Artificial Intelligence in Dermatology: A Primer

Artificial intelligence is becoming increasingly important in dermatology, with studies reporting accuracy matching or exceeding dermatologists for the diagnosis of skin lesions from clinical and dermoscopic images. However, real-world clinical validation is currently lacking. We review dermatologic...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of investigative dermatology Ročník 140; číslo 8; s. 1504
Hlavní autori: Young, Albert T, Xiong, Mulin, Pfau, Jacob, Keiser, Michael J, Wei, Maria L
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.08.2020
Predmet:
ISSN:1523-1747, 1523-1747
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Artificial intelligence is becoming increasingly important in dermatology, with studies reporting accuracy matching or exceeding dermatologists for the diagnosis of skin lesions from clinical and dermoscopic images. However, real-world clinical validation is currently lacking. We review dermatological applications of deep learning, the leading artificial intelligence technology for image analysis, and discuss its current capabilities, potential failure modes, and challenges surrounding performance assessment and interpretability. We address the following three primary applications: (i) teledermatology, including triage for referral to dermatologists; (ii) augmenting clinical assessment during face-to-face visits; and (iii) dermatopathology. We discuss equity and ethical issues related to future clinical adoption and recommend specific standardization of metrics for reporting model performance.
AbstractList Artificial intelligence is becoming increasingly important in dermatology, with studies reporting accuracy matching or exceeding dermatologists for the diagnosis of skin lesions from clinical and dermoscopic images. However, real-world clinical validation is currently lacking. We review dermatological applications of deep learning, the leading artificial intelligence technology for image analysis, and discuss its current capabilities, potential failure modes, and challenges surrounding performance assessment and interpretability. We address the following three primary applications: (i) teledermatology, including triage for referral to dermatologists; (ii) augmenting clinical assessment during face-to-face visits; and (iii) dermatopathology. We discuss equity and ethical issues related to future clinical adoption and recommend specific standardization of metrics for reporting model performance.Artificial intelligence is becoming increasingly important in dermatology, with studies reporting accuracy matching or exceeding dermatologists for the diagnosis of skin lesions from clinical and dermoscopic images. However, real-world clinical validation is currently lacking. We review dermatological applications of deep learning, the leading artificial intelligence technology for image analysis, and discuss its current capabilities, potential failure modes, and challenges surrounding performance assessment and interpretability. We address the following three primary applications: (i) teledermatology, including triage for referral to dermatologists; (ii) augmenting clinical assessment during face-to-face visits; and (iii) dermatopathology. We discuss equity and ethical issues related to future clinical adoption and recommend specific standardization of metrics for reporting model performance.
Artificial intelligence is becoming increasingly important in dermatology, with studies reporting accuracy matching or exceeding dermatologists for the diagnosis of skin lesions from clinical and dermoscopic images. However, real-world clinical validation is currently lacking. We review dermatological applications of deep learning, the leading artificial intelligence technology for image analysis, and discuss its current capabilities, potential failure modes, and challenges surrounding performance assessment and interpretability. We address the following three primary applications: (i) teledermatology, including triage for referral to dermatologists; (ii) augmenting clinical assessment during face-to-face visits; and (iii) dermatopathology. We discuss equity and ethical issues related to future clinical adoption and recommend specific standardization of metrics for reporting model performance.
Author Pfau, Jacob
Wei, Maria L
Xiong, Mulin
Keiser, Michael J
Young, Albert T
Author_xml – sequence: 1
  givenname: Albert T
  surname: Young
  fullname: Young, Albert T
  organization: Department of Dermatology, University of California, San Francisco, San Francisco, California, USA; Dermatology Service, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
– sequence: 2
  givenname: Mulin
  surname: Xiong
  fullname: Xiong, Mulin
  organization: Michigan State University College of Human Medicine, East Lansing, Michigan, USA
– sequence: 3
  givenname: Jacob
  surname: Pfau
  fullname: Pfau, Jacob
  organization: Department of Dermatology, University of California, San Francisco, San Francisco, California, USA; Dermatology Service, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
– sequence: 4
  givenname: Michael J
  surname: Keiser
  fullname: Keiser, Michael J
  organization: Department of Pharmaceutical Chemistry, Department of Bioengineering and Therapeutic Sciences, Institute for Neurodegenerative Diseases, and Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California, USA
– sequence: 5
  givenname: Maria L
  surname: Wei
  fullname: Wei, Maria L
  email: maria.wei@ucsf.edu
  organization: Department of Dermatology, University of California, San Francisco, San Francisco, California, USA; Dermatology Service, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California, USA. Electronic address: maria.wei@ucsf.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32229141$$D View this record in MEDLINE/PubMed
BookMark eNpNT8lKxEAUbGTEWfQDvEiOXhLfe91JOt7CuA0M6EHPoTt5GTpkGbMc5u8NOIJQUHWoKqrWYtF2LQtxixAgYPRQBZUrAgKCAGhGdCFWGJL0MVbx4p9eivUwVDBnVKivxFISUYIKVwLSfnSly52pvV07cl27A7c5e671nrhvzNjV3eH06KXeR-8a7q_FZWnqgW_OvBFfL8-f2zd___6626Z7P5dJNPoIWpNUCrjIFYcSZBKDykObWIJQW4NWWosm4dIqZSRjzNoAYqTjkq2hjbj_7T323ffEw5g1bsjnfablbhoykjqkSJOOZuvd2TrZhovsOA81_Sn7e0k_VIBUow
CitedBy_id crossref_primary_10_1111_ics_12786
crossref_primary_10_1111_jdv_18541
crossref_primary_10_1109_ACCESS_2023_3289320
crossref_primary_10_3390_children11111401
crossref_primary_10_1038_s41746_020_00376_2
crossref_primary_10_1111_srt_13153
crossref_primary_10_1093_bjd_ljae197
crossref_primary_10_1111_ijd_17222
crossref_primary_10_1002_aisy_202400558
crossref_primary_10_1111_ajd_13946
crossref_primary_10_3390_ijerph20105810
crossref_primary_10_1007_s40257_023_00826_z
crossref_primary_10_1007_s13671_024_00431_1
crossref_primary_10_1016_j_ejca_2022_04_015
crossref_primary_10_1016_j_det_2025_05_002
crossref_primary_10_1111_srt_13037
crossref_primary_10_3390_jpm12060981
crossref_primary_10_7759_cureus_77067
crossref_primary_10_3390_diagnostics13182992
crossref_primary_10_1111_jocd_14681
crossref_primary_10_1038_s41598_025_89639_0
crossref_primary_10_1177_12034754251355183
crossref_primary_10_1111_srt_13045
crossref_primary_10_1080_1744666X_2021_1953982
crossref_primary_10_1109_ACCESS_2023_3339635
crossref_primary_10_1186_s42492_022_00103_6
crossref_primary_10_1016_j_jid_2021_02_744
crossref_primary_10_1097_CM9_0000000000001816
crossref_primary_10_1002_ase_2221
crossref_primary_10_1111_bjd_20903
crossref_primary_10_1111_phpp_12890
crossref_primary_10_1371_journal_pone_0326763
crossref_primary_10_1038_s41746_020_00380_6
crossref_primary_10_1001_jamadermatol_2024_4382
crossref_primary_10_3390_healthcare11121739
crossref_primary_10_1002_der2_243
crossref_primary_10_1016_j_compeleceng_2025_110693
crossref_primary_10_7759_cureus_90829
crossref_primary_10_3390_signals5020013
crossref_primary_10_3389_fmed_2024_1331895
crossref_primary_10_7759_cureus_27740
crossref_primary_10_1111_srt_13656
crossref_primary_10_1016_j_abd_2025_501164
crossref_primary_10_3389_fmed_2023_1278232
crossref_primary_10_1016_j_pdpdt_2025_104727
crossref_primary_10_1111_srt_13257
crossref_primary_10_3390_cancers15072174
crossref_primary_10_3390_diagnostics12092048
crossref_primary_10_1111_ijd_17591
crossref_primary_10_3389_fmed_2022_901401
crossref_primary_10_17116_klinderma202423021111
crossref_primary_10_3390_diagnostics13132162
crossref_primary_10_3390_diagnostics15172196
crossref_primary_10_3389_fmed_2021_754202
crossref_primary_10_1016_j_abdp_2025_501143
crossref_primary_10_1089_tmj_2023_0101
crossref_primary_10_1111_jdv_19572
crossref_primary_10_1038_s41746_024_01031_w
crossref_primary_10_3390_healthcare13141752
crossref_primary_10_1093_asj_sjac200
crossref_primary_10_1089_tmj_2022_0472
crossref_primary_10_1093_ced_llae105
crossref_primary_10_1016_j_oraloncology_2025_107397
crossref_primary_10_1109_JBHI_2022_3218166
crossref_primary_10_1308_rcsann_2024_0008
crossref_primary_10_7759_cureus_90883
crossref_primary_10_1093_ced_llad255
crossref_primary_10_1007_s41060_024_00541_w
crossref_primary_10_1080_17453054_2021_2004883
crossref_primary_10_1016_j_clindermatol_2023_12_020
crossref_primary_10_1080_07853890_2025_2484665
crossref_primary_10_3390_cosmetics12040157
crossref_primary_10_1016_j_xops_2025_100844
crossref_primary_10_1111_jdv_18192
crossref_primary_10_3390_healthcare13030321
crossref_primary_10_3390_biomedicines12010012
crossref_primary_10_1016_j_ad_2024_02_031
crossref_primary_10_3390_jcm13010180
crossref_primary_10_1016_j_abd_2025_501143
crossref_primary_10_1007_s40670_025_02373_0
crossref_primary_10_1097_JS9_0000000000002481
crossref_primary_10_1007_s00403_024_02884_7
crossref_primary_10_1111_myc_13560
crossref_primary_10_1093_bjd_ljae142
crossref_primary_10_1097_DAD_0000000000002232
crossref_primary_10_1111_pcmr_12907
crossref_primary_10_1177_12034754241229361
crossref_primary_10_3390_pharmaceutics16020260
crossref_primary_10_1016_j_ad_2024_08_005
crossref_primary_10_1016_j_abdp_2025_501164
crossref_primary_10_1016_j_bios_2024_116045
crossref_primary_10_1016_j_ifacol_2022_06_005
crossref_primary_10_1007_s44411_025_00063_2
crossref_primary_10_1038_s41598_023_31340_1
crossref_primary_10_1016_j_clindermatol_2023_12_013
crossref_primary_10_1111_ijd_17847
crossref_primary_10_1111_ijd_17208
crossref_primary_10_1016_j_jaad_2020_07_125
crossref_primary_10_1111_srt_13721
crossref_primary_10_1007_s11912_023_01407_3
crossref_primary_10_1111_exsy_70111
crossref_primary_10_4108_eetpht_9_4273
crossref_primary_10_3390_jcm11226826
crossref_primary_10_1038_s41597_023_02630_0
crossref_primary_10_7759_cureus_92089
crossref_primary_10_4103_jss_jss_336_24
crossref_primary_10_1111_srt_13690
crossref_primary_10_3390_jpm13081214
crossref_primary_10_1093_ced_llae096
crossref_primary_10_1002_ase_2260
crossref_primary_10_1016_j_clindermatol_2024_06_016
crossref_primary_10_1111_ijd_17560
crossref_primary_10_1111_jdv_20478
crossref_primary_10_3390_ph17060748
crossref_primary_10_1016_j_jsurg_2025_103442
crossref_primary_10_3389_fendo_2023_1224191
crossref_primary_10_3389_fmed_2023_1089013
crossref_primary_10_7759_cureus_44658
crossref_primary_10_2196_34896
crossref_primary_10_3390_a16100466
crossref_primary_10_1038_s41597_024_03743_w
crossref_primary_10_1080_08820538_2022_2139625
crossref_primary_10_1093_bjd_ljae040
crossref_primary_10_2196_75454
ContentType Journal Article
Copyright Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jid.2020.02.026
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1523-1747
ExternalDocumentID 32229141
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCATS NIH HHS
  grantid: TL1 TR001871
GroupedDBID ---
--K
.55
.GJ
0R~
1B1
29K
2WC
36B
3O-
4.4
457
53G
5GY
5RE
5VS
7X7
88E
8AO
8FI
8FJ
8R4
8R5
AACTN
AAEDW
AALRI
AAXUO
ABAWZ
ABJNI
ABLJU
ABMAC
ABUWG
ACGFO
ACGFS
ACPRK
ADBBV
ADEZE
ADFRT
ADVLN
AENEX
AEXQZ
AFEBI
AFETI
AFFNX
AFJKZ
AFKRA
AFTJW
AGHFR
AHMBA
AI.
AITUG
AKRWK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BENPR
BFHJK
BPHCQ
BVXVI
CAG
CCPQU
CGR
COF
CS3
CUY
CVF
D-I
DIK
E3Z
EBS
ECM
EIF
EJD
F5P
FDB
FRP
FYUFA
GX1
HMCUK
HZ~
IH2
IHE
J5H
JSO
KQ8
L7B
LH4
LW6
M1P
M41
MVM
NPM
NQ-
O9-
OK1
P2P
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
R9-
RIG
RNS
ROL
RPZ
SSZ
TR2
UKHRP
VH1
W2D
X7M
Y6R
YFH
YOC
YUY
ZGI
7X8
AAYWO
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
EFKBS
ID FETCH-LOGICAL-c396t-108823440edc4e53039704c5b9b2058ba1b3bb1a9efb44a3e17e8a011687feba2
IEDL.DBID 7X8
ISICitedReferencesCount 134
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000551035500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1523-1747
IngestDate Sun Nov 09 12:03:49 EST 2025
Thu Apr 03 06:59:47 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-108823440edc4e53039704c5b9b2058ba1b3bb1a9efb44a3e17e8a011687feba2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink http://www.jidonline.org/article/S0022202X2031201X/pdf
PMID 32229141
PQID 2385268286
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2385268286
pubmed_primary_32229141
PublicationCentury 2000
PublicationDate 2020-08-00
20200801
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of investigative dermatology
PublicationTitleAlternate J Invest Dermatol
PublicationYear 2020
SSID ssj0016458
Score 2.648306
SecondaryResourceType review_article
Snippet Artificial intelligence is becoming increasingly important in dermatology, with studies reporting accuracy matching or exceeding dermatologists for the...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1504
SubjectTerms Deep Learning - ethics
Dermatology - ethics
Dermatology - methods
Humans
Image Processing, Computer-Assisted - ethics
Image Processing, Computer-Assisted - methods
Referral and Consultation
Skin - diagnostic imaging
Skin - pathology
Skin Diseases - diagnosis
Skin Diseases - pathology
Telemedicine - ethics
Telemedicine - methods
Triage - ethics
Triage - methods
Title Artificial Intelligence in Dermatology: A Primer
URI https://www.ncbi.nlm.nih.gov/pubmed/32229141
https://www.proquest.com/docview/2385268286
Volume 140
WOSCitedRecordID wos000551035500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7UFfHi-7G-qOC12DRpHl5kURc97LIHhb2VpE1gPXSfCv57M2mX9SIIXnopKWUynW-ab_g-gBtOSsGZY7GTpoyZNlmsMZeVK41HZ-cRXAazCdHvy-FQDZoDt3kzVrmsiaFQl-MCz8hv_RpUJkklv59MY3SNQna1sdBYhxb1rQxmtRiuWATOgj-nhyiU4WRiyWqG-a73EQqFpkmQ7Ez57x1mQJru7n_fcQ92mh4z6tRJsQ9rtjqArV7Doh9Cgndq5Yjo5YckZzSqokes1MHT9usu6kQDVP-fHcFb9-n14TlunBPigiq-8LXVN86UscSWBbOZhyklElZkRpk0yaTRxFBjiFbWGcY0tURYqZGTkcJZo9Nj2KjGlT2FyBFBC0K5palhWWp1pqhj_knO_yuZgrbhehmL3Gcm0g26suOPeb6KRhtO6oDmk1pCI0d-RxFGzv6w-hy2cZ_qqbsLaDn_XdpL2Cw-F6P57Cpsub_2B71vCOOzzQ
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+in+Dermatology%3A+A+Primer&rft.jtitle=Journal+of+investigative+dermatology&rft.au=Young%2C+Albert+T&rft.au=Xiong%2C+Mulin&rft.au=Pfau%2C+Jacob&rft.au=Keiser%2C+Michael+J&rft.date=2020-08-01&rft.issn=1523-1747&rft.eissn=1523-1747&rft.volume=140&rft.issue=8&rft.spage=1504&rft_id=info:doi/10.1016%2Fj.jid.2020.02.026&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1523-1747&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1523-1747&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1523-1747&client=summon