interest (ROI) filtering to enhance prediction accuracy, demonstrating that surveillance camera imagery can be effectively repurposed for hydrological monitoring in data-scarce environments.
The results revealed that ROI filtering significantly improved prediction performance, increasing R² by 10–20 % and reducing root mean squared error by up to 0.197 (for RF). The RF model achieved the highest overall accuracy (R² = 0.964), while SVR performed best during no temporal variations. XGB and LGBM showed balanced residuals but slightly underestimated water levels during peak fluctuations. This study demonstrates the feasibility of image-based water-level estimation in ungauged agricultural reservoirs using security CCTVs. The results underscore the importance of spatial input refinement (ROI filtering) for reliable hydrological modeling.
[Display omitted]
•A framework for water levels estimation using security CCTV imagery was proposed.•U-Net-based water-body segmentation model was integrated with ML models.•ROI filtering demonstrated potential improvement in predictive model performance.•Although RF achieved the highest overall, SVR performed best during smaller variation.•XGB and LGBM slightly underestimated water levels during peak fluctuations. |
|---|---|
| AbstractList | The study region is Yongseong Reservoir, located in Gyeongsangbuk-do, South Korea, a small agricultural reservoir primarily used for irrigation and is subject to pronounced hydrological seasonality.
This study proposes a novel framework for estimating water levels in ungauged agricultural reservoirs using images from CCTVs originally installed for security purposes. The method integrates a U-Net-based water-body segmentation model with four machine learning regression algorithms (support vector regression, SVR; random forest, RF; extreme gradient boosting, XGB; and light gradient boosting machine, LGBM) to predict reservoir water levels from segmented water pixel counts. Importantly, we assess the potential of region of interest (ROI) filtering to enhance prediction accuracy, demonstrating that surveillance camera imagery can be effectively repurposed for hydrological monitoring in data-scarce environments.
The results revealed that ROI filtering significantly improved prediction performance, increasing R² by 10–20 % and reducing root mean squared error by up to 0.197 (for RF). The RF model achieved the highest overall accuracy (R² = 0.964), while SVR performed best during no temporal variations. XGB and LGBM showed balanced residuals but slightly underestimated water levels during peak fluctuations. This study demonstrates the feasibility of image-based water-level estimation in ungauged agricultural reservoirs using security CCTVs. The results underscore the importance of spatial input refinement (ROI filtering) for reliable hydrological modeling.
[Display omitted]
•A framework for water levels estimation using security CCTV imagery was proposed.•U-Net-based water-body segmentation model was integrated with ML models.•ROI filtering demonstrated potential improvement in predictive model performance.•Although RF achieved the highest overall, SVR performed best during smaller variation.•XGB and LGBM slightly underestimated water levels during peak fluctuations. The study region is Yongseong Reservoir, located in Gyeongsangbuk-do, South Korea, a small agricultural reservoir primarily used for irrigation and is subject to pronounced hydrological seasonality. This study proposes a novel framework for estimating water levels in ungauged agricultural reservoirs using images from CCTVs originally installed for security purposes. The method integrates a U-Net-based water-body segmentation model with four machine learning regression algorithms (support vector regression, SVR; random forest, RF; extreme gradient boosting, XGB; and light gradient boosting machine, LGBM) to predict reservoir water levels from segmented water pixel counts. Importantly, we assess the potential of region of interest (ROI) filtering to enhance prediction accuracy, demonstrating that surveillance camera imagery can be effectively repurposed for hydrological monitoring in data-scarce environments. The results revealed that ROI filtering significantly improved prediction performance, increasing R² by 10–20 % and reducing root mean squared error by up to 0.197 (for RF). The RF model achieved the highest overall accuracy (R² = 0.964), while SVR performed best during no temporal variations. XGB and LGBM showed balanced residuals but slightly underestimated water levels during peak fluctuations. This study demonstrates the feasibility of image-based water-level estimation in ungauged agricultural reservoirs using security CCTVs. The results underscore the importance of spatial input refinement (ROI filtering) for reliable hydrological modeling. Study region: The study region is Yongseong Reservoir, located in Gyeongsangbuk-do, South Korea, a small agricultural reservoir primarily used for irrigation and is subject to pronounced hydrological seasonality. Study focus: This study proposes a novel framework for estimating water levels in ungauged agricultural reservoirs using images from CCTVs originally installed for security purposes. The method integrates a U-Net-based water-body segmentation model with four machine learning regression algorithms (support vector regression, SVR; random forest, RF; extreme gradient boosting, XGB; and light gradient boosting machine, LGBM) to predict reservoir water levels from segmented water pixel counts. Importantly, we assess the potential of region of interest (ROI) filtering to enhance prediction accuracy, demonstrating that surveillance camera imagery can be effectively repurposed for hydrological monitoring in data-scarce environments. New hydrological insights for the region: The results revealed that ROI filtering significantly improved prediction performance, increasing R² by 10–20 % and reducing root mean squared error by up to 0.197 (for RF). The RF model achieved the highest overall accuracy (R² = 0.964), while SVR performed best during no temporal variations. XGB and LGBM showed balanced residuals but slightly underestimated water levels during peak fluctuations. This study demonstrates the feasibility of image-based water-level estimation in ungauged agricultural reservoirs using security CCTVs. The results underscore the importance of spatial input refinement (ROI filtering) for reliable hydrological modeling. |
| ArticleNumber | 102631 |
| Author | Kwon, Soon Ho Lim, Suhyun Lee, Seungyub |
| Author_xml | – sequence: 1 givenname: Soon Ho orcidid: 0000-0002-6022-0406 surname: Kwon fullname: Kwon, Soon Ho email: rnjstnsgh90@gmail.com – sequence: 2 givenname: Suhyun surname: Lim fullname: Lim, Suhyun email: suhyun091011@gmail.com – sequence: 3 givenname: Seungyub orcidid: 0000-0001-7732-6525 surname: Lee fullname: Lee, Seungyub email: seungyub.lee@hnu.kr |
| BookMark | eNp9UU2LFDEQbWQF13X_gKccPThjPqbTHfAyDH4sLgi6Cp5CTVLdm7YnWSvds6y_3owt4kkIlcqj3kvx3tPqLKaIVfVc8LXgQr8a1jjQ7VpyWRdAaiUeVedSis2qbkV79k__pLrMeeCci7Zpjebn1c8ti-mII-sIDnif6DvrEjGYp3SACT27L5XYiKcZzFMoaEiRzTnEnu12N19ZgXqkBxYi-5Zin7EUtu0puHmcZoKRfcKMdEyBXrLPaZ5u2YdECM-qxx2MGS__3BfVl7dvbnbvV9cf313tttcrp4yeVkJy4yWKRjcaNxzr8jKdd3wP2DqlOu1r50W34W7ftB0IJ7UAz9FAOdqri-pq0fUJBntHZV96sAmC_Q0k6i3QFNyIlusGleEAKOuNUxra2simNmA8b1q1L1ovFq07Sj_m4oc9hOxwHCFimrNVsinWCqV5GZXLqKOUM2H392vB7Sk3O9hTbvaUm11yK6TXCwmLIceAZLMLGB36QOimsnH4H_0XKGCj9Q |
| Cites_doi | 10.1016/j.jhydrol.2020.124819 10.1175/1520-0434(1996)011<0003:TFAASE>2.0.CO;2 10.1016/j.jhydrol.2018.11.069 10.1016/j.jhydrol.2019.124293 10.1029/2011WR010962 10.1016/j.jclepro.2024.141228 10.1007/s11269-014-0773-1 10.1109/BigData.2017.8258373 10.1016/j.ijforecast.2006.03.001 10.1016/j.agwat.2022.108091 10.1088/1748-9326/ac78f8 10.3390/app14188317 10.1109/JSTARS.2023.3333969 10.1016/j.jhydrol.2021.126559 10.1016/j.rineng.2024.102215 10.1007/s10462-025-11186-x 10.1016/j.eswa.2008.06.046 10.1002/hyp.13740 10.1016/j.jhydrol.2017.09.007 10.3390/w11091934 10.1016/j.scitotenv.2023.167718 10.1016/j.isprsjprs.2019.10.017 10.1016/j.jhydrol.2004.10.008 10.1029/2020WR027608 10.3390/app11209691 10.1016/j.envsoft.2022.105586 10.3390/hydrology9030048 10.5194/hess-25-4435-2021 10.5194/isprs-archives-XLII-2-W16-273-2019 10.1016/j.neucom.2015.12.114 10.1080/01431161.2020.1723817 10.3390/w15173118 10.1029/2018WR023913 10.1016/j.rse.2024.114360 10.1007/s40808-022-01403-9 10.1016/j.jhydrol.2020.124901 10.1016/j.jhydrol.2018.08.050 10.1007/s11269-023-03714-7 10.1007/s12665-024-11435-2 10.1002/hyp.7535 10.1002/jcp.29804 10.3354/cr030079 10.1016/j.jvcir.2021.103141 10.1145/2939672.2939785 10.1007/s00500-022-07296-1 10.1016/j.jhydrol.2021.126380 10.1023/A:1010933404324 10.1016/j.isprsjprs.2017.11.004 10.1016/j.asej.2024.102854 10.1007/s00521-020-05172-3 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors |
| Copyright_xml | – notice: 2025 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 DOA |
| DOI | 10.1016/j.ejrh.2025.102631 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic Directory of Open Access Journals |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals - DOAJ (NTUSG) url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2214-5818 |
| ExternalDocumentID | oai_doaj_org_article_067e390aae254c36a8592759a9d0783b 10_1016_j_ejrh_2025_102631 S2214581825004562 |
| GeographicLocations | South Korea |
| GeographicLocations_xml | – name: South Korea |
| GroupedDBID | 0R~ 4.4 457 5VS 6I. AAEDT AAEDW AAFTH AAHBH AAIKJ AALRI AAXUO AAYWO ABMAC ACGFS ADBBV ADEZE ADVLN AEXQZ AFJKZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV EBS EJD FDB GROUPED_DOAJ IPNFZ KQ8 M41 M~E O9- OK1 RIG ROL SSZ AAYXX CITATION 7S9 L.6 |
| ID | FETCH-LOGICAL-c396t-1209d2e17676e40e59d29fdc0bae8c33f6d5cd1f40cb78fa1c261ad0e9ae9a6d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001541004000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2214-5818 |
| IngestDate | Fri Oct 03 12:52:32 EDT 2025 Fri Nov 14 18:43:31 EST 2025 Thu Nov 20 00:46:52 EST 2025 Sat Nov 22 16:51:03 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Water level estimation Region of interest Machine-learning regression Agricultural reservoirs CCTV imagery |
| Language | English |
| License | This is an open access article under the CC BY-NC license. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c396t-1209d2e17676e40e59d29fdc0bae8c33f6d5cd1f40cb78fa1c261ad0e9ae9a6d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-7732-6525 0000-0002-6022-0406 |
| OpenAccessLink | https://doaj.org/article/067e390aae254c36a8592759a9d0783b |
| PQID | 3271871360 |
| PQPubID | 24069 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_067e390aae254c36a8592759a9d0783b proquest_miscellaneous_3271871360 crossref_primary_10_1016_j_ejrh_2025_102631 elsevier_sciencedirect_doi_10_1016_j_ejrh_2025_102631 |
| PublicationCentury | 2000 |
| PublicationDate | October 2025 2025-10-00 20251001 2025-10-01 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: October 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of hydrology. Regional studies |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Wu, Tzeng, Lin (bib58) 2009; 36 Cao, Tian, Liu, Wang (bib6) 2024; 14 Li, Shu, Lin, Zhang, Yan, Liu (bib28) 2024; 444 Wieland, Fichtner, Martinis, Groth, Krullikowski, Plank, Motagh (bib54) 2024; 17 Ni, Wang, Wu, Wang, Tao, Zhang, Liu (bib39) 2020; 586 Zhang, Lin, Peng, Wang, Yang, Sorooshian, Liu, Zhuang (bib66) 2018; 565 Wieland, Martinis (bib56) 2020; 41 Murphy (bib36) 1996; 11 Karunanayake, Gunathilake, Rathnayake (bib19) 2020; 2020 Lopez-Fuentes, Rossi, Skinnemoen (bib31) 2017 Oppel, Schumann (bib40) 2020; 34 Tyralis, Papacharalampous, Langousis (bib51) 2021; 33 Khozani, Banadkooki, Ehteram, Ahmed, El-Shafie (bib22) 2022; 348 Mazrooei, Sankarasubramanian, Wood (bib34) 2021; 600 Xu, Zheng, Ma, Yang, Liu, Wang (bib60) 2021; 13 De Myttenaere, Golden, Le Grand, Rossi (bib11) 2016; 192 Elzain, Abdalla, Al-Maktoumi, Kacimov, Eltayeb (bib14) 2024; 640 Beyaztas, Shang, Yaseen (bib2) 2021; 598 Hyndman, Koehler (bib17) 2006; 22 Zhu, Hrnjica, Ptak, Choiński, Sivakumar (bib68) 2020; 585 Samadianfard, Jarhan, Salwana, Mosavi, Shamshirband, Akib (bib45) 2019; 11 Xu, Ma, Wei, Huang, Li, Zheng, Wang (bib59) 2022; 17 Eltner, Elias, Sardemann, Spieler (bib13) 2018; 54 Ke, Meng, Finley, Wang, Chen, Ma, Ye, Liu (bib20) 2017; 30 Kedam, Tiwari, Kumar, Khedher, Salem (bib21) 2024; 22 Lee, Kim, Li, Yoon, Song, Kim, Kang (bib26) 2024; 313 Yu, Wang, Wu, Chen, Wang, Qin (bib64) 2020; 582 Chen, Vojinovic, Lo, Lee (bib9) 2023; 15 Han, Feng, Wang, Cheng (bib16) 2018; 145 Zhang, Kang, Gao, Chen, Cheng, Song, Li (bib65) 2023; 277 Yilmaz, Tosunoğlu, Kaplan, Üneş, Hanay (bib63) 2022; 8 . Breiman (bib4) 2001; 45 Coulibaly, Baldwin (bib10) 2005; 307 Eltner, Bressan, Akiyama, Gonçalves, Marcato Junior (bib12) 2021; 57 Gupta, Kling (bib15) 2011; 47 Willmott, Matsuura (bib57) 2005; 30 Jamali, Davidsson, Khoshkangini, Ljungqvist, Mihailescu (bib18) 2025; 58 Blanch, Wagner, Hedel, Grundmann, Eltner (bib3) 2022 Nasir, Zainuddin, Harun, Kamal, Ismail (bib37) 2024; 83 Sasaki (bib46) 2007; 1 Tambe, Talbar, Chavan (bib50) 2021; 77 Nearing, Klotz, Sampson, Kratzert, Gauch, Frame, Gilon, Shalev, Nevo (bib38) 2021; 2021 Yaseen, Sulaiman, Deo, Chau (bib62) 2019; 569 Ronneberger, Fischer, Brox (bib44) 2015; 18 Pathan, Sidek, Basri, Hassan, Khebir, Omar, Khambali, Torres, Ahmed (bib41) 2024; 15 Yaseen, Ebtehaj, Bonakdari, Deo, Mehr, Mohtar, Diop, El-shafie, Singh (bib61) 2017; 554 Kwon, Ha, Lee (bib24) 2023; 56 Wada, K., Buijs, M., Zhang, C.N., Kubovčík, M., Myczko, A., Zhu, L., Yamaguchi, N., 2021. Labelme: Image polygonal annotation with python v4. 6.0. Chathuranika, Gunathilake, Azamathulla, Rathnayake (bib7) 2022; 9 Kwon, Lee (bib25) 2024; 38 Korea Rural Community Corporation (KRCC), 2022. Annual report for hydrological survey of agricultural reservoirs. Alsulamy, Kumar, Kisi, Kedam, Rathnayake (bib1) 2025 Li, Liu, Zhang, Han, Shu (bib27) 2024; 906 Liang, Li, Tsai, Chen, Jafari (bib29) 2023; 160 Vandaele, Dance, Ojha (bib52) 2021; 25 Liang, Liu (bib30) 2020; 159 Qu, Gu, Zhang, Liang, Zhang, Zhan (bib42) 2024; 14 Wieland, Martinis, Li (bib55) 2019; 42 Song, Zhao, Fu, Zhu, Li (bib48) 2023; 15 Shola, Huaming, Kejian (bib47) 2024; 954 Maity, Bhagwat, Bhatnagar (bib32) 2010; 24 Chen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 785-794. Zhou, Zhao, Puig, Fidler, Barriuso, Torralba (bib67) 2017 Rehamnia, Mahdavi-Meymand (bib43) 2025 Muhadi, Abdullah, Bejo, Mahadi, Mijic (bib35) 2021; 11 Tahmasebi, Khosh, Esmaeilzadeh (bib49) 2020; 235 Malekpour, Malekpoor (bib33) 2022; 26 Buyukyildiz, Tezel, Yilmaz (bib5) 2014; 28 Kedam (10.1016/j.ejrh.2025.102631_bib21) 2024; 22 Tyralis (10.1016/j.ejrh.2025.102631_bib51) 2021; 33 Beyaztas (10.1016/j.ejrh.2025.102631_bib2) 2021; 598 Ni (10.1016/j.ejrh.2025.102631_bib39) 2020; 586 Elzain (10.1016/j.ejrh.2025.102631_bib14) 2024; 640 Qu (10.1016/j.ejrh.2025.102631_bib42) 2024; 14 Sasaki (10.1016/j.ejrh.2025.102631_bib46) 2007; 1 Yilmaz (10.1016/j.ejrh.2025.102631_bib63) 2022; 8 Ke (10.1016/j.ejrh.2025.102631_bib20) 2017; 30 Lopez-Fuentes (10.1016/j.ejrh.2025.102631_bib31) 2017 Zhu (10.1016/j.ejrh.2025.102631_bib68) 2020; 585 Muhadi (10.1016/j.ejrh.2025.102631_bib35) 2021; 11 Nasir (10.1016/j.ejrh.2025.102631_bib37) 2024; 83 Gupta (10.1016/j.ejrh.2025.102631_bib15) 2011; 47 Chathuranika (10.1016/j.ejrh.2025.102631_bib7) 2022; 9 Zhou (10.1016/j.ejrh.2025.102631_bib67) 2017 Wieland (10.1016/j.ejrh.2025.102631_bib54) 2024; 17 Buyukyildiz (10.1016/j.ejrh.2025.102631_bib5) 2014; 28 Zhang (10.1016/j.ejrh.2025.102631_bib65) 2023; 277 Rehamnia (10.1016/j.ejrh.2025.102631_bib43) 2025 Willmott (10.1016/j.ejrh.2025.102631_bib57) 2005; 30 Wu (10.1016/j.ejrh.2025.102631_bib58) 2009; 36 Kwon (10.1016/j.ejrh.2025.102631_bib25) 2024; 38 Li (10.1016/j.ejrh.2025.102631_bib27) 2024; 906 10.1016/j.ejrh.2025.102631_bib8 Wieland (10.1016/j.ejrh.2025.102631_bib56) 2020; 41 Pathan (10.1016/j.ejrh.2025.102631_bib41) 2024; 15 Wieland (10.1016/j.ejrh.2025.102631_bib55) 2019; 42 Malekpour (10.1016/j.ejrh.2025.102631_bib33) 2022; 26 Han (10.1016/j.ejrh.2025.102631_bib16) 2018; 145 Tahmasebi (10.1016/j.ejrh.2025.102631_bib49) 2020; 235 Yu (10.1016/j.ejrh.2025.102631_bib64) 2020; 582 Blanch (10.1016/j.ejrh.2025.102631_bib3) 2022 Breiman (10.1016/j.ejrh.2025.102631_bib4) 2001; 45 10.1016/j.ejrh.2025.102631_bib23 Khozani (10.1016/j.ejrh.2025.102631_bib22) 2022; 348 Chen (10.1016/j.ejrh.2025.102631_bib9) 2023; 15 Eltner (10.1016/j.ejrh.2025.102631_bib13) 2018; 54 Maity (10.1016/j.ejrh.2025.102631_bib32) 2010; 24 Yaseen (10.1016/j.ejrh.2025.102631_bib61) 2017; 554 Kwon (10.1016/j.ejrh.2025.102631_bib24) 2023; 56 Mazrooei (10.1016/j.ejrh.2025.102631_bib34) 2021; 600 Hyndman (10.1016/j.ejrh.2025.102631_bib17) 2006; 22 Eltner (10.1016/j.ejrh.2025.102631_bib12) 2021; 57 Ronneberger (10.1016/j.ejrh.2025.102631_bib44) 2015; 18 10.1016/j.ejrh.2025.102631_bib53 Xu (10.1016/j.ejrh.2025.102631_bib60) 2021; 13 Vandaele (10.1016/j.ejrh.2025.102631_bib52) 2021; 25 Karunanayake (10.1016/j.ejrh.2025.102631_bib19) 2020; 2020 Zhang (10.1016/j.ejrh.2025.102631_bib66) 2018; 565 Coulibaly (10.1016/j.ejrh.2025.102631_bib10) 2005; 307 Liang (10.1016/j.ejrh.2025.102631_bib30) 2020; 159 Oppel (10.1016/j.ejrh.2025.102631_bib40) 2020; 34 Shola (10.1016/j.ejrh.2025.102631_bib47) 2024; 954 Yaseen (10.1016/j.ejrh.2025.102631_bib62) 2019; 569 Alsulamy (10.1016/j.ejrh.2025.102631_bib1) 2025 Samadianfard (10.1016/j.ejrh.2025.102631_bib45) 2019; 11 Xu (10.1016/j.ejrh.2025.102631_bib59) 2022; 17 De Myttenaere (10.1016/j.ejrh.2025.102631_bib11) 2016; 192 Liang (10.1016/j.ejrh.2025.102631_bib29) 2023; 160 Cao (10.1016/j.ejrh.2025.102631_bib6) 2024; 14 Li (10.1016/j.ejrh.2025.102631_bib28) 2024; 444 Murphy (10.1016/j.ejrh.2025.102631_bib36) 1996; 11 Tambe (10.1016/j.ejrh.2025.102631_bib50) 2021; 77 Jamali (10.1016/j.ejrh.2025.102631_bib18) 2025; 58 Lee (10.1016/j.ejrh.2025.102631_bib26) 2024; 313 Nearing (10.1016/j.ejrh.2025.102631_bib38) 2021; 2021 Song (10.1016/j.ejrh.2025.102631_bib48) 2023; 15 |
| References_xml | – volume: 14 year: 2024 ident: bib6 article-title: Water body extraction from high spatial resolution remote sensing images based on enhanced U-Net and multi-scale information fusion publication-title: Sci. Rep. – volume: 586 year: 2020 ident: bib39 article-title: Streamflow forecasting using extreme gradient boosting model coupled with Gaussian mixture model publication-title: J. Hydrol. – volume: 77 year: 2021 ident: bib50 article-title: Deep multi-feature learning architecture for water body segmentation from satellite images publication-title: J. Vis. Commun. Image Represent – volume: 11 start-page: 3 year: 1996 end-page: 20 ident: bib36 article-title: The Finley affair: A signal event in the history of forecast verification publication-title: Weather Forecast – volume: 598 year: 2021 ident: bib2 article-title: A functional autoregressive model based on exogenous hydrometeorological variables for river flow prediction publication-title: J. Hydrol. – volume: 83 start-page: 125 year: 2024 ident: bib37 article-title: Streamflow projection under CMIP6 climate scenarios using a support vector regression: a case study of the Kurau River Basin of Northern Malaysia publication-title: Environ. Earth Sci. – volume: 22 year: 2024 ident: bib21 article-title: River stream flow prediction through advanced machine learning models for enhanced accuracy publication-title: Results Eng. – volume: 1 start-page: 1 year: 2007 end-page: 5 ident: bib46 article-title: The truth of the F-measure publication-title: Teach. Tutor Mater. – volume: 30 start-page: 79 year: 2005 end-page: 82 ident: bib57 article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance publication-title: Clim. Res. – volume: 58 start-page: 1 year: 2025 end-page: 89 ident: bib18 article-title: Context in object detection: a systematic literature review publication-title: Artif. Intell. Rev. – reference: Korea Rural Community Corporation (KRCC), 2022. Annual report for hydrological survey of agricultural reservoirs. – volume: 47 year: 2011 ident: bib15 article-title: On typical range, sensitivity, and normalization of Mean Squared Error and Nash-Sutcliffe Efficiency type metrics publication-title: J. Water Resour. Res. – volume: 554 start-page: 263 year: 2017 end-page: 276 ident: bib61 article-title: Novel approach for streamflow forecasting using a hybrid ANFIS-FFA model publication-title: J. Hydrol. – volume: 17 year: 2022 ident: bib59 article-title: Satellite observed recent rising water levels of global lakes and reservoirs publication-title: Environ. Res. Lett. – volume: 38 start-page: 1165 year: 2024 end-page: 1180 ident: bib25 article-title: Deep learning to recognize water level for agriculture reservoir using CCTV imagery publication-title: Water Resour. Manag. – volume: 15 year: 2024 ident: bib41 article-title: Comparative assessment of rainfall-based water level prediction using machine learning (ML) techniques publication-title: Ain Shams Eng. J. – volume: 313 year: 2024 ident: bib26 article-title: A new model for high-accuracy monitoring of water level changes via enhanced water boundary detection and reliability-based weighting averaging publication-title: Remote Sens. Environ. – volume: 640 year: 2024 ident: bib14 article-title: A novel approach to forecast water table rise in arid regions using stacked ensemble machine learning and deep artificial intelligence models publication-title: J. Hydrol. – volume: 160 year: 2023 ident: bib29 article-title: V-FloodNet: a video segmentation system for urban flood detection and quantification publication-title: Environ. Model. Softw. – volume: 24 start-page: 917 year: 2010 end-page: 923 ident: bib32 article-title: Potential of support vector regression for prediction of monthly streamflow using endogenous property publication-title: Hydrol. Process – volume: 569 start-page: 387 year: 2019 end-page: 408 ident: bib62 article-title: An enhanced extreme learning machine model for river flow forecasting: state-of-the-art, practical applications in water resource engineering area and future research direction publication-title: J. Hydrol. – start-page: 1 year: 2025 end-page: 16 ident: bib43 article-title: Advancing reservoir water level predictions: Evaluating conventional, ensemble and integrated swarm machine learning approaches publication-title: Water Resour. Manag. – volume: 235 start-page: 9211 year: 2020 end-page: 9229 ident: bib49 article-title: The outlook for diagnostic purposes of the 2019-novel coronavirus disease publication-title: J. Cell. Physiol. – year: 2022 ident: bib3 article-title: Towards automatic real-time water level estimation using surveillance cameras publication-title: EGU Gen. Assem. Conf. – volume: 11 start-page: 1934 year: 2019 ident: bib45 article-title: Support vector regression integrated with fruit fly optimization algorithm for river flow forecasting in Lake Urmia Basin publication-title: Water – volume: 13 start-page: 2744 year: 2021 ident: bib60 article-title: Global estimation and assessment of monthly lake/reservoir water level changes using ICESat-2 ATL13 products publication-title: Remote Sens. – volume: 2020 year: 2020 ident: bib19 article-title: Inflow forecast of iranamadu reservoir, Sri Lanka, under projected climate scenarios using artificial neural networks publication-title: Appl. Comput. Intell. Soft Comput. – volume: 2021 start-page: 1 year: 2021 end-page: 25 ident: bib38 article-title: Data assimilation and autoregression for using near-real-time streamflow observations in long short-term memory networks publication-title: Hydrol. Earth Syst. Sci. Discuss. – volume: 17 start-page: 1084 year: 2024 end-page: 1099 ident: bib54 article-title: S1S2-Water: A global dataset for semantic segmentation of water bodies from Sentinel-1 and Sentinel-2 satellite images publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens – volume: 36 start-page: 4725 year: 2009 end-page: 4735 ident: bib58 article-title: A Novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression publication-title: Expert Syst. Appl. – volume: 28 start-page: 4747 year: 2014 end-page: 4763 ident: bib5 article-title: Estimation of the change in lake water level by artificial intelligence methods publication-title: Water Resour. Manag. – volume: 56 start-page: 245 year: 2023 end-page: 259 ident: bib24 article-title: A study on the application of the agricultural reservoir water level recognition model using CCTV image data publication-title: J. Korea Water Resour. Assoc. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib4 article-title: Random forests publication-title: Mach. Learn – volume: 906 year: 2024 ident: bib27 article-title: Bayesian model averaging by combining deep learning models to improve lake water level prediction publication-title: Sci. Total Environ. – start-page: 1 year: 2025 end-page: 20 ident: bib1 article-title: Enhancing water level prediction using ensemble machine learning models: a comparative analysis publication-title: Water Resour. Manag. – volume: 57 year: 2021 ident: bib12 article-title: Using deep learning for automatic water stage measurements publication-title: J. Water Resour. Res. – volume: 159 start-page: 53 year: 2020 end-page: 62 ident: bib30 article-title: A local thresholding approach to flood water delineation using Sentinel-1 SAR imagery publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 600 year: 2021 ident: bib34 article-title: Potential in improving monthly streamflow forecasting through variational assimilation of observed streamflow publication-title: J. Hydrol. – volume: 348 year: 2022 ident: bib22 article-title: Combining autoregressive integrated moving average with Long Short-Term Memory neural network and optimisation algorithms for predicting ground water level publication-title: J. Clean. Prod. – volume: 145 start-page: 23 year: 2018 end-page: 43 ident: bib16 article-title: A semi-supervised generative framework with deep learning features for high-resolution remote sensing image scene classification publication-title: ISPRS J. Photogramm. Remote Sens. – reference: Chen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 785-794. – volume: 34 start-page: 2450 year: 2020 end-page: 2465 ident: bib40 article-title: Machine learning based identification of dominant controls on runoff dynamics publication-title: Hydrol. Process – volume: 14 start-page: 8317 year: 2024 ident: bib42 article-title: Research on critical quality feature recognition and quality prediction method of machining based on information entropy and XGboost hyperparameter optimization publication-title: Appl. Sci. – volume: 954 year: 2024 ident: bib47 article-title: Review of machine learning methods for sea level change modeling and prediction publication-title: Sci. Total Environ. – volume: 11 start-page: 9691 year: 2021 ident: bib35 article-title: Deep learning semantic segmentation for water level estimation using surveillance camera publication-title: Appl. Sci. – volume: 25 start-page: 4435 year: 2021 end-page: 4453 ident: bib52 article-title: Deep learning for automated river-level monitoring through river-camera images: an approach based on water segmentation and transfer learning publication-title: Hydrol. Earth Syst. Sci. – volume: 307 start-page: 164 year: 2005 end-page: 174 ident: bib10 article-title: Nonstationary hydrological time series forecasting using nonlinear dynamic methods publication-title: J. Hydrol. – volume: 26 start-page: 8897 year: 2022 end-page: 8909 ident: bib33 article-title: Reservoir water level forecasting using wavelet support vector regression (WSVR) based on teaching learning-based optimization algorithm (TLBO) publication-title: Soft Comput. – volume: 444 year: 2024 ident: bib28 article-title: Comparison of strategies for multistep-ahead lake water level forecasting using deep learning models publication-title: J. Clean. Prod. – volume: 30 year: 2017 ident: bib20 article-title: Lightgbm: A highly efficient gradient boosting decision tree publication-title: Adv. Neural Inf. Process. Syst. – volume: 42 start-page: 273 year: 2019 end-page: 277 ident: bib55 article-title: Semantic segmentation of water bodies in multi-spectral satellite images for situational awareness in emergency response publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. – volume: 582 year: 2020 ident: bib64 article-title: Comparison of support vector regression and extreme gradient boosting for decomposition-based data-driven 10-day streamflow forecasting publication-title: J. Hydrol. – reference: Wada, K., Buijs, M., Zhang, C.N., Kubovčík, M., Myczko, A., Zhu, L., Yamaguchi, N., 2021. Labelme: Image polygonal annotation with python v4. 6.0. – start-page: 633 year: 2017 end-page: 641 ident: bib67 article-title: Scene parsing through ade20k dataset publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. – volume: 15 start-page: 4655 year: 2023 ident: bib48 article-title: Water area extraction and water level prediction of Dongting lake based on Sentinel-1 dual-polarization data decomposition publication-title: Remote Sens. – reference: . – start-page: 3746 year: 2017 end-page: 3749 ident: bib31 article-title: River segmentation for flood monitoring publication-title: 2017 IEEE Int. Conf. Big Data (Big Data) – volume: 33 start-page: 3053 year: 2021 end-page: 3068 ident: bib51 article-title: Super ensemble learning for daily streamflow forecasting: Large-scale demonstration and comparison with multiple machine learning algorithms publication-title: Neural Comput. Appl. – volume: 54 year: 2018 ident: bib13 article-title: Automatic image-based water stage measurement for long-term observations in ungauged catchments publication-title: J. Water Resour. Res. – volume: 8 start-page: 5547 year: 2022 end-page: 5563 ident: bib63 article-title: Predicting monthly streamflow using artificial neural networks and wavelet neural networks models publication-title: Model. Earth Syst. Environ. – volume: 18 start-page: 234 year: 2015 end-page: 241 ident: bib44 article-title: U-net: convolutional networks for biomedical image segmentation publication-title: Med. Image Comput. Comput. Assist. Interv. MICCAI 2015 18th Int. Conf. Proc. Part III – volume: 565 start-page: 720 year: 2018 end-page: 736 ident: bib66 article-title: Modeling and simulating of reservoir operation using the artificial neural network, support vector regression, deep learning algorithm publication-title: J. Hydrol. – volume: 192 start-page: 38 year: 2016 end-page: 48 ident: bib11 article-title: Mean absolute percentage error for regression models publication-title: Neurocomputing – volume: 585 year: 2020 ident: bib68 article-title: Forecasting of water level in multiple temperate lakes using machine learning models publication-title: J. Hydrol. – volume: 9 start-page: 48 year: 2022 ident: bib7 article-title: Evaluation of future streamflow in the upper part of the Nilwala River Basin (Sri Lanka) under climate change publication-title: Hydrology – volume: 41 start-page: 4742 year: 2020 end-page: 4756 ident: bib56 article-title: Large-scale surface water change observed by Sentinel-2 during the 2018 drought in Germany publication-title: Int. J. Remote Sens. – volume: 277 year: 2023 ident: bib65 article-title: Optimal reservoir operation and risk analysis of agriculture water supply considering encounter uncertainty of precipitation in irrigation area and runoff from upstream publication-title: Agric. Water Manag – volume: 22 start-page: 679 year: 2006 end-page: 688 ident: bib17 article-title: Another look at measures of forecast accuracy publication-title: Int. J. Forecast – volume: 15 start-page: 3118 year: 2023 ident: bib9 article-title: Groundwater level prediction with deep learning methods publication-title: Water – volume: 585 year: 2020 ident: 10.1016/j.ejrh.2025.102631_bib68 article-title: Forecasting of water level in multiple temperate lakes using machine learning models publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124819 – volume: 11 start-page: 3 issue: 1 year: 1996 ident: 10.1016/j.ejrh.2025.102631_bib36 article-title: The Finley affair: A signal event in the history of forecast verification publication-title: Weather Forecast doi: 10.1175/1520-0434(1996)011<0003:TFAASE>2.0.CO;2 – volume: 954 year: 2024 ident: 10.1016/j.ejrh.2025.102631_bib47 article-title: Review of machine learning methods for sea level change modeling and prediction publication-title: Sci. Total Environ. – volume: 569 start-page: 387 year: 2019 ident: 10.1016/j.ejrh.2025.102631_bib62 article-title: An enhanced extreme learning machine model for river flow forecasting: state-of-the-art, practical applications in water resource engineering area and future research direction publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.11.069 – volume: 582 year: 2020 ident: 10.1016/j.ejrh.2025.102631_bib64 article-title: Comparison of support vector regression and extreme gradient boosting for decomposition-based data-driven 10-day streamflow forecasting publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.124293 – volume: 640 year: 2024 ident: 10.1016/j.ejrh.2025.102631_bib14 article-title: A novel approach to forecast water table rise in arid regions using stacked ensemble machine learning and deep artificial intelligence models publication-title: J. Hydrol. – start-page: 1 year: 2025 ident: 10.1016/j.ejrh.2025.102631_bib1 article-title: Enhancing water level prediction using ensemble machine learning models: a comparative analysis publication-title: Water Resour. Manag. – volume: 47 issue: 10 year: 2011 ident: 10.1016/j.ejrh.2025.102631_bib15 article-title: On typical range, sensitivity, and normalization of Mean Squared Error and Nash-Sutcliffe Efficiency type metrics publication-title: J. Water Resour. Res. doi: 10.1029/2011WR010962 – volume: 444 year: 2024 ident: 10.1016/j.ejrh.2025.102631_bib28 article-title: Comparison of strategies for multistep-ahead lake water level forecasting using deep learning models publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2024.141228 – volume: 28 start-page: 4747 year: 2014 ident: 10.1016/j.ejrh.2025.102631_bib5 article-title: Estimation of the change in lake water level by artificial intelligence methods publication-title: Water Resour. Manag. doi: 10.1007/s11269-014-0773-1 – start-page: 3746 year: 2017 ident: 10.1016/j.ejrh.2025.102631_bib31 article-title: River segmentation for flood monitoring publication-title: 2017 IEEE Int. Conf. Big Data (Big Data) doi: 10.1109/BigData.2017.8258373 – volume: 22 start-page: 679 issue: 4 year: 2006 ident: 10.1016/j.ejrh.2025.102631_bib17 article-title: Another look at measures of forecast accuracy publication-title: Int. J. Forecast doi: 10.1016/j.ijforecast.2006.03.001 – volume: 277 year: 2023 ident: 10.1016/j.ejrh.2025.102631_bib65 article-title: Optimal reservoir operation and risk analysis of agriculture water supply considering encounter uncertainty of precipitation in irrigation area and runoff from upstream publication-title: Agric. Water Manag doi: 10.1016/j.agwat.2022.108091 – volume: 17 year: 2022 ident: 10.1016/j.ejrh.2025.102631_bib59 article-title: Satellite observed recent rising water levels of global lakes and reservoirs publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ac78f8 – start-page: 1 year: 2025 ident: 10.1016/j.ejrh.2025.102631_bib43 article-title: Advancing reservoir water level predictions: Evaluating conventional, ensemble and integrated swarm machine learning approaches publication-title: Water Resour. Manag. – volume: 14 start-page: 8317 issue: 18 year: 2024 ident: 10.1016/j.ejrh.2025.102631_bib42 article-title: Research on critical quality feature recognition and quality prediction method of machining based on information entropy and XGboost hyperparameter optimization publication-title: Appl. Sci. doi: 10.3390/app14188317 – volume: 17 start-page: 1084 year: 2024 ident: 10.1016/j.ejrh.2025.102631_bib54 article-title: S1S2-Water: A global dataset for semantic segmentation of water bodies from Sentinel-1 and Sentinel-2 satellite images publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens doi: 10.1109/JSTARS.2023.3333969 – volume: 600 year: 2021 ident: 10.1016/j.ejrh.2025.102631_bib34 article-title: Potential in improving monthly streamflow forecasting through variational assimilation of observed streamflow publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126559 – volume: 13 start-page: 2744 year: 2021 ident: 10.1016/j.ejrh.2025.102631_bib60 article-title: Global estimation and assessment of monthly lake/reservoir water level changes using ICESat-2 ATL13 products publication-title: Remote Sens. – volume: 22 year: 2024 ident: 10.1016/j.ejrh.2025.102631_bib21 article-title: River stream flow prediction through advanced machine learning models for enhanced accuracy publication-title: Results Eng. doi: 10.1016/j.rineng.2024.102215 – volume: 58 start-page: 1 issue: 6 year: 2025 ident: 10.1016/j.ejrh.2025.102631_bib18 article-title: Context in object detection: a systematic literature review publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-025-11186-x – ident: 10.1016/j.ejrh.2025.102631_bib23 – volume: 36 start-page: 4725 year: 2009 ident: 10.1016/j.ejrh.2025.102631_bib58 article-title: A Novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.06.046 – volume: 34 start-page: 2450 year: 2020 ident: 10.1016/j.ejrh.2025.102631_bib40 article-title: Machine learning based identification of dominant controls on runoff dynamics publication-title: Hydrol. Process doi: 10.1002/hyp.13740 – volume: 554 start-page: 263 year: 2017 ident: 10.1016/j.ejrh.2025.102631_bib61 article-title: Novel approach for streamflow forecasting using a hybrid ANFIS-FFA model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2017.09.007 – volume: 56 start-page: 245 issue: 4 year: 2023 ident: 10.1016/j.ejrh.2025.102631_bib24 article-title: A study on the application of the agricultural reservoir water level recognition model using CCTV image data publication-title: J. Korea Water Resour. Assoc. – volume: 2020 issue: 1 year: 2020 ident: 10.1016/j.ejrh.2025.102631_bib19 article-title: Inflow forecast of iranamadu reservoir, Sri Lanka, under projected climate scenarios using artificial neural networks publication-title: Appl. Comput. Intell. Soft Comput. – volume: 11 start-page: 1934 issue: 9 year: 2019 ident: 10.1016/j.ejrh.2025.102631_bib45 article-title: Support vector regression integrated with fruit fly optimization algorithm for river flow forecasting in Lake Urmia Basin publication-title: Water doi: 10.3390/w11091934 – start-page: 633 year: 2017 ident: 10.1016/j.ejrh.2025.102631_bib67 article-title: Scene parsing through ade20k dataset publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. – volume: 30 year: 2017 ident: 10.1016/j.ejrh.2025.102631_bib20 article-title: Lightgbm: A highly efficient gradient boosting decision tree publication-title: Adv. Neural Inf. Process. Syst. – volume: 906 year: 2024 ident: 10.1016/j.ejrh.2025.102631_bib27 article-title: Bayesian model averaging by combining deep learning models to improve lake water level prediction publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2023.167718 – volume: 159 start-page: 53 year: 2020 ident: 10.1016/j.ejrh.2025.102631_bib30 article-title: A local thresholding approach to flood water delineation using Sentinel-1 SAR imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.10.017 – ident: 10.1016/j.ejrh.2025.102631_bib53 – volume: 307 start-page: 164 year: 2005 ident: 10.1016/j.ejrh.2025.102631_bib10 article-title: Nonstationary hydrological time series forecasting using nonlinear dynamic methods publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2004.10.008 – volume: 57 issue: 3 year: 2021 ident: 10.1016/j.ejrh.2025.102631_bib12 article-title: Using deep learning for automatic water stage measurements publication-title: J. Water Resour. Res. doi: 10.1029/2020WR027608 – volume: 11 start-page: 9691 issue: 20 year: 2021 ident: 10.1016/j.ejrh.2025.102631_bib35 article-title: Deep learning semantic segmentation for water level estimation using surveillance camera publication-title: Appl. Sci. doi: 10.3390/app11209691 – volume: 160 year: 2023 ident: 10.1016/j.ejrh.2025.102631_bib29 article-title: V-FloodNet: a video segmentation system for urban flood detection and quantification publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2022.105586 – volume: 9 start-page: 48 year: 2022 ident: 10.1016/j.ejrh.2025.102631_bib7 article-title: Evaluation of future streamflow in the upper part of the Nilwala River Basin (Sri Lanka) under climate change publication-title: Hydrology doi: 10.3390/hydrology9030048 – volume: 25 start-page: 4435 issue: 8 year: 2021 ident: 10.1016/j.ejrh.2025.102631_bib52 article-title: Deep learning for automated river-level monitoring through river-camera images: an approach based on water segmentation and transfer learning publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-25-4435-2021 – volume: 42 start-page: 273 year: 2019 ident: 10.1016/j.ejrh.2025.102631_bib55 article-title: Semantic segmentation of water bodies in multi-spectral satellite images for situational awareness in emergency response publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprs-archives-XLII-2-W16-273-2019 – volume: 348 year: 2022 ident: 10.1016/j.ejrh.2025.102631_bib22 article-title: Combining autoregressive integrated moving average with Long Short-Term Memory neural network and optimisation algorithms for predicting ground water level publication-title: J. Clean. Prod. – year: 2022 ident: 10.1016/j.ejrh.2025.102631_bib3 article-title: Towards automatic real-time water level estimation using surveillance cameras publication-title: EGU Gen. Assem. Conf. – volume: 192 start-page: 38 year: 2016 ident: 10.1016/j.ejrh.2025.102631_bib11 article-title: Mean absolute percentage error for regression models publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.12.114 – volume: 41 start-page: 4742 year: 2020 ident: 10.1016/j.ejrh.2025.102631_bib56 article-title: Large-scale surface water change observed by Sentinel-2 during the 2018 drought in Germany publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2020.1723817 – volume: 15 start-page: 3118 issue: 17 year: 2023 ident: 10.1016/j.ejrh.2025.102631_bib9 article-title: Groundwater level prediction with deep learning methods publication-title: Water doi: 10.3390/w15173118 – volume: 54 issue: 12 year: 2018 ident: 10.1016/j.ejrh.2025.102631_bib13 article-title: Automatic image-based water stage measurement for long-term observations in ungauged catchments publication-title: J. Water Resour. Res. doi: 10.1029/2018WR023913 – volume: 313 year: 2024 ident: 10.1016/j.ejrh.2025.102631_bib26 article-title: A new model for high-accuracy monitoring of water level changes via enhanced water boundary detection and reliability-based weighting averaging publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2024.114360 – volume: 1 start-page: 1 issue: 5 year: 2007 ident: 10.1016/j.ejrh.2025.102631_bib46 article-title: The truth of the F-measure publication-title: Teach. Tutor Mater. – volume: 2021 start-page: 1 year: 2021 ident: 10.1016/j.ejrh.2025.102631_bib38 article-title: Data assimilation and autoregression for using near-real-time streamflow observations in long short-term memory networks publication-title: Hydrol. Earth Syst. Sci. Discuss. – volume: 8 start-page: 5547 year: 2022 ident: 10.1016/j.ejrh.2025.102631_bib63 article-title: Predicting monthly streamflow using artificial neural networks and wavelet neural networks models publication-title: Model. Earth Syst. Environ. doi: 10.1007/s40808-022-01403-9 – volume: 14 issue: 1 year: 2024 ident: 10.1016/j.ejrh.2025.102631_bib6 article-title: Water body extraction from high spatial resolution remote sensing images based on enhanced U-Net and multi-scale information fusion publication-title: Sci. Rep. – volume: 586 year: 2020 ident: 10.1016/j.ejrh.2025.102631_bib39 article-title: Streamflow forecasting using extreme gradient boosting model coupled with Gaussian mixture model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.124901 – volume: 565 start-page: 720 year: 2018 ident: 10.1016/j.ejrh.2025.102631_bib66 article-title: Modeling and simulating of reservoir operation using the artificial neural network, support vector regression, deep learning algorithm publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.08.050 – volume: 38 start-page: 1165 issue: 3 year: 2024 ident: 10.1016/j.ejrh.2025.102631_bib25 article-title: Deep learning to recognize water level for agriculture reservoir using CCTV imagery publication-title: Water Resour. Manag. doi: 10.1007/s11269-023-03714-7 – volume: 83 start-page: 125 issue: 4 year: 2024 ident: 10.1016/j.ejrh.2025.102631_bib37 article-title: Streamflow projection under CMIP6 climate scenarios using a support vector regression: a case study of the Kurau River Basin of Northern Malaysia publication-title: Environ. Earth Sci. doi: 10.1007/s12665-024-11435-2 – volume: 24 start-page: 917 year: 2010 ident: 10.1016/j.ejrh.2025.102631_bib32 article-title: Potential of support vector regression for prediction of monthly streamflow using endogenous property publication-title: Hydrol. Process doi: 10.1002/hyp.7535 – volume: 235 start-page: 9211 issue: 12 year: 2020 ident: 10.1016/j.ejrh.2025.102631_bib49 article-title: The outlook for diagnostic purposes of the 2019-novel coronavirus disease publication-title: J. Cell. Physiol. doi: 10.1002/jcp.29804 – volume: 30 start-page: 79 issue: 1 year: 2005 ident: 10.1016/j.ejrh.2025.102631_bib57 article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance publication-title: Clim. Res. doi: 10.3354/cr030079 – volume: 77 year: 2021 ident: 10.1016/j.ejrh.2025.102631_bib50 article-title: Deep multi-feature learning architecture for water body segmentation from satellite images publication-title: J. Vis. Commun. Image Represent doi: 10.1016/j.jvcir.2021.103141 – ident: 10.1016/j.ejrh.2025.102631_bib8 doi: 10.1145/2939672.2939785 – volume: 26 start-page: 8897 year: 2022 ident: 10.1016/j.ejrh.2025.102631_bib33 article-title: Reservoir water level forecasting using wavelet support vector regression (WSVR) based on teaching learning-based optimization algorithm (TLBO) publication-title: Soft Comput. doi: 10.1007/s00500-022-07296-1 – volume: 18 start-page: 234 year: 2015 ident: 10.1016/j.ejrh.2025.102631_bib44 article-title: U-net: convolutional networks for biomedical image segmentation publication-title: Med. Image Comput. Comput. Assist. Interv. MICCAI 2015 18th Int. Conf. Proc. Part III – volume: 15 start-page: 4655 year: 2023 ident: 10.1016/j.ejrh.2025.102631_bib48 article-title: Water area extraction and water level prediction of Dongting lake based on Sentinel-1 dual-polarization data decomposition publication-title: Remote Sens. – volume: 598 year: 2021 ident: 10.1016/j.ejrh.2025.102631_bib2 article-title: A functional autoregressive model based on exogenous hydrometeorological variables for river flow prediction publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126380 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.ejrh.2025.102631_bib4 article-title: Random forests publication-title: Mach. Learn doi: 10.1023/A:1010933404324 – volume: 145 start-page: 23 year: 2018 ident: 10.1016/j.ejrh.2025.102631_bib16 article-title: A semi-supervised generative framework with deep learning features for high-resolution remote sensing image scene classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.11.004 – volume: 15 issue: 7 year: 2024 ident: 10.1016/j.ejrh.2025.102631_bib41 article-title: Comparative assessment of rainfall-based water level prediction using machine learning (ML) techniques publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2024.102854 – volume: 33 start-page: 3053 year: 2021 ident: 10.1016/j.ejrh.2025.102631_bib51 article-title: Super ensemble learning for daily streamflow forecasting: Large-scale demonstration and comparison with multiple machine learning algorithms publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05172-3 |
| SSID | ssj0001878960 |
| Score | 2.3273883 |
| Snippet | The study region is Yongseong Reservoir, located in Gyeongsangbuk-do, South Korea, a small agricultural reservoir primarily used for irrigation and is subject... Study region: The study region is Yongseong Reservoir, located in Gyeongsangbuk-do, South Korea, a small agricultural reservoir primarily used for irrigation... |
| SourceID | doaj proquest crossref elsevier |
| SourceType | Open Website Aggregation Database Index Database Publisher |
| StartPage | 102631 |
| SubjectTerms | Agricultural reservoirs automation cameras CCTV imagery hydrology irrigation Machine-learning regression monitoring prediction Region of interest regression analysis South Korea Water level estimation |
| Title | A novel framework for automated water level estimation using CCTV imagery in Yongseong Agricultural Reservoir, South Korea |
| URI | https://dx.doi.org/10.1016/j.ejrh.2025.102631 https://www.proquest.com/docview/3271871360 https://doaj.org/article/067e390aae254c36a8592759a9d0783b |
| Volume | 61 |
| WOSCitedRecordID | wos001541004000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals - DOAJ (NTUSG) customDbUrl: eissn: 2214-5818 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001878960 issn: 2214-5818 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2214-5818 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001878960 issn: 2214-5818 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhBNJLSZOWbtKGKeSWmvqxlq3jdkkItA05pCE9CVkabTcEO3gfoT30t3fGskPSQ3vpRWBhJKEZa76xvpkR4qgYY1rFvoospioa-xSj0posMpVx3nhlqi626upzcX5eXl-ri0elvpgTFtIDh437QKcpkl9uDJIrYzNpylylRa6McnwDVfHpGxfqkTPV_V0pi5KweR8lEwhdeNPy7UOac7oCmSVPLFGXsP-JQfrjaO7szemOeN4DRZiEBb4QG1jviu2-Zvn3H3vi5wTqZo234Ad-FRAABbNaNoRC0cE9tS3cMisIOJdGCFIEZrrPYDq9vALq4phomNfwralnC6QGJrP2IR8HMDGvXTfz9j10xfbgU0Mo86X4enpyOT2L-koKkc2UXEYcIOtSTApZSBzHmNOT8s7GlcHSZpmXLrcu8ePYVkXpTWLJsTIuRk7dbaTLXonNuqnxtYBE2pLGcCSBnA2gsWgqRUcF5ugIrIzE8bCr-i4kzNADk-xGsww0y0AHGYzER974hzc52XXXQSqgexXQ_1KBkcgHsekeNwQ8QEPN_zr5u0HGmj4qvikxNTarhc5SMtnkvst4_38s8EA842kDB_CN2Fy2K3wrtux6OV-0h53mUvvl18lvyvT2AA |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+framework+for+automated+water+level+estimation+using+CCTV+imagery+in+Yongseong+Agricultural+Reservoir%2C+South+Korea&rft.jtitle=Journal+of+hydrology.+Regional+studies&rft.au=Soon+Ho+Kwon&rft.au=Suhyun+Lim&rft.au=Seungyub+Lee&rft.date=2025-10-01&rft.pub=Elsevier&rft.eissn=2214-5818&rft.volume=61&rft.spage=102631&rft_id=info:doi/10.1016%2Fj.ejrh.2025.102631&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_067e390aae254c36a8592759a9d0783b |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-5818&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-5818&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-5818&client=summon |