Subject-Independent Brain-Computer Interfaces Based on Deep Convolutional Neural Networks
For a brain-computer interface (BCI) system, a calibration procedure is required for each individual user before he/she can use the BCI. This procedure requires approximately 20-30 min to collect enough data to build a reliable decoder. It is, therefore, an interesting topic to build a calibration-f...
Uloženo v:
| Vydáno v: | IEEE transaction on neural networks and learning systems Ročník 31; číslo 10; s. 3839 - 3852 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2162-237X, 2162-2388, 2162-2388 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | For a brain-computer interface (BCI) system, a calibration procedure is required for each individual user before he/she can use the BCI. This procedure requires approximately 20-30 min to collect enough data to build a reliable decoder. It is, therefore, an interesting topic to build a calibration-free, or subject-independent, BCI. In this article, we construct a large motor imagery (MI)-based electroencephalography (EEG) database and propose a subject-independent framework based on deep convolutional neural networks (CNNs). The database is composed of 54 subjects performing the left- and right-hand MI on two different days, resulting in 21 600 trials for the MI task. In our framework, we formulated the discriminative feature representation as a combination of the spectral-spatial input embedding the diversity of the EEG signals, as well as a feature representation learned from the CNN through a fusion technique that integrates a variety of discriminative brain signal patterns. To generate spectral-spatial inputs, we first consider the discriminative frequency bands in an information-theoretic observation model that measures the power of the features in two classes. From discriminative frequency bands, spectral-spatial inputs that include the unique characteristics of brain signal patterns are generated and then transformed into a covariance matrix as the input to the CNN. In the process of feature representations, spectral-spatial inputs are individually trained through the CNN and then combined by a concatenation fusion technique. In this article, we demonstrate that the classification accuracy of our subject-independent (or calibration-free) model outperforms that of subject-dependent models using various methods [common spatial pattern (CSP), common spatiospectral pattern (CSSP), filter bank CSP (FBCSP), and Bayesian spatio-spectral filter optimization (BSSFO)]. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2162-237X 2162-2388 2162-2388 |
| DOI: | 10.1109/TNNLS.2019.2946869 |