A posteriori estimates of inverse operators for initial value problems in linear ordinary differential equations

We present constructive a posteriori estimates of inverse operators for initial value problems in linear ordinary differential equations (ODEs) on a bounded interval. Here, “constructive” indicates that we can obtain bounds of the operator norm in which all constants are explicitly given or are repr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational and applied mathematics Ročník 236; číslo 6; s. 1622 - 1636
Hlavní autoři: Kinoshita, T., Kimura, T., Nakao, M.T.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 15.10.2011
Témata:
ISSN:0377-0427, 1879-1778
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We present constructive a posteriori estimates of inverse operators for initial value problems in linear ordinary differential equations (ODEs) on a bounded interval. Here, “constructive” indicates that we can obtain bounds of the operator norm in which all constants are explicitly given or are represented in a numerically computable form. In general, it is difficult to estimate these inverse operators a priori. We, therefore, propose a technique for obtaining a posteriori estimates by using Galerkin approximation of inverse operators. This type of estimation will play an important role in the numerical verification of solutions for initial value problems in nonlinear ODEs as well as for parabolic initial boundary value problems.
AbstractList We present constructive a posteriori estimates of inverse operators for initial value problems in linear ordinary differential equations (ODEs) on a bounded interval. Here, “constructive” indicates that we can obtain bounds of the operator norm in which all constants are explicitly given or are represented in a numerically computable form. In general, it is difficult to estimate these inverse operators a priori. We, therefore, propose a technique for obtaining a posteriori estimates by using Galerkin approximation of inverse operators. This type of estimation will play an important role in the numerical verification of solutions for initial value problems in nonlinear ODEs as well as for parabolic initial boundary value problems.
Author Kinoshita, T.
Kimura, T.
Nakao, M.T.
Author_xml – sequence: 1
  givenname: T.
  surname: Kinoshita
  fullname: Kinoshita, T.
  email: kinosita@kurims.kyoto-u.ac.jp
  organization: Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan
– sequence: 2
  givenname: T.
  surname: Kimura
  fullname: Kimura, T.
  email: tkimura@post.cc.sasebo.ac.jp
  organization: Sasebo National College of Technology, Nagasaki 857-1193, Japan
– sequence: 3
  givenname: M.T.
  surname: Nakao
  fullname: Nakao, M.T.
  email: mtnakao@post.cc.sasebo.ac.jp
  organization: Sasebo National College of Technology, Nagasaki 857-1193, Japan
BookMark eNp9kE1LAzEQhoMo2Ko_wFtunnZNdtvNBk9F_ALBi55Dmp3AlG2ynaQF_73RevLgJYHJ-wx5nzk7DTEAY9dS1FLI7nZTO7utGyFlLXQtmu6EzWSvdCWV6k_ZTLRKVWLRqHM2T2kjhOi0XMzYtOJTTBkIIyGHlHFrMyQePcdwAErA4wRkc6TEfaQyxYx25Ac77oFPFNcjbFMZ8xEDWOKRBgyWPvmA3gNB-InDbm8zxpAu2Zm3Y4Kr3_uCfTw-vN8_V69vTy_3q9fKtXqZK987LRvpO60H6_x6kK606VoH64VvlVuKpR-UsEor1S46u_bO-_LYdw2Acn17wW6Oe8sXd_tSzGwxORhHGyDukym7ei3KWZLymHQUUyLwZqJigT6NFOZbrtmYItd8yzVCmyK3MOoP4zD_FMxkcfyXvDuSUMofEMgkhxAcDEjgshki_kN_AeKhmkU
CitedBy_id crossref_primary_10_1007_s13160_019_00362_6
crossref_primary_10_1080_01630563_2020_1777159
crossref_primary_10_1587_nolta_4_80
crossref_primary_10_1587_nolta_5_320
crossref_primary_10_1137_120875661
crossref_primary_10_1007_s00211_013_0575_z
crossref_primary_10_1007_s00607_011_0180_x
Cites_doi 10.1006/jath.1998.3172
10.5109/13484
ContentType Journal Article
Copyright 2011 Elsevier B.V.
Copyright_xml – notice: 2011 Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cam.2011.09.026
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-1778
EndPage 1636
ExternalDocumentID 10_1016_j_cam_2011_09_026
S037704271100505X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABAOU
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
XPP
YQT
ZMT
~02
~G-
29K
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
D-I
EFKBS
EJD
FGOYB
G-2
NHB
R2-
SEW
WUQ
ZY4
~HD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c395t-f8c9121f699dacfbd1c87963ceb4f37c505fd70a7977346abfcffceb862ee7c83
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000298271800047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-0427
IngestDate Thu Oct 02 07:40:46 EDT 2025
Sat Nov 29 06:38:56 EST 2025
Tue Nov 18 22:24:54 EST 2025
Fri Feb 23 02:27:51 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords 65L05
Finite element method
Linear ODEs
65L70
65L60
34A30
65G99
Constructive a posteriori estimates
34L99
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c395t-f8c9121f699dacfbd1c87963ceb4f37c505fd70a7977346abfcffceb862ee7c83
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://dx.doi.org/10.1016/j.cam.2011.09.026
PQID 963890963
PQPubID 23500
PageCount 15
ParticipantIDs proquest_miscellaneous_963890963
crossref_primary_10_1016_j_cam_2011_09_026
crossref_citationtrail_10_1016_j_cam_2011_09_026
elsevier_sciencedirect_doi_10_1016_j_cam_2011_09_026
PublicationCentury 2000
PublicationDate 2011-10-15
PublicationDateYYYYMMDD 2011-10-15
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10-15
  day: 15
PublicationDecade 2010
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2011
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Nakao, Yamamoto, Kimura (br000010) 1998; 93
Rump (br000020) 1999
Kimura, Yamamoto (br000015) 1999; 31
Mitsuhiro T. Nakao, Takehiko Kinoshita, Takuma Kimura, On a posteriori estimates of inverse operators for linear parabolic initial-boundary value problems, RIMS Preprints, RIMS-1729, (2011).
Nakao (10.1016/j.cam.2011.09.026_br000010) 1998; 93
Kimura (10.1016/j.cam.2011.09.026_br000015) 1999; 31
10.1016/j.cam.2011.09.026_br000005
Rump (10.1016/j.cam.2011.09.026_br000020) 1999
References_xml – volume: 93
  start-page: 491
  year: 1998
  end-page: 500
  ident: br000010
  article-title: On the best constant in the error bound for the
  publication-title: Journal of Approximation Theory
– reference: Mitsuhiro T. Nakao, Takehiko Kinoshita, Takuma Kimura, On a posteriori estimates of inverse operators for linear parabolic initial-boundary value problems, RIMS Preprints, RIMS-1729, (2011).
– volume: 31
  start-page: 109
  year: 1999
  end-page: 115
  ident: br000015
  article-title: On explicit bounds in the error for the
  publication-title: Bulletin of Informatics and Cybernetics
– start-page: 77
  year: 1999
  end-page: 104
  ident: br000020
  article-title: INTLAB–INTerval LABoratory
  publication-title: Developments in Reliable Computing
– start-page: 77
  year: 1999
  ident: 10.1016/j.cam.2011.09.026_br000020
  article-title: INTLAB–INTerval LABoratory
– ident: 10.1016/j.cam.2011.09.026_br000005
– volume: 93
  start-page: 491
  year: 1998
  ident: 10.1016/j.cam.2011.09.026_br000010
  article-title: On the best constant in the error bound for the h01-projection into piecewise polynomial spaces
  publication-title: Journal of Approximation Theory
  doi: 10.1006/jath.1998.3172
– volume: 31
  start-page: 109
  issue: 2
  year: 1999
  ident: 10.1016/j.cam.2011.09.026_br000015
  article-title: On explicit bounds in the error for the H01-projection into piecewise polynomial spaces
  publication-title: Bulletin of Informatics and Cybernetics
  doi: 10.5109/13484
SSID ssj0006914
Score 2.0178072
Snippet We present constructive a posteriori estimates of inverse operators for initial value problems in linear ordinary differential equations (ODEs) on a bounded...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1622
SubjectTerms Construction
Constructive a posteriori estimates
Differential equations
Estimates
Finite element method
Initial value problems
Inverse
Linear ODEs
Mathematical analysis
Mathematical models
Operators
Title A posteriori estimates of inverse operators for initial value problems in linear ordinary differential equations
URI https://dx.doi.org/10.1016/j.cam.2011.09.026
https://www.proquest.com/docview/963890963
Volume 236
WOSCitedRecordID wos000298271800047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: AIEXJ
  dateStart: 19950220
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZKlwMcEE-xvOQD4kAVlCZpbB8r1BWg3cIhK_Vmpa4tsmyTbNqu9jfsr97xKwnLssCBi1VNnbbyfB3PjD3fIPSWpstIKn1tkBISJGkswA6uIGolVFPJxHkYKtNsgszndLFg3waDS18Lc35KypJeXLD6v6oaZKBsXTr7D-puPxQE8BqUDiOoHca_Uvx0VOvCjaaommKkOTTW2p201BD6DoYcVbU0h-uGigGkxVanzTXtt66aMg1mzC1Z7YHmzQjCU1u065upmOnybNdL9v3q3grTLsKnGg0lrHN41y1TbHeQVJTV5nthPdmsk653zc-ief4jN8ndIydbtRlYff9j0rNrMaBCt_joG-HI0qA4tPVN6ji1hctuewb_Mb3R9NssxAmE9WvHzMo-hNENNNvzr_zg-PCQZ7NF9q4-C3QHMn1S79qx3EF7EZkwOkR708-zxZd2X0-ZZYr3P9-fkZvbgte-9XdezrX93jgx2UP0wKkHTy1qHqGBLB-j-0edQp6geoo7_OAWP7hS2OEHt_jBgB_s8IMNfrDHD4ixxQ_2-MF9_OAWP0_R8cEs-_gpcG05AhGzyTZQVLBxNFYpY6tcqOVqLCgBOy7kMlExEeBTqxUJcwKhRZyk-VIJpeBNiJ2lJILGz9CwrEr5HGGI9tNcJDIhVPdNEywiKk7EhIqxIKlc7qPQLyMXjrNet0455f5y4gmHled65XnIOKz8PnrfPlJbwpbbJideN9x5nNaT5ICq2x7DXo8crLE-YstLWe02XG9nLITxxZ-nvET3ur_HKzTcNjv5Gt0V59ti07xx6LsCFyuyYQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+posteriori+estimates+of+inverse+operators+for+initial+value+problems+in+linear+ordinary+differential+equations&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Kinoshita%2C+T&rft.au=Kimura%2C+T&rft.au=Nakao%2C+M+T&rft.date=2011-10-15&rft.issn=0377-0427&rft.volume=236&rft.issue=6&rft.spage=1622&rft.epage=1636&rft_id=info:doi/10.1016%2Fj.cam.2011.09.026&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon