A novel framework for automated water level estimation using CCTV imagery in Yongseong Agricultural Reservoir, South Korea

The study region is Yongseong Reservoir, located in Gyeongsangbuk-do, South Korea, a small agricultural reservoir primarily used for irrigation and is subject to pronounced hydrological seasonality. This study proposes a novel framework for estimating water levels in ungauged agricultural reservoirs...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of hydrology. Regional studies Ročník 61; s. 102631
Hlavní autoři: Kwon, Soon Ho, Lim, Suhyun, Lee, Seungyub
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.10.2025
Elsevier
Témata:
ISSN:2214-5818, 2214-5818
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The study region is Yongseong Reservoir, located in Gyeongsangbuk-do, South Korea, a small agricultural reservoir primarily used for irrigation and is subject to pronounced hydrological seasonality. This study proposes a novel framework for estimating water levels in ungauged agricultural reservoirs using images from CCTVs originally installed for security purposes. The method integrates a U-Net-based water-body segmentation model with four machine learning regression algorithms (support vector regression, SVR; random forest, RF; extreme gradient boosting, XGB; and light gradient boosting machine, LGBM) to predict reservoir water levels from segmented water pixel counts. Importantly, we assess the potential of region of interest (ROI) filtering to enhance prediction accuracy, demonstrating that surveillance camera imagery can be effectively repurposed for hydrological monitoring in data-scarce environments. The results revealed that ROI filtering significantly improved prediction performance, increasing R² by 10–20 % and reducing root mean squared error by up to 0.197 (for RF). The RF model achieved the highest overall accuracy (R² = 0.964), while SVR performed best during no temporal variations. XGB and LGBM showed balanced residuals but slightly underestimated water levels during peak fluctuations. This study demonstrates the feasibility of image-based water-level estimation in ungauged agricultural reservoirs using security CCTVs. The results underscore the importance of spatial input refinement (ROI filtering) for reliable hydrological modeling. [Display omitted] •A framework for water levels estimation using security CCTV imagery was proposed.•U-Net-based water-body segmentation model was integrated with ML models.•ROI filtering demonstrated potential improvement in predictive model performance.•Although RF achieved the highest overall, SVR performed best during smaller variation.•XGB and LGBM slightly underestimated water levels during peak fluctuations.
AbstractList The study region is Yongseong Reservoir, located in Gyeongsangbuk-do, South Korea, a small agricultural reservoir primarily used for irrigation and is subject to pronounced hydrological seasonality. This study proposes a novel framework for estimating water levels in ungauged agricultural reservoirs using images from CCTVs originally installed for security purposes. The method integrates a U-Net-based water-body segmentation model with four machine learning regression algorithms (support vector regression, SVR; random forest, RF; extreme gradient boosting, XGB; and light gradient boosting machine, LGBM) to predict reservoir water levels from segmented water pixel counts. Importantly, we assess the potential of region of interest (ROI) filtering to enhance prediction accuracy, demonstrating that surveillance camera imagery can be effectively repurposed for hydrological monitoring in data-scarce environments. The results revealed that ROI filtering significantly improved prediction performance, increasing R² by 10–20 % and reducing root mean squared error by up to 0.197 (for RF). The RF model achieved the highest overall accuracy (R² = 0.964), while SVR performed best during no temporal variations. XGB and LGBM showed balanced residuals but slightly underestimated water levels during peak fluctuations. This study demonstrates the feasibility of image-based water-level estimation in ungauged agricultural reservoirs using security CCTVs. The results underscore the importance of spatial input refinement (ROI filtering) for reliable hydrological modeling. [Display omitted] •A framework for water levels estimation using security CCTV imagery was proposed.•U-Net-based water-body segmentation model was integrated with ML models.•ROI filtering demonstrated potential improvement in predictive model performance.•Although RF achieved the highest overall, SVR performed best during smaller variation.•XGB and LGBM slightly underestimated water levels during peak fluctuations.
The study region is Yongseong Reservoir, located in Gyeongsangbuk-do, South Korea, a small agricultural reservoir primarily used for irrigation and is subject to pronounced hydrological seasonality. This study proposes a novel framework for estimating water levels in ungauged agricultural reservoirs using images from CCTVs originally installed for security purposes. The method integrates a U-Net-based water-body segmentation model with four machine learning regression algorithms (support vector regression, SVR; random forest, RF; extreme gradient boosting, XGB; and light gradient boosting machine, LGBM) to predict reservoir water levels from segmented water pixel counts. Importantly, we assess the potential of region of interest (ROI) filtering to enhance prediction accuracy, demonstrating that surveillance camera imagery can be effectively repurposed for hydrological monitoring in data-scarce environments. The results revealed that ROI filtering significantly improved prediction performance, increasing R² by 10–20 % and reducing root mean squared error by up to 0.197 (for RF). The RF model achieved the highest overall accuracy (R² = 0.964), while SVR performed best during no temporal variations. XGB and LGBM showed balanced residuals but slightly underestimated water levels during peak fluctuations. This study demonstrates the feasibility of image-based water-level estimation in ungauged agricultural reservoirs using security CCTVs. The results underscore the importance of spatial input refinement (ROI filtering) for reliable hydrological modeling.
Study region: The study region is Yongseong Reservoir, located in Gyeongsangbuk-do, South Korea, a small agricultural reservoir primarily used for irrigation and is subject to pronounced hydrological seasonality. Study focus: This study proposes a novel framework for estimating water levels in ungauged agricultural reservoirs using images from CCTVs originally installed for security purposes. The method integrates a U-Net-based water-body segmentation model with four machine learning regression algorithms (support vector regression, SVR; random forest, RF; extreme gradient boosting, XGB; and light gradient boosting machine, LGBM) to predict reservoir water levels from segmented water pixel counts. Importantly, we assess the potential of region of interest (ROI) filtering to enhance prediction accuracy, demonstrating that surveillance camera imagery can be effectively repurposed for hydrological monitoring in data-scarce environments. New hydrological insights for the region: The results revealed that ROI filtering significantly improved prediction performance, increasing R² by 10–20 % and reducing root mean squared error by up to 0.197 (for RF). The RF model achieved the highest overall accuracy (R² = 0.964), while SVR performed best during no temporal variations. XGB and LGBM showed balanced residuals but slightly underestimated water levels during peak fluctuations. This study demonstrates the feasibility of image-based water-level estimation in ungauged agricultural reservoirs using security CCTVs. The results underscore the importance of spatial input refinement (ROI filtering) for reliable hydrological modeling.
ArticleNumber 102631
Author Kwon, Soon Ho
Lim, Suhyun
Lee, Seungyub
Author_xml – sequence: 1
  givenname: Soon Ho
  orcidid: 0000-0002-6022-0406
  surname: Kwon
  fullname: Kwon, Soon Ho
  email: rnjstnsgh90@gmail.com
– sequence: 2
  givenname: Suhyun
  surname: Lim
  fullname: Lim, Suhyun
  email: suhyun091011@gmail.com
– sequence: 3
  givenname: Seungyub
  orcidid: 0000-0001-7732-6525
  surname: Lee
  fullname: Lee, Seungyub
  email: seungyub.lee@hnu.kr
BookMark eNp9UU2LFDEQbWQF13X_gKccPThjPqbTHfAyDH4sLgi6Cp5CTVLdm7YnWSvds6y_3owt4kkIlcqj3kvx3tPqLKaIVfVc8LXgQr8a1jjQ7VpyWRdAaiUeVedSis2qbkV79k__pLrMeeCci7Zpjebn1c8ti-mII-sIDnif6DvrEjGYp3SACT27L5XYiKcZzFMoaEiRzTnEnu12N19ZgXqkBxYi-5Zin7EUtu0puHmcZoKRfcKMdEyBXrLPaZ5u2YdECM-qxx2MGS__3BfVl7dvbnbvV9cf313tttcrp4yeVkJy4yWKRjcaNxzr8jKdd3wP2DqlOu1r50W34W7ftB0IJ7UAz9FAOdqri-pq0fUJBntHZV96sAmC_Q0k6i3QFNyIlusGleEAKOuNUxra2simNmA8b1q1L1ovFq07Sj_m4oc9hOxwHCFimrNVsinWCqV5GZXLqKOUM2H392vB7Sk3O9hTbvaUm11yK6TXCwmLIceAZLMLGB36QOimsnH4H_0XKGCj9Q
Cites_doi 10.1016/j.jhydrol.2020.124819
10.1175/1520-0434(1996)011<0003:TFAASE>2.0.CO;2
10.1016/j.jhydrol.2018.11.069
10.1016/j.jhydrol.2019.124293
10.1029/2011WR010962
10.1016/j.jclepro.2024.141228
10.1007/s11269-014-0773-1
10.1109/BigData.2017.8258373
10.1016/j.ijforecast.2006.03.001
10.1016/j.agwat.2022.108091
10.1088/1748-9326/ac78f8
10.3390/app14188317
10.1109/JSTARS.2023.3333969
10.1016/j.jhydrol.2021.126559
10.1016/j.rineng.2024.102215
10.1007/s10462-025-11186-x
10.1016/j.eswa.2008.06.046
10.1002/hyp.13740
10.1016/j.jhydrol.2017.09.007
10.3390/w11091934
10.1016/j.scitotenv.2023.167718
10.1016/j.isprsjprs.2019.10.017
10.1016/j.jhydrol.2004.10.008
10.1029/2020WR027608
10.3390/app11209691
10.1016/j.envsoft.2022.105586
10.3390/hydrology9030048
10.5194/hess-25-4435-2021
10.5194/isprs-archives-XLII-2-W16-273-2019
10.1016/j.neucom.2015.12.114
10.1080/01431161.2020.1723817
10.3390/w15173118
10.1029/2018WR023913
10.1016/j.rse.2024.114360
10.1007/s40808-022-01403-9
10.1016/j.jhydrol.2020.124901
10.1016/j.jhydrol.2018.08.050
10.1007/s11269-023-03714-7
10.1007/s12665-024-11435-2
10.1002/hyp.7535
10.1002/jcp.29804
10.3354/cr030079
10.1016/j.jvcir.2021.103141
10.1145/2939672.2939785
10.1007/s00500-022-07296-1
10.1016/j.jhydrol.2021.126380
10.1023/A:1010933404324
10.1016/j.isprsjprs.2017.11.004
10.1016/j.asej.2024.102854
10.1007/s00521-020-05172-3
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOA
DOI 10.1016/j.ejrh.2025.102631
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals - DOAJ (NTUSG)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2214-5818
ExternalDocumentID oai_doaj_org_article_067e390aae254c36a8592759a9d0783b
10_1016_j_ejrh_2025_102631
S2214581825004562
GeographicLocations South Korea
GeographicLocations_xml – name: South Korea
GroupedDBID 0R~
4.4
457
5VS
6I.
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AALRI
AAXUO
AAYWO
ABMAC
ACGFS
ADBBV
ADEZE
ADVLN
AEXQZ
AFJKZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
IPNFZ
KQ8
M41
M~E
O9-
OK1
RIG
ROL
SSZ
AAYXX
CITATION
7S9
L.6
ID FETCH-LOGICAL-c396t-1209d2e17676e40e59d29fdc0bae8c33f6d5cd1f40cb78fa1c261ad0e9ae9a6d3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001541004000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2214-5818
IngestDate Fri Oct 03 12:52:32 EDT 2025
Fri Nov 14 18:43:31 EST 2025
Thu Nov 20 00:46:52 EST 2025
Sat Nov 22 16:51:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Water level estimation
Region of interest
Machine-learning regression
Agricultural reservoirs
CCTV imagery
Language English
License This is an open access article under the CC BY-NC license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-1209d2e17676e40e59d29fdc0bae8c33f6d5cd1f40cb78fa1c261ad0e9ae9a6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7732-6525
0000-0002-6022-0406
OpenAccessLink https://doaj.org/article/067e390aae254c36a8592759a9d0783b
PQID 3271871360
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_067e390aae254c36a8592759a9d0783b
proquest_miscellaneous_3271871360
crossref_primary_10_1016_j_ejrh_2025_102631
elsevier_sciencedirect_doi_10_1016_j_ejrh_2025_102631
PublicationCentury 2000
PublicationDate October 2025
2025-10-00
20251001
2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: October 2025
PublicationDecade 2020
PublicationTitle Journal of hydrology. Regional studies
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Wu, Tzeng, Lin (bib58) 2009; 36
Cao, Tian, Liu, Wang (bib6) 2024; 14
Li, Shu, Lin, Zhang, Yan, Liu (bib28) 2024; 444
Wieland, Fichtner, Martinis, Groth, Krullikowski, Plank, Motagh (bib54) 2024; 17
Ni, Wang, Wu, Wang, Tao, Zhang, Liu (bib39) 2020; 586
Zhang, Lin, Peng, Wang, Yang, Sorooshian, Liu, Zhuang (bib66) 2018; 565
Wieland, Martinis (bib56) 2020; 41
Murphy (bib36) 1996; 11
Karunanayake, Gunathilake, Rathnayake (bib19) 2020; 2020
Lopez-Fuentes, Rossi, Skinnemoen (bib31) 2017
Oppel, Schumann (bib40) 2020; 34
Tyralis, Papacharalampous, Langousis (bib51) 2021; 33
Khozani, Banadkooki, Ehteram, Ahmed, El-Shafie (bib22) 2022; 348
Mazrooei, Sankarasubramanian, Wood (bib34) 2021; 600
Xu, Zheng, Ma, Yang, Liu, Wang (bib60) 2021; 13
De Myttenaere, Golden, Le Grand, Rossi (bib11) 2016; 192
Elzain, Abdalla, Al-Maktoumi, Kacimov, Eltayeb (bib14) 2024; 640
Beyaztas, Shang, Yaseen (bib2) 2021; 598
Hyndman, Koehler (bib17) 2006; 22
Zhu, Hrnjica, Ptak, Choiński, Sivakumar (bib68) 2020; 585
Samadianfard, Jarhan, Salwana, Mosavi, Shamshirband, Akib (bib45) 2019; 11
Xu, Ma, Wei, Huang, Li, Zheng, Wang (bib59) 2022; 17
Eltner, Elias, Sardemann, Spieler (bib13) 2018; 54
Ke, Meng, Finley, Wang, Chen, Ma, Ye, Liu (bib20) 2017; 30
Kedam, Tiwari, Kumar, Khedher, Salem (bib21) 2024; 22
Lee, Kim, Li, Yoon, Song, Kim, Kang (bib26) 2024; 313
Yu, Wang, Wu, Chen, Wang, Qin (bib64) 2020; 582
Chen, Vojinovic, Lo, Lee (bib9) 2023; 15
Han, Feng, Wang, Cheng (bib16) 2018; 145
Zhang, Kang, Gao, Chen, Cheng, Song, Li (bib65) 2023; 277
Yilmaz, Tosunoğlu, Kaplan, Üneş, Hanay (bib63) 2022; 8
.
Breiman (bib4) 2001; 45
Coulibaly, Baldwin (bib10) 2005; 307
Eltner, Bressan, Akiyama, Gonçalves, Marcato Junior (bib12) 2021; 57
Gupta, Kling (bib15) 2011; 47
Willmott, Matsuura (bib57) 2005; 30
Jamali, Davidsson, Khoshkangini, Ljungqvist, Mihailescu (bib18) 2025; 58
Blanch, Wagner, Hedel, Grundmann, Eltner (bib3) 2022
Nasir, Zainuddin, Harun, Kamal, Ismail (bib37) 2024; 83
Sasaki (bib46) 2007; 1
Tambe, Talbar, Chavan (bib50) 2021; 77
Nearing, Klotz, Sampson, Kratzert, Gauch, Frame, Gilon, Shalev, Nevo (bib38) 2021; 2021
Yaseen, Sulaiman, Deo, Chau (bib62) 2019; 569
Ronneberger, Fischer, Brox (bib44) 2015; 18
Pathan, Sidek, Basri, Hassan, Khebir, Omar, Khambali, Torres, Ahmed (bib41) 2024; 15
Yaseen, Ebtehaj, Bonakdari, Deo, Mehr, Mohtar, Diop, El-shafie, Singh (bib61) 2017; 554
Kwon, Ha, Lee (bib24) 2023; 56
Wada, K., Buijs, M., Zhang, C.N., Kubovčík, M., Myczko, A., Zhu, L., Yamaguchi, N., 2021. Labelme: Image polygonal annotation with python v4. 6.0.
Chathuranika, Gunathilake, Azamathulla, Rathnayake (bib7) 2022; 9
Kwon, Lee (bib25) 2024; 38
Korea Rural Community Corporation (KRCC), 2022. Annual report for hydrological survey of agricultural reservoirs.
Alsulamy, Kumar, Kisi, Kedam, Rathnayake (bib1) 2025
Li, Liu, Zhang, Han, Shu (bib27) 2024; 906
Liang, Li, Tsai, Chen, Jafari (bib29) 2023; 160
Vandaele, Dance, Ojha (bib52) 2021; 25
Liang, Liu (bib30) 2020; 159
Qu, Gu, Zhang, Liang, Zhang, Zhan (bib42) 2024; 14
Wieland, Martinis, Li (bib55) 2019; 42
Song, Zhao, Fu, Zhu, Li (bib48) 2023; 15
Shola, Huaming, Kejian (bib47) 2024; 954
Maity, Bhagwat, Bhatnagar (bib32) 2010; 24
Chen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 785-794.
Zhou, Zhao, Puig, Fidler, Barriuso, Torralba (bib67) 2017
Rehamnia, Mahdavi-Meymand (bib43) 2025
Muhadi, Abdullah, Bejo, Mahadi, Mijic (bib35) 2021; 11
Tahmasebi, Khosh, Esmaeilzadeh (bib49) 2020; 235
Malekpour, Malekpoor (bib33) 2022; 26
Buyukyildiz, Tezel, Yilmaz (bib5) 2014; 28
Kedam (10.1016/j.ejrh.2025.102631_bib21) 2024; 22
Tyralis (10.1016/j.ejrh.2025.102631_bib51) 2021; 33
Beyaztas (10.1016/j.ejrh.2025.102631_bib2) 2021; 598
Ni (10.1016/j.ejrh.2025.102631_bib39) 2020; 586
Elzain (10.1016/j.ejrh.2025.102631_bib14) 2024; 640
Qu (10.1016/j.ejrh.2025.102631_bib42) 2024; 14
Sasaki (10.1016/j.ejrh.2025.102631_bib46) 2007; 1
Yilmaz (10.1016/j.ejrh.2025.102631_bib63) 2022; 8
Ke (10.1016/j.ejrh.2025.102631_bib20) 2017; 30
Lopez-Fuentes (10.1016/j.ejrh.2025.102631_bib31) 2017
Zhu (10.1016/j.ejrh.2025.102631_bib68) 2020; 585
Muhadi (10.1016/j.ejrh.2025.102631_bib35) 2021; 11
Nasir (10.1016/j.ejrh.2025.102631_bib37) 2024; 83
Gupta (10.1016/j.ejrh.2025.102631_bib15) 2011; 47
Chathuranika (10.1016/j.ejrh.2025.102631_bib7) 2022; 9
Zhou (10.1016/j.ejrh.2025.102631_bib67) 2017
Wieland (10.1016/j.ejrh.2025.102631_bib54) 2024; 17
Buyukyildiz (10.1016/j.ejrh.2025.102631_bib5) 2014; 28
Zhang (10.1016/j.ejrh.2025.102631_bib65) 2023; 277
Rehamnia (10.1016/j.ejrh.2025.102631_bib43) 2025
Willmott (10.1016/j.ejrh.2025.102631_bib57) 2005; 30
Wu (10.1016/j.ejrh.2025.102631_bib58) 2009; 36
Kwon (10.1016/j.ejrh.2025.102631_bib25) 2024; 38
Li (10.1016/j.ejrh.2025.102631_bib27) 2024; 906
10.1016/j.ejrh.2025.102631_bib8
Wieland (10.1016/j.ejrh.2025.102631_bib56) 2020; 41
Pathan (10.1016/j.ejrh.2025.102631_bib41) 2024; 15
Wieland (10.1016/j.ejrh.2025.102631_bib55) 2019; 42
Malekpour (10.1016/j.ejrh.2025.102631_bib33) 2022; 26
Han (10.1016/j.ejrh.2025.102631_bib16) 2018; 145
Tahmasebi (10.1016/j.ejrh.2025.102631_bib49) 2020; 235
Yu (10.1016/j.ejrh.2025.102631_bib64) 2020; 582
Blanch (10.1016/j.ejrh.2025.102631_bib3) 2022
Breiman (10.1016/j.ejrh.2025.102631_bib4) 2001; 45
10.1016/j.ejrh.2025.102631_bib23
Khozani (10.1016/j.ejrh.2025.102631_bib22) 2022; 348
Chen (10.1016/j.ejrh.2025.102631_bib9) 2023; 15
Eltner (10.1016/j.ejrh.2025.102631_bib13) 2018; 54
Maity (10.1016/j.ejrh.2025.102631_bib32) 2010; 24
Yaseen (10.1016/j.ejrh.2025.102631_bib61) 2017; 554
Kwon (10.1016/j.ejrh.2025.102631_bib24) 2023; 56
Mazrooei (10.1016/j.ejrh.2025.102631_bib34) 2021; 600
Hyndman (10.1016/j.ejrh.2025.102631_bib17) 2006; 22
Eltner (10.1016/j.ejrh.2025.102631_bib12) 2021; 57
Ronneberger (10.1016/j.ejrh.2025.102631_bib44) 2015; 18
10.1016/j.ejrh.2025.102631_bib53
Xu (10.1016/j.ejrh.2025.102631_bib60) 2021; 13
Vandaele (10.1016/j.ejrh.2025.102631_bib52) 2021; 25
Karunanayake (10.1016/j.ejrh.2025.102631_bib19) 2020; 2020
Zhang (10.1016/j.ejrh.2025.102631_bib66) 2018; 565
Coulibaly (10.1016/j.ejrh.2025.102631_bib10) 2005; 307
Liang (10.1016/j.ejrh.2025.102631_bib30) 2020; 159
Oppel (10.1016/j.ejrh.2025.102631_bib40) 2020; 34
Shola (10.1016/j.ejrh.2025.102631_bib47) 2024; 954
Yaseen (10.1016/j.ejrh.2025.102631_bib62) 2019; 569
Alsulamy (10.1016/j.ejrh.2025.102631_bib1) 2025
Samadianfard (10.1016/j.ejrh.2025.102631_bib45) 2019; 11
Xu (10.1016/j.ejrh.2025.102631_bib59) 2022; 17
De Myttenaere (10.1016/j.ejrh.2025.102631_bib11) 2016; 192
Liang (10.1016/j.ejrh.2025.102631_bib29) 2023; 160
Cao (10.1016/j.ejrh.2025.102631_bib6) 2024; 14
Li (10.1016/j.ejrh.2025.102631_bib28) 2024; 444
Murphy (10.1016/j.ejrh.2025.102631_bib36) 1996; 11
Tambe (10.1016/j.ejrh.2025.102631_bib50) 2021; 77
Jamali (10.1016/j.ejrh.2025.102631_bib18) 2025; 58
Lee (10.1016/j.ejrh.2025.102631_bib26) 2024; 313
Nearing (10.1016/j.ejrh.2025.102631_bib38) 2021; 2021
Song (10.1016/j.ejrh.2025.102631_bib48) 2023; 15
References_xml – volume: 14
  year: 2024
  ident: bib6
  article-title: Water body extraction from high spatial resolution remote sensing images based on enhanced U-Net and multi-scale information fusion
  publication-title: Sci. Rep.
– volume: 586
  year: 2020
  ident: bib39
  article-title: Streamflow forecasting using extreme gradient boosting model coupled with Gaussian mixture model
  publication-title: J. Hydrol.
– volume: 77
  year: 2021
  ident: bib50
  article-title: Deep multi-feature learning architecture for water body segmentation from satellite images
  publication-title: J. Vis. Commun. Image Represent
– volume: 11
  start-page: 3
  year: 1996
  end-page: 20
  ident: bib36
  article-title: The Finley affair: A signal event in the history of forecast verification
  publication-title: Weather Forecast
– volume: 598
  year: 2021
  ident: bib2
  article-title: A functional autoregressive model based on exogenous hydrometeorological variables for river flow prediction
  publication-title: J. Hydrol.
– volume: 83
  start-page: 125
  year: 2024
  ident: bib37
  article-title: Streamflow projection under CMIP6 climate scenarios using a support vector regression: a case study of the Kurau River Basin of Northern Malaysia
  publication-title: Environ. Earth Sci.
– volume: 22
  year: 2024
  ident: bib21
  article-title: River stream flow prediction through advanced machine learning models for enhanced accuracy
  publication-title: Results Eng.
– volume: 1
  start-page: 1
  year: 2007
  end-page: 5
  ident: bib46
  article-title: The truth of the F-measure
  publication-title: Teach. Tutor Mater.
– volume: 30
  start-page: 79
  year: 2005
  end-page: 82
  ident: bib57
  article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
  publication-title: Clim. Res.
– volume: 58
  start-page: 1
  year: 2025
  end-page: 89
  ident: bib18
  article-title: Context in object detection: a systematic literature review
  publication-title: Artif. Intell. Rev.
– reference: Korea Rural Community Corporation (KRCC), 2022. Annual report for hydrological survey of agricultural reservoirs.
– volume: 47
  year: 2011
  ident: bib15
  article-title: On typical range, sensitivity, and normalization of Mean Squared Error and Nash-Sutcliffe Efficiency type metrics
  publication-title: J. Water Resour. Res.
– volume: 554
  start-page: 263
  year: 2017
  end-page: 276
  ident: bib61
  article-title: Novel approach for streamflow forecasting using a hybrid ANFIS-FFA model
  publication-title: J. Hydrol.
– volume: 17
  year: 2022
  ident: bib59
  article-title: Satellite observed recent rising water levels of global lakes and reservoirs
  publication-title: Environ. Res. Lett.
– volume: 38
  start-page: 1165
  year: 2024
  end-page: 1180
  ident: bib25
  article-title: Deep learning to recognize water level for agriculture reservoir using CCTV imagery
  publication-title: Water Resour. Manag.
– volume: 15
  year: 2024
  ident: bib41
  article-title: Comparative assessment of rainfall-based water level prediction using machine learning (ML) techniques
  publication-title: Ain Shams Eng. J.
– volume: 313
  year: 2024
  ident: bib26
  article-title: A new model for high-accuracy monitoring of water level changes via enhanced water boundary detection and reliability-based weighting averaging
  publication-title: Remote Sens. Environ.
– volume: 640
  year: 2024
  ident: bib14
  article-title: A novel approach to forecast water table rise in arid regions using stacked ensemble machine learning and deep artificial intelligence models
  publication-title: J. Hydrol.
– volume: 160
  year: 2023
  ident: bib29
  article-title: V-FloodNet: a video segmentation system for urban flood detection and quantification
  publication-title: Environ. Model. Softw.
– volume: 24
  start-page: 917
  year: 2010
  end-page: 923
  ident: bib32
  article-title: Potential of support vector regression for prediction of monthly streamflow using endogenous property
  publication-title: Hydrol. Process
– volume: 569
  start-page: 387
  year: 2019
  end-page: 408
  ident: bib62
  article-title: An enhanced extreme learning machine model for river flow forecasting: state-of-the-art, practical applications in water resource engineering area and future research direction
  publication-title: J. Hydrol.
– start-page: 1
  year: 2025
  end-page: 16
  ident: bib43
  article-title: Advancing reservoir water level predictions: Evaluating conventional, ensemble and integrated swarm machine learning approaches
  publication-title: Water Resour. Manag.
– volume: 235
  start-page: 9211
  year: 2020
  end-page: 9229
  ident: bib49
  article-title: The outlook for diagnostic purposes of the 2019-novel coronavirus disease
  publication-title: J. Cell. Physiol.
– year: 2022
  ident: bib3
  article-title: Towards automatic real-time water level estimation using surveillance cameras
  publication-title: EGU Gen. Assem. Conf.
– volume: 11
  start-page: 1934
  year: 2019
  ident: bib45
  article-title: Support vector regression integrated with fruit fly optimization algorithm for river flow forecasting in Lake Urmia Basin
  publication-title: Water
– volume: 13
  start-page: 2744
  year: 2021
  ident: bib60
  article-title: Global estimation and assessment of monthly lake/reservoir water level changes using ICESat-2 ATL13 products
  publication-title: Remote Sens.
– volume: 2020
  year: 2020
  ident: bib19
  article-title: Inflow forecast of iranamadu reservoir, Sri Lanka, under projected climate scenarios using artificial neural networks
  publication-title: Appl. Comput. Intell. Soft Comput.
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 25
  ident: bib38
  article-title: Data assimilation and autoregression for using near-real-time streamflow observations in long short-term memory networks
  publication-title: Hydrol. Earth Syst. Sci. Discuss.
– volume: 17
  start-page: 1084
  year: 2024
  end-page: 1099
  ident: bib54
  article-title: S1S2-Water: A global dataset for semantic segmentation of water bodies from Sentinel-1 and Sentinel-2 satellite images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens
– volume: 36
  start-page: 4725
  year: 2009
  end-page: 4735
  ident: bib58
  article-title: A Novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression
  publication-title: Expert Syst. Appl.
– volume: 28
  start-page: 4747
  year: 2014
  end-page: 4763
  ident: bib5
  article-title: Estimation of the change in lake water level by artificial intelligence methods
  publication-title: Water Resour. Manag.
– volume: 56
  start-page: 245
  year: 2023
  end-page: 259
  ident: bib24
  article-title: A study on the application of the agricultural reservoir water level recognition model using CCTV image data
  publication-title: J. Korea Water Resour. Assoc.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib4
  article-title: Random forests
  publication-title: Mach. Learn
– volume: 906
  year: 2024
  ident: bib27
  article-title: Bayesian model averaging by combining deep learning models to improve lake water level prediction
  publication-title: Sci. Total Environ.
– start-page: 1
  year: 2025
  end-page: 20
  ident: bib1
  article-title: Enhancing water level prediction using ensemble machine learning models: a comparative analysis
  publication-title: Water Resour. Manag.
– volume: 57
  year: 2021
  ident: bib12
  article-title: Using deep learning for automatic water stage measurements
  publication-title: J. Water Resour. Res.
– volume: 159
  start-page: 53
  year: 2020
  end-page: 62
  ident: bib30
  article-title: A local thresholding approach to flood water delineation using Sentinel-1 SAR imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 600
  year: 2021
  ident: bib34
  article-title: Potential in improving monthly streamflow forecasting through variational assimilation of observed streamflow
  publication-title: J. Hydrol.
– volume: 348
  year: 2022
  ident: bib22
  article-title: Combining autoregressive integrated moving average with Long Short-Term Memory neural network and optimisation algorithms for predicting ground water level
  publication-title: J. Clean. Prod.
– volume: 145
  start-page: 23
  year: 2018
  end-page: 43
  ident: bib16
  article-title: A semi-supervised generative framework with deep learning features for high-resolution remote sensing image scene classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
– reference: Chen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 785-794.
– volume: 34
  start-page: 2450
  year: 2020
  end-page: 2465
  ident: bib40
  article-title: Machine learning based identification of dominant controls on runoff dynamics
  publication-title: Hydrol. Process
– volume: 14
  start-page: 8317
  year: 2024
  ident: bib42
  article-title: Research on critical quality feature recognition and quality prediction method of machining based on information entropy and XGboost hyperparameter optimization
  publication-title: Appl. Sci.
– volume: 954
  year: 2024
  ident: bib47
  article-title: Review of machine learning methods for sea level change modeling and prediction
  publication-title: Sci. Total Environ.
– volume: 11
  start-page: 9691
  year: 2021
  ident: bib35
  article-title: Deep learning semantic segmentation for water level estimation using surveillance camera
  publication-title: Appl. Sci.
– volume: 25
  start-page: 4435
  year: 2021
  end-page: 4453
  ident: bib52
  article-title: Deep learning for automated river-level monitoring through river-camera images: an approach based on water segmentation and transfer learning
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 307
  start-page: 164
  year: 2005
  end-page: 174
  ident: bib10
  article-title: Nonstationary hydrological time series forecasting using nonlinear dynamic methods
  publication-title: J. Hydrol.
– volume: 26
  start-page: 8897
  year: 2022
  end-page: 8909
  ident: bib33
  article-title: Reservoir water level forecasting using wavelet support vector regression (WSVR) based on teaching learning-based optimization algorithm (TLBO)
  publication-title: Soft Comput.
– volume: 444
  year: 2024
  ident: bib28
  article-title: Comparison of strategies for multistep-ahead lake water level forecasting using deep learning models
  publication-title: J. Clean. Prod.
– volume: 30
  year: 2017
  ident: bib20
  article-title: Lightgbm: A highly efficient gradient boosting decision tree
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 42
  start-page: 273
  year: 2019
  end-page: 277
  ident: bib55
  article-title: Semantic segmentation of water bodies in multi-spectral satellite images for situational awareness in emergency response
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
– volume: 582
  year: 2020
  ident: bib64
  article-title: Comparison of support vector regression and extreme gradient boosting for decomposition-based data-driven 10-day streamflow forecasting
  publication-title: J. Hydrol.
– reference: Wada, K., Buijs, M., Zhang, C.N., Kubovčík, M., Myczko, A., Zhu, L., Yamaguchi, N., 2021. Labelme: Image polygonal annotation with python v4. 6.0.
– start-page: 633
  year: 2017
  end-page: 641
  ident: bib67
  article-title: Scene parsing through ade20k dataset
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
– volume: 15
  start-page: 4655
  year: 2023
  ident: bib48
  article-title: Water area extraction and water level prediction of Dongting lake based on Sentinel-1 dual-polarization data decomposition
  publication-title: Remote Sens.
– reference: .
– start-page: 3746
  year: 2017
  end-page: 3749
  ident: bib31
  article-title: River segmentation for flood monitoring
  publication-title: 2017 IEEE Int. Conf. Big Data (Big Data)
– volume: 33
  start-page: 3053
  year: 2021
  end-page: 3068
  ident: bib51
  article-title: Super ensemble learning for daily streamflow forecasting: Large-scale demonstration and comparison with multiple machine learning algorithms
  publication-title: Neural Comput. Appl.
– volume: 54
  year: 2018
  ident: bib13
  article-title: Automatic image-based water stage measurement for long-term observations in ungauged catchments
  publication-title: J. Water Resour. Res.
– volume: 8
  start-page: 5547
  year: 2022
  end-page: 5563
  ident: bib63
  article-title: Predicting monthly streamflow using artificial neural networks and wavelet neural networks models
  publication-title: Model. Earth Syst. Environ.
– volume: 18
  start-page: 234
  year: 2015
  end-page: 241
  ident: bib44
  article-title: U-net: convolutional networks for biomedical image segmentation
  publication-title: Med. Image Comput. Comput. Assist. Interv. MICCAI 2015 18th Int. Conf. Proc. Part III
– volume: 565
  start-page: 720
  year: 2018
  end-page: 736
  ident: bib66
  article-title: Modeling and simulating of reservoir operation using the artificial neural network, support vector regression, deep learning algorithm
  publication-title: J. Hydrol.
– volume: 192
  start-page: 38
  year: 2016
  end-page: 48
  ident: bib11
  article-title: Mean absolute percentage error for regression models
  publication-title: Neurocomputing
– volume: 585
  year: 2020
  ident: bib68
  article-title: Forecasting of water level in multiple temperate lakes using machine learning models
  publication-title: J. Hydrol.
– volume: 9
  start-page: 48
  year: 2022
  ident: bib7
  article-title: Evaluation of future streamflow in the upper part of the Nilwala River Basin (Sri Lanka) under climate change
  publication-title: Hydrology
– volume: 41
  start-page: 4742
  year: 2020
  end-page: 4756
  ident: bib56
  article-title: Large-scale surface water change observed by Sentinel-2 during the 2018 drought in Germany
  publication-title: Int. J. Remote Sens.
– volume: 277
  year: 2023
  ident: bib65
  article-title: Optimal reservoir operation and risk analysis of agriculture water supply considering encounter uncertainty of precipitation in irrigation area and runoff from upstream
  publication-title: Agric. Water Manag
– volume: 22
  start-page: 679
  year: 2006
  end-page: 688
  ident: bib17
  article-title: Another look at measures of forecast accuracy
  publication-title: Int. J. Forecast
– volume: 15
  start-page: 3118
  year: 2023
  ident: bib9
  article-title: Groundwater level prediction with deep learning methods
  publication-title: Water
– volume: 585
  year: 2020
  ident: 10.1016/j.ejrh.2025.102631_bib68
  article-title: Forecasting of water level in multiple temperate lakes using machine learning models
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124819
– volume: 11
  start-page: 3
  issue: 1
  year: 1996
  ident: 10.1016/j.ejrh.2025.102631_bib36
  article-title: The Finley affair: A signal event in the history of forecast verification
  publication-title: Weather Forecast
  doi: 10.1175/1520-0434(1996)011<0003:TFAASE>2.0.CO;2
– volume: 954
  year: 2024
  ident: 10.1016/j.ejrh.2025.102631_bib47
  article-title: Review of machine learning methods for sea level change modeling and prediction
  publication-title: Sci. Total Environ.
– volume: 569
  start-page: 387
  year: 2019
  ident: 10.1016/j.ejrh.2025.102631_bib62
  article-title: An enhanced extreme learning machine model for river flow forecasting: state-of-the-art, practical applications in water resource engineering area and future research direction
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.11.069
– volume: 582
  year: 2020
  ident: 10.1016/j.ejrh.2025.102631_bib64
  article-title: Comparison of support vector regression and extreme gradient boosting for decomposition-based data-driven 10-day streamflow forecasting
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124293
– volume: 640
  year: 2024
  ident: 10.1016/j.ejrh.2025.102631_bib14
  article-title: A novel approach to forecast water table rise in arid regions using stacked ensemble machine learning and deep artificial intelligence models
  publication-title: J. Hydrol.
– start-page: 1
  year: 2025
  ident: 10.1016/j.ejrh.2025.102631_bib1
  article-title: Enhancing water level prediction using ensemble machine learning models: a comparative analysis
  publication-title: Water Resour. Manag.
– volume: 47
  issue: 10
  year: 2011
  ident: 10.1016/j.ejrh.2025.102631_bib15
  article-title: On typical range, sensitivity, and normalization of Mean Squared Error and Nash-Sutcliffe Efficiency type metrics
  publication-title: J. Water Resour. Res.
  doi: 10.1029/2011WR010962
– volume: 444
  year: 2024
  ident: 10.1016/j.ejrh.2025.102631_bib28
  article-title: Comparison of strategies for multistep-ahead lake water level forecasting using deep learning models
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2024.141228
– volume: 28
  start-page: 4747
  year: 2014
  ident: 10.1016/j.ejrh.2025.102631_bib5
  article-title: Estimation of the change in lake water level by artificial intelligence methods
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-014-0773-1
– start-page: 3746
  year: 2017
  ident: 10.1016/j.ejrh.2025.102631_bib31
  article-title: River segmentation for flood monitoring
  publication-title: 2017 IEEE Int. Conf. Big Data (Big Data)
  doi: 10.1109/BigData.2017.8258373
– volume: 22
  start-page: 679
  issue: 4
  year: 2006
  ident: 10.1016/j.ejrh.2025.102631_bib17
  article-title: Another look at measures of forecast accuracy
  publication-title: Int. J. Forecast
  doi: 10.1016/j.ijforecast.2006.03.001
– volume: 277
  year: 2023
  ident: 10.1016/j.ejrh.2025.102631_bib65
  article-title: Optimal reservoir operation and risk analysis of agriculture water supply considering encounter uncertainty of precipitation in irrigation area and runoff from upstream
  publication-title: Agric. Water Manag
  doi: 10.1016/j.agwat.2022.108091
– volume: 17
  year: 2022
  ident: 10.1016/j.ejrh.2025.102631_bib59
  article-title: Satellite observed recent rising water levels of global lakes and reservoirs
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ac78f8
– start-page: 1
  year: 2025
  ident: 10.1016/j.ejrh.2025.102631_bib43
  article-title: Advancing reservoir water level predictions: Evaluating conventional, ensemble and integrated swarm machine learning approaches
  publication-title: Water Resour. Manag.
– volume: 14
  start-page: 8317
  issue: 18
  year: 2024
  ident: 10.1016/j.ejrh.2025.102631_bib42
  article-title: Research on critical quality feature recognition and quality prediction method of machining based on information entropy and XGboost hyperparameter optimization
  publication-title: Appl. Sci.
  doi: 10.3390/app14188317
– volume: 17
  start-page: 1084
  year: 2024
  ident: 10.1016/j.ejrh.2025.102631_bib54
  article-title: S1S2-Water: A global dataset for semantic segmentation of water bodies from Sentinel-1 and Sentinel-2 satellite images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens
  doi: 10.1109/JSTARS.2023.3333969
– volume: 600
  year: 2021
  ident: 10.1016/j.ejrh.2025.102631_bib34
  article-title: Potential in improving monthly streamflow forecasting through variational assimilation of observed streamflow
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126559
– volume: 13
  start-page: 2744
  year: 2021
  ident: 10.1016/j.ejrh.2025.102631_bib60
  article-title: Global estimation and assessment of monthly lake/reservoir water level changes using ICESat-2 ATL13 products
  publication-title: Remote Sens.
– volume: 22
  year: 2024
  ident: 10.1016/j.ejrh.2025.102631_bib21
  article-title: River stream flow prediction through advanced machine learning models for enhanced accuracy
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2024.102215
– volume: 58
  start-page: 1
  issue: 6
  year: 2025
  ident: 10.1016/j.ejrh.2025.102631_bib18
  article-title: Context in object detection: a systematic literature review
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-025-11186-x
– ident: 10.1016/j.ejrh.2025.102631_bib23
– volume: 36
  start-page: 4725
  year: 2009
  ident: 10.1016/j.ejrh.2025.102631_bib58
  article-title: A Novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.06.046
– volume: 34
  start-page: 2450
  year: 2020
  ident: 10.1016/j.ejrh.2025.102631_bib40
  article-title: Machine learning based identification of dominant controls on runoff dynamics
  publication-title: Hydrol. Process
  doi: 10.1002/hyp.13740
– volume: 554
  start-page: 263
  year: 2017
  ident: 10.1016/j.ejrh.2025.102631_bib61
  article-title: Novel approach for streamflow forecasting using a hybrid ANFIS-FFA model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2017.09.007
– volume: 56
  start-page: 245
  issue: 4
  year: 2023
  ident: 10.1016/j.ejrh.2025.102631_bib24
  article-title: A study on the application of the agricultural reservoir water level recognition model using CCTV image data
  publication-title: J. Korea Water Resour. Assoc.
– volume: 2020
  issue: 1
  year: 2020
  ident: 10.1016/j.ejrh.2025.102631_bib19
  article-title: Inflow forecast of iranamadu reservoir, Sri Lanka, under projected climate scenarios using artificial neural networks
  publication-title: Appl. Comput. Intell. Soft Comput.
– volume: 11
  start-page: 1934
  issue: 9
  year: 2019
  ident: 10.1016/j.ejrh.2025.102631_bib45
  article-title: Support vector regression integrated with fruit fly optimization algorithm for river flow forecasting in Lake Urmia Basin
  publication-title: Water
  doi: 10.3390/w11091934
– start-page: 633
  year: 2017
  ident: 10.1016/j.ejrh.2025.102631_bib67
  article-title: Scene parsing through ade20k dataset
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
– volume: 30
  year: 2017
  ident: 10.1016/j.ejrh.2025.102631_bib20
  article-title: Lightgbm: A highly efficient gradient boosting decision tree
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 906
  year: 2024
  ident: 10.1016/j.ejrh.2025.102631_bib27
  article-title: Bayesian model averaging by combining deep learning models to improve lake water level prediction
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2023.167718
– volume: 159
  start-page: 53
  year: 2020
  ident: 10.1016/j.ejrh.2025.102631_bib30
  article-title: A local thresholding approach to flood water delineation using Sentinel-1 SAR imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.10.017
– ident: 10.1016/j.ejrh.2025.102631_bib53
– volume: 307
  start-page: 164
  year: 2005
  ident: 10.1016/j.ejrh.2025.102631_bib10
  article-title: Nonstationary hydrological time series forecasting using nonlinear dynamic methods
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2004.10.008
– volume: 57
  issue: 3
  year: 2021
  ident: 10.1016/j.ejrh.2025.102631_bib12
  article-title: Using deep learning for automatic water stage measurements
  publication-title: J. Water Resour. Res.
  doi: 10.1029/2020WR027608
– volume: 11
  start-page: 9691
  issue: 20
  year: 2021
  ident: 10.1016/j.ejrh.2025.102631_bib35
  article-title: Deep learning semantic segmentation for water level estimation using surveillance camera
  publication-title: Appl. Sci.
  doi: 10.3390/app11209691
– volume: 160
  year: 2023
  ident: 10.1016/j.ejrh.2025.102631_bib29
  article-title: V-FloodNet: a video segmentation system for urban flood detection and quantification
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2022.105586
– volume: 9
  start-page: 48
  year: 2022
  ident: 10.1016/j.ejrh.2025.102631_bib7
  article-title: Evaluation of future streamflow in the upper part of the Nilwala River Basin (Sri Lanka) under climate change
  publication-title: Hydrology
  doi: 10.3390/hydrology9030048
– volume: 25
  start-page: 4435
  issue: 8
  year: 2021
  ident: 10.1016/j.ejrh.2025.102631_bib52
  article-title: Deep learning for automated river-level monitoring through river-camera images: an approach based on water segmentation and transfer learning
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-25-4435-2021
– volume: 42
  start-page: 273
  year: 2019
  ident: 10.1016/j.ejrh.2025.102631_bib55
  article-title: Semantic segmentation of water bodies in multi-spectral satellite images for situational awareness in emergency response
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-archives-XLII-2-W16-273-2019
– volume: 348
  year: 2022
  ident: 10.1016/j.ejrh.2025.102631_bib22
  article-title: Combining autoregressive integrated moving average with Long Short-Term Memory neural network and optimisation algorithms for predicting ground water level
  publication-title: J. Clean. Prod.
– year: 2022
  ident: 10.1016/j.ejrh.2025.102631_bib3
  article-title: Towards automatic real-time water level estimation using surveillance cameras
  publication-title: EGU Gen. Assem. Conf.
– volume: 192
  start-page: 38
  year: 2016
  ident: 10.1016/j.ejrh.2025.102631_bib11
  article-title: Mean absolute percentage error for regression models
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.12.114
– volume: 41
  start-page: 4742
  year: 2020
  ident: 10.1016/j.ejrh.2025.102631_bib56
  article-title: Large-scale surface water change observed by Sentinel-2 during the 2018 drought in Germany
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2020.1723817
– volume: 15
  start-page: 3118
  issue: 17
  year: 2023
  ident: 10.1016/j.ejrh.2025.102631_bib9
  article-title: Groundwater level prediction with deep learning methods
  publication-title: Water
  doi: 10.3390/w15173118
– volume: 54
  issue: 12
  year: 2018
  ident: 10.1016/j.ejrh.2025.102631_bib13
  article-title: Automatic image-based water stage measurement for long-term observations in ungauged catchments
  publication-title: J. Water Resour. Res.
  doi: 10.1029/2018WR023913
– volume: 313
  year: 2024
  ident: 10.1016/j.ejrh.2025.102631_bib26
  article-title: A new model for high-accuracy monitoring of water level changes via enhanced water boundary detection and reliability-based weighting averaging
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2024.114360
– volume: 1
  start-page: 1
  issue: 5
  year: 2007
  ident: 10.1016/j.ejrh.2025.102631_bib46
  article-title: The truth of the F-measure
  publication-title: Teach. Tutor Mater.
– volume: 2021
  start-page: 1
  year: 2021
  ident: 10.1016/j.ejrh.2025.102631_bib38
  article-title: Data assimilation and autoregression for using near-real-time streamflow observations in long short-term memory networks
  publication-title: Hydrol. Earth Syst. Sci. Discuss.
– volume: 8
  start-page: 5547
  year: 2022
  ident: 10.1016/j.ejrh.2025.102631_bib63
  article-title: Predicting monthly streamflow using artificial neural networks and wavelet neural networks models
  publication-title: Model. Earth Syst. Environ.
  doi: 10.1007/s40808-022-01403-9
– volume: 14
  issue: 1
  year: 2024
  ident: 10.1016/j.ejrh.2025.102631_bib6
  article-title: Water body extraction from high spatial resolution remote sensing images based on enhanced U-Net and multi-scale information fusion
  publication-title: Sci. Rep.
– volume: 586
  year: 2020
  ident: 10.1016/j.ejrh.2025.102631_bib39
  article-title: Streamflow forecasting using extreme gradient boosting model coupled with Gaussian mixture model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.124901
– volume: 565
  start-page: 720
  year: 2018
  ident: 10.1016/j.ejrh.2025.102631_bib66
  article-title: Modeling and simulating of reservoir operation using the artificial neural network, support vector regression, deep learning algorithm
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.08.050
– volume: 38
  start-page: 1165
  issue: 3
  year: 2024
  ident: 10.1016/j.ejrh.2025.102631_bib25
  article-title: Deep learning to recognize water level for agriculture reservoir using CCTV imagery
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-023-03714-7
– volume: 83
  start-page: 125
  issue: 4
  year: 2024
  ident: 10.1016/j.ejrh.2025.102631_bib37
  article-title: Streamflow projection under CMIP6 climate scenarios using a support vector regression: a case study of the Kurau River Basin of Northern Malaysia
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-024-11435-2
– volume: 24
  start-page: 917
  year: 2010
  ident: 10.1016/j.ejrh.2025.102631_bib32
  article-title: Potential of support vector regression for prediction of monthly streamflow using endogenous property
  publication-title: Hydrol. Process
  doi: 10.1002/hyp.7535
– volume: 235
  start-page: 9211
  issue: 12
  year: 2020
  ident: 10.1016/j.ejrh.2025.102631_bib49
  article-title: The outlook for diagnostic purposes of the 2019-novel coronavirus disease
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.29804
– volume: 30
  start-page: 79
  issue: 1
  year: 2005
  ident: 10.1016/j.ejrh.2025.102631_bib57
  article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
  publication-title: Clim. Res.
  doi: 10.3354/cr030079
– volume: 77
  year: 2021
  ident: 10.1016/j.ejrh.2025.102631_bib50
  article-title: Deep multi-feature learning architecture for water body segmentation from satellite images
  publication-title: J. Vis. Commun. Image Represent
  doi: 10.1016/j.jvcir.2021.103141
– ident: 10.1016/j.ejrh.2025.102631_bib8
  doi: 10.1145/2939672.2939785
– volume: 26
  start-page: 8897
  year: 2022
  ident: 10.1016/j.ejrh.2025.102631_bib33
  article-title: Reservoir water level forecasting using wavelet support vector regression (WSVR) based on teaching learning-based optimization algorithm (TLBO)
  publication-title: Soft Comput.
  doi: 10.1007/s00500-022-07296-1
– volume: 18
  start-page: 234
  year: 2015
  ident: 10.1016/j.ejrh.2025.102631_bib44
  article-title: U-net: convolutional networks for biomedical image segmentation
  publication-title: Med. Image Comput. Comput. Assist. Interv. MICCAI 2015 18th Int. Conf. Proc. Part III
– volume: 15
  start-page: 4655
  year: 2023
  ident: 10.1016/j.ejrh.2025.102631_bib48
  article-title: Water area extraction and water level prediction of Dongting lake based on Sentinel-1 dual-polarization data decomposition
  publication-title: Remote Sens.
– volume: 598
  year: 2021
  ident: 10.1016/j.ejrh.2025.102631_bib2
  article-title: A functional autoregressive model based on exogenous hydrometeorological variables for river flow prediction
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126380
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.ejrh.2025.102631_bib4
  article-title: Random forests
  publication-title: Mach. Learn
  doi: 10.1023/A:1010933404324
– volume: 145
  start-page: 23
  year: 2018
  ident: 10.1016/j.ejrh.2025.102631_bib16
  article-title: A semi-supervised generative framework with deep learning features for high-resolution remote sensing image scene classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.11.004
– volume: 15
  issue: 7
  year: 2024
  ident: 10.1016/j.ejrh.2025.102631_bib41
  article-title: Comparative assessment of rainfall-based water level prediction using machine learning (ML) techniques
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2024.102854
– volume: 33
  start-page: 3053
  year: 2021
  ident: 10.1016/j.ejrh.2025.102631_bib51
  article-title: Super ensemble learning for daily streamflow forecasting: Large-scale demonstration and comparison with multiple machine learning algorithms
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05172-3
SSID ssj0001878960
Score 2.3273883
Snippet The study region is Yongseong Reservoir, located in Gyeongsangbuk-do, South Korea, a small agricultural reservoir primarily used for irrigation and is subject...
Study region: The study region is Yongseong Reservoir, located in Gyeongsangbuk-do, South Korea, a small agricultural reservoir primarily used for irrigation...
SourceID doaj
proquest
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 102631
SubjectTerms Agricultural reservoirs
automation
cameras
CCTV imagery
hydrology
irrigation
Machine-learning regression
monitoring
prediction
Region of interest
regression analysis
South Korea
Water level estimation
Title A novel framework for automated water level estimation using CCTV imagery in Yongseong Agricultural Reservoir, South Korea
URI https://dx.doi.org/10.1016/j.ejrh.2025.102631
https://www.proquest.com/docview/3271871360
https://doaj.org/article/067e390aae254c36a8592759a9d0783b
Volume 61
WOSCitedRecordID wos001541004000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals - DOAJ (NTUSG)
  customDbUrl:
  eissn: 2214-5818
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001878960
  issn: 2214-5818
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2214-5818
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001878960
  issn: 2214-5818
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhBNJLSZOWbtKGKeSWmvqxlq3jdkkItA05pCE9CVkabTcEO3gfoT30t3fGskPSQ3vpRWBhJKEZa76xvpkR4qgYY1rFvoospioa-xSj0posMpVx3nhlqi626upzcX5eXl-ri0elvpgTFtIDh437QKcpkl9uDJIrYzNpylylRa6McnwDVfHpGxfqkTPV_V0pi5KweR8lEwhdeNPy7UOac7oCmSVPLFGXsP-JQfrjaO7szemOeN4DRZiEBb4QG1jviu2-Zvn3H3vi5wTqZo234Ad-FRAABbNaNoRC0cE9tS3cMisIOJdGCFIEZrrPYDq9vALq4phomNfwralnC6QGJrP2IR8HMDGvXTfz9j10xfbgU0Mo86X4enpyOT2L-koKkc2UXEYcIOtSTApZSBzHmNOT8s7GlcHSZpmXLrcu8ePYVkXpTWLJsTIuRk7dbaTLXonNuqnxtYBE2pLGcCSBnA2gsWgqRUcF5ugIrIzE8bCr-i4kzNADk-xGsww0y0AHGYzER974hzc52XXXQSqgexXQ_1KBkcgHsekeNwQ8QEPN_zr5u0HGmj4qvikxNTarhc5SMtnkvst4_38s8EA842kDB_CN2Fy2K3wrtux6OV-0h53mUvvl18lvyvT2AA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+framework+for+automated+water+level+estimation+using+CCTV+imagery+in+Yongseong+Agricultural+Reservoir%2C+South+Korea&rft.jtitle=Journal+of+hydrology.+Regional+studies&rft.au=Soon+Ho+Kwon&rft.au=Suhyun+Lim&rft.au=Seungyub+Lee&rft.date=2025-10-01&rft.pub=Elsevier&rft.eissn=2214-5818&rft.volume=61&rft.spage=102631&rft_id=info:doi/10.1016%2Fj.ejrh.2025.102631&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_067e390aae254c36a8592759a9d0783b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-5818&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-5818&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-5818&client=summon