Weighted Norm Inequalities for de Branges-Rovnyak Spaces and Their Applications

Let H(b) denote the de Branges-Rovnyak space associated with a function b in the unit ball of$H^\infty (\mathbb{C}_ + )$. We study the boundary behavior of the derivatives of functions in H(b) and obtain weighted norm estimates of the form$||f^{(n)} ||_{L^2 (\mu )} \leqslant C||f||_{H(b)} ,$, where...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:American journal of mathematics Ročník 132; číslo 1; s. 125 - 155
Hlavní autoři: Baranov, Anton, Fricain, Emmanuel, Mashreghi, Javad
Médium: Journal Article
Jazyk:angličtina
Vydáno: Baltimore Johns Hopkins University Press 01.02.2010
Témata:
ISSN:0002-9327, 1080-6377, 1080-6377
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Let H(b) denote the de Branges-Rovnyak space associated with a function b in the unit ball of$H^\infty (\mathbb{C}_ + )$. We study the boundary behavior of the derivatives of functions in H(b) and obtain weighted norm estimates of the form$||f^{(n)} ||_{L^2 (\mu )} \leqslant C||f||_{H(b)} ,$, where f ∈ H(b) and µ is a Carleson-type measure on$\mathbb{C}_ + \cup \mathbb{R}$. We provide several applications of these inequalities. We apply them to obtain embedding theorems for H(b) spaces. These results extend Cohn and Volberg-Treil embedding theorems for the model (star-invariant) subspaces which are special classes of de Branges-Rovnyak spaces. We also exploit the inequalities for the derivatives to study stability of Riesz bases of reproducing kernels$\{ k_{\lambda n}^b \} $in H(b) under small perturbations of the points$\lambda _n $.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0002-9327
1080-6377
1080-6377
DOI:10.1353/ajm.0.0094