Weighted Norm Inequalities for de Branges-Rovnyak Spaces and Their Applications
Let H(b) denote the de Branges-Rovnyak space associated with a function b in the unit ball of$H^\infty (\mathbb{C}_ + )$. We study the boundary behavior of the derivatives of functions in H(b) and obtain weighted norm estimates of the form$||f^{(n)} ||_{L^2 (\mu )} \leqslant C||f||_{H(b)} ,$, where...
Uloženo v:
| Vydáno v: | American journal of mathematics Ročník 132; číslo 1; s. 125 - 155 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Baltimore
Johns Hopkins University Press
01.02.2010
|
| Témata: | |
| ISSN: | 0002-9327, 1080-6377, 1080-6377 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Let H(b) denote the de Branges-Rovnyak space associated with a function b in the unit ball of$H^\infty (\mathbb{C}_ + )$. We study the boundary behavior of the derivatives of functions in H(b) and obtain weighted norm estimates of the form$||f^{(n)} ||_{L^2 (\mu )} \leqslant C||f||_{H(b)} ,$, where f ∈ H(b) and µ is a Carleson-type measure on$\mathbb{C}_ + \cup \mathbb{R}$. We provide several applications of these inequalities. We apply them to obtain embedding theorems for H(b) spaces. These results extend Cohn and Volberg-Treil embedding theorems for the model (star-invariant) subspaces which are special classes of de Branges-Rovnyak spaces. We also exploit the inequalities for the derivatives to study stability of Riesz bases of reproducing kernels$\{ k_{\lambda n}^b \} $in H(b) under small perturbations of the points$\lambda _n $. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0002-9327 1080-6377 1080-6377 |
| DOI: | 10.1353/ajm.0.0094 |