Variance-Constrained Recursive State Estimation for Time-Varying Complex Networks With Quantized Measurements and Uncertain Inner Coupling

In this paper, a new recursive state estimation problem is discussed for a class of discrete time-varying stochastic complex networks with uncertain inner coupling and signal quantization under the error-variance constraints. The coupling strengths are allowed to be varying within certain intervals,...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems Vol. 31; no. 6; pp. 1955 - 1967
Main Authors: Hu, Jun, Wang, Zidong, Liu, Guo-Ping, Zhang, Hongxu
Format: Journal Article
Language:English
Published: United States IEEE 01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2162-237X, 2162-2388, 2162-2388
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, a new recursive state estimation problem is discussed for a class of discrete time-varying stochastic complex networks with uncertain inner coupling and signal quantization under the error-variance constraints. The coupling strengths are allowed to be varying within certain intervals, and the measurement signals are subject to the quantization effects before being transmitted to the remote estimator. The focus of the conducted topic is on the design of a variance-constrained state estimation algorithm with the aim to ensure a locally minimized upper bound on the estimation error covariance at every sampling instant. Furthermore, the boundedness of the resulting estimation error is analyzed, and a sufficient criterion is established to ensure the desired exponential boundedness of the state estimation error in the mean square sense. Finally, some simulations are proposed with comparisons to illustrate the validity of the newly developed variance-constrained estimation method.
AbstractList In this paper, a new recursive state estimation problem is discussed for a class of discrete time-varying stochastic complex networks with uncertain inner coupling and signal quantization under the error-variance constraints. The coupling strengths are allowed to be varying within certain intervals, and the measurement signals are subject to the quantization effects before being transmitted to the remote estimator. The focus of the conducted topic is on the design of a variance-constrained state estimation algorithm with the aim to ensure a locally minimized upper bound on the estimation error covariance at every sampling instant. Furthermore, the boundedness of the resulting estimation error is analyzed, and a sufficient criterion is established to ensure the desired exponential boundedness of the state estimation error in the mean square sense. Finally, some simulations are proposed with comparisons to illustrate the validity of the newly developed variance-constrained estimation method.In this paper, a new recursive state estimation problem is discussed for a class of discrete time-varying stochastic complex networks with uncertain inner coupling and signal quantization under the error-variance constraints. The coupling strengths are allowed to be varying within certain intervals, and the measurement signals are subject to the quantization effects before being transmitted to the remote estimator. The focus of the conducted topic is on the design of a variance-constrained state estimation algorithm with the aim to ensure a locally minimized upper bound on the estimation error covariance at every sampling instant. Furthermore, the boundedness of the resulting estimation error is analyzed, and a sufficient criterion is established to ensure the desired exponential boundedness of the state estimation error in the mean square sense. Finally, some simulations are proposed with comparisons to illustrate the validity of the newly developed variance-constrained estimation method.
In this paper, a new recursive state estimation problem is discussed for a class of discrete time-varying stochastic complex networks with uncertain inner coupling and signal quantization under the error-variance constraints. The coupling strengths are allowed to be varying within certain intervals, and the measurement signals are subject to the quantization effects before being transmitted to the remote estimator. The focus of the conducted topic is on the design of a variance-constrained state estimation algorithm with the aim to ensure a locally minimized upper bound on the estimation error covariance at every sampling instant. Furthermore, the boundedness of the resulting estimation error is analyzed, and a sufficient criterion is established to ensure the desired exponential boundedness of the state estimation error in the mean square sense. Finally, some simulations are proposed with comparisons to illustrate the validity of the newly developed variance-constrained estimation method.
Author Hu, Jun
Liu, Guo-Ping
Wang, Zidong
Zhang, Hongxu
Author_xml – sequence: 1
  givenname: Jun
  orcidid: 0000-0002-7852-5064
  surname: Hu
  fullname: Hu, Jun
  email: hujun2013@gmail.com
  organization: School of Engineering, University of South Wales, Pontypridd, U.K
– sequence: 2
  givenname: Zidong
  orcidid: 0000-0002-9576-7401
  surname: Wang
  fullname: Wang, Zidong
  email: zidong.wang@brunel.ac.uk
  organization: Department of Computer Science, Brunel University London, Uxbridge, U.K
– sequence: 3
  givenname: Guo-Ping
  orcidid: 0000-0002-0699-2296
  surname: Liu
  fullname: Liu, Guo-Ping
  email: guoping.liu@southwales.ac.uk
  organization: School of Engineering, University of South Wales, Pontypridd, U.K
– sequence: 4
  givenname: Hongxu
  surname: Zhang
  fullname: Zhang, Hongxu
  email: hongxuzhang@hrbust.edu.cn
  organization: School of Measurement Control Technology and Communication Engineering, Harbin University of Science and Technology, Harbin, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31395561$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1uEzEUhS1UREvpC4CELLFhM8E_Y3tmiaIClUIQNAV2I8e-Ay4zdrA9QHkEnhqnCVl0gTfXi--cc3XPQ3TkgweEHlMyo5S0L1bL5eJyxghtZ6xlSoj6HjphVLKK8aY5OvzV52N0ltI1KU8SIev2ATrmlLdCSHqC_nzU0WlvoJoHn3LUzoPFH8BMMbkfgC-zzoDPU3ajzi543IeIV26EqghvnP-C52HcDPALLyH_DPFbwp9c_orfT9pn97t4vQWdpggj-Jyw9hZflbSYSxC-8B5iMZg2Q3F6hO73ekhwtp-n6OrV-Wr-plq8e30xf7moTFk6V5avJZUCFGholWwsF6q3hlFhNdOKrpmQillWa2YV4RbMGrjsNQUpWF0bfoqe73w3MXyfIOVudMnAMGgPYUodY4oQKolUBX12B70OU_Rlu47VpOWqFZIX6umemtYj2G4Ty7HiTffvygVgO8DEkFKE_oBQ0m3b7G7b7LZtdvs2i6i5IzIu33awbWn4v_TJTuoA4JDVqKauacv_AonHrrA
CODEN ITNNAL
CitedBy_id crossref_primary_10_1109_TCNS_2020_3035759
crossref_primary_10_1016_j_jfranklin_2024_106838
crossref_primary_10_1080_00207721_2020_1817616
crossref_primary_10_1016_j_neunet_2020_08_023
crossref_primary_10_1016_j_neucom_2021_03_022
crossref_primary_10_1002_acs_3803
crossref_primary_10_1109_TASE_2024_3398731
crossref_primary_10_1109_TNNLS_2020_3027252
crossref_primary_10_1007_s00034_020_01378_x
crossref_primary_10_1109_TCYB_2020_3036364
crossref_primary_10_1109_TSIPN_2025_3578778
crossref_primary_10_1109_TCNS_2024_3488515
crossref_primary_10_1007_s00034_019_01327_3
crossref_primary_10_1109_TNSE_2022_3163258
crossref_primary_10_1007_s12555_020_0051_3
crossref_primary_10_1016_j_neucom_2020_01_092
crossref_primary_10_1109_TSMC_2022_3218532
crossref_primary_10_1109_TCYB_2021_3049461
crossref_primary_10_1109_TNNLS_2021_3131661
crossref_primary_10_1109_TNNLS_2023_3302190
crossref_primary_10_1109_JSYST_2022_3142183
crossref_primary_10_1002_rnc_5801
crossref_primary_10_1016_j_jfranklin_2022_05_009
crossref_primary_10_1002_rnc_7669
crossref_primary_10_1007_s12555_020_0518_2
crossref_primary_10_1016_j_neucom_2019_12_064
crossref_primary_10_1109_TAC_2024_3378776
crossref_primary_10_1016_j_neucom_2020_03_015
crossref_primary_10_1016_j_jfranklin_2023_10_019
crossref_primary_10_1002_rnc_6581
crossref_primary_10_1016_j_sysconle_2023_105692
crossref_primary_10_1109_ACCESS_2023_3341425
crossref_primary_10_1109_TCSI_2021_3071034
crossref_primary_10_1109_TCSI_2024_3372548
crossref_primary_10_1007_s11432_023_3905_1
crossref_primary_10_1080_21642583_2020_1740113
crossref_primary_10_1049_cth2_12049
crossref_primary_10_1016_j_ins_2020_08_047
crossref_primary_10_1016_j_jfranklin_2025_107988
crossref_primary_10_1016_j_neucom_2021_03_086
crossref_primary_10_1080_21642583_2020_1746210
crossref_primary_10_1109_TCYB_2021_3057545
crossref_primary_10_1109_ACCESS_2021_3118338
crossref_primary_10_1016_j_automatica_2021_109961
crossref_primary_10_1016_j_neucom_2019_12_038
crossref_primary_10_1080_00207721_2020_1856447
crossref_primary_10_1080_21642583_2020_1734986
crossref_primary_10_1016_j_compbiomed_2023_107901
crossref_primary_10_1016_j_automatica_2025_112291
crossref_primary_10_1109_TCYB_2020_3043283
crossref_primary_10_1002_asjc_2906
crossref_primary_10_1016_j_neunet_2022_02_028
crossref_primary_10_1109_TNNLS_2021_3102127
crossref_primary_10_1109_TAC_2021_3091182
crossref_primary_10_1109_TASE_2025_3577977
crossref_primary_10_1109_TCYB_2022_3222628
crossref_primary_10_1109_TSMC_2021_3071390
crossref_primary_10_1109_TAC_2023_3349102
crossref_primary_10_1109_TCYB_2020_3025251
crossref_primary_10_1080_00207721_2022_2049919
crossref_primary_10_1016_j_isatra_2025_04_033
crossref_primary_10_1007_s12555_019_1000_x
crossref_primary_10_1016_j_cnsns_2025_109294
crossref_primary_10_1080_21642583_2021_1997670
crossref_primary_10_1016_j_neucom_2021_01_023
crossref_primary_10_1016_j_neucom_2022_08_054
crossref_primary_10_1016_j_automatica_2022_110628
crossref_primary_10_1080_21642583_2020_1737846
crossref_primary_10_1007_s11063_023_11430_x
crossref_primary_10_1080_21642583_2022_2086183
crossref_primary_10_1007_s12555_020_0485_7
crossref_primary_10_1109_TNSE_2021_3076113
crossref_primary_10_1109_TFUZZ_2022_3193446
crossref_primary_10_1007_s40747_024_01728_1
crossref_primary_10_1109_TNNLS_2019_2953649
crossref_primary_10_1080_00207721_2021_1917721
crossref_primary_10_1016_j_neucom_2020_03_104
crossref_primary_10_1080_00207721_2021_1885082
crossref_primary_10_1016_j_automatica_2021_109784
crossref_primary_10_1016_j_automatica_2021_109782
crossref_primary_10_1177_01423312251358173
crossref_primary_10_1007_s11768_023_00164_9
crossref_primary_10_1016_j_inffus_2021_06_006
crossref_primary_10_1007_s12555_020_0091_8
crossref_primary_10_1109_TNNLS_2021_3106947
crossref_primary_10_1109_TCYB_2020_3021194
crossref_primary_10_1016_j_amc_2024_129126
crossref_primary_10_1080_00207721_2020_1868615
crossref_primary_10_1002_rnc_5328
crossref_primary_10_1016_j_neucom_2020_01_066
crossref_primary_10_1016_j_neucom_2020_01_065
crossref_primary_10_1080_21642583_2021_1907259
crossref_primary_10_1109_TFUZZ_2023_3315722
crossref_primary_10_1177_09596518221132364
crossref_primary_10_1109_TSP_2020_3048245
crossref_primary_10_1016_j_isatra_2021_12_036
crossref_primary_10_1109_TNNLS_2020_3027467
crossref_primary_10_1109_TCYB_2020_3021982
crossref_primary_10_1007_s13042_021_01285_w
crossref_primary_10_1109_TSMC_2020_2966977
crossref_primary_10_1016_j_neucom_2019_09_053
crossref_primary_10_1109_JSYST_2024_3357901
crossref_primary_10_1016_j_neunet_2020_08_006
crossref_primary_10_1109_TCYB_2020_2981646
crossref_primary_10_1109_TNNLS_2024_3474016
crossref_primary_10_1002_oca_2987
crossref_primary_10_1016_j_jfranklin_2020_04_012
crossref_primary_10_1109_TNNLS_2021_3070797
crossref_primary_10_1016_j_cnsns_2024_108422
crossref_primary_10_1109_ACCESS_2019_2956287
crossref_primary_10_1007_s12555_018_0780_8
crossref_primary_10_3390_s25092880
crossref_primary_10_1007_s00034_022_02059_7
crossref_primary_10_1016_j_amc_2021_125960
crossref_primary_10_1002_rnc_5368
crossref_primary_10_1080_23335777_2020_1837249
crossref_primary_10_1109_TSMC_2021_3049306
crossref_primary_10_1109_JSYST_2021_3064920
crossref_primary_10_1016_j_nahs_2023_101365
crossref_primary_10_1186_s13662_020_02896_3
crossref_primary_10_1049_iet_cta_2020_0219
crossref_primary_10_1002_mma_10286
crossref_primary_10_1080_21642583_2021_1888820
crossref_primary_10_1109_TNSE_2025_3567517
crossref_primary_10_1109_TNSE_2021_3058220
crossref_primary_10_1016_j_jfranklin_2022_05_026
crossref_primary_10_1155_2019_7121652
crossref_primary_10_1109_TNSE_2021_3095217
Cites_doi 10.1109/TIE.2015.2475515
10.1038/srep26733
10.1109/TNNLS.2015.2503772
10.1049/iet-cta.2016.1161
10.1109/TNNLS.2013.2271357
10.1016/j.physa.2012.07.007
10.1109/TNNLS.2014.2387443
10.1109/9.754809
10.4173/mic.2009.1.3
10.1016/j.amc.2017.02.041
10.1016/j.inffus.2017.03.003
10.1109/TCYB.2016.2568281
10.1016/j.amc.2013.10.068
10.1016/j.neucom.2018.07.086
10.1137/060657935
10.1109/TCYB.2015.2399334
10.1016/j.automatica.2018.07.027
10.1016/0167-6911(92)90097-C
10.1016/j.amc.2017.05.007
10.1109/TNNLS.2013.2253122
10.1109/TIE.2017.2701776
10.1109/TFUZZ.2014.2350534
10.1016/j.physrep.2005.10.009
10.1016/j.jfranklin.2016.08.021
10.1109/TSP.2017.2686375
10.1109/TNNLS.2012.2202246
10.1109/TCYB.2015.2509170
10.1109/TCYB.2016.2536748
10.1016/j.neucom.2018.08.060
10.1080/00207721.2012.670309
10.1080/03081079.2014.973725
10.1109/TNN.2010.2090669
10.1109/TCYB.2014.2386781
10.1109/TAC.2005.858689
10.1109/TCYB.2017.2729164
10.1109/TCYB.2017.2653242
10.1109/TNNLS.2017.2678681
10.1109/TIE.2016.2587246
10.1016/j.inffus.2016.06.008
10.1109/TMECH.2017.2700459
10.1016/j.automatica.2015.11.008
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2019.2927554
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 1967
ExternalDocumentID 31395561
10_1109_TNNLS_2019_2927554
8784419
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61673141; 61873148; 61773144
  funderid: 10.13039/501100001809
– fundername: Alexander von Humboldt Foundation of Germany
  funderid: 10.13039/100005156
– fundername: Fok Ying Tung Education Foundation of China
  grantid: 151004
  funderid: 10.13039/501100010261
– fundername: Outstanding Youth Science Foundation of Heilongjiang Province of China
  grantid: JC2018001
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c395t-d3b6165e7eae9768d357fdc215da2a71b25672d24a2d703decbe36fa1e65244c3
IEDL.DBID RIE
ISICitedReferencesCount 139
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000542953000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Thu Oct 02 12:03:51 EDT 2025
Mon Jun 30 06:31:32 EDT 2025
Thu Apr 03 06:52:02 EDT 2025
Sat Nov 29 01:40:03 EST 2025
Tue Nov 18 20:59:39 EST 2025
Wed Aug 27 02:39:01 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-d3b6165e7eae9768d357fdc215da2a71b25672d24a2d703decbe36fa1e65244c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7852-5064
0000-0002-9576-7401
0000-0002-0699-2296
OpenAccessLink http://bura.brunel.ac.uk/bitstream/2438/21884/1/FullText.pdf
PMID 31395561
PQID 2409379563
PQPubID 85436
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TNNLS_2019_2927554
crossref_primary_10_1109_TNNLS_2019_2927554
ieee_primary_8784419
proquest_miscellaneous_2270016067
proquest_journals_2409379563
pubmed_primary_31395561
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref37
ref15
ref14
jin (ref18) 2012; 23
ref31
hardy (ref12) 1988
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref43
dattorro (ref8) 2005
ref28
ref27
ref29
ref7
ref9
ref4
ref3
ref6
ref5
ref40
wu (ref36) 2013; 24
References_xml – ident: ref31
  doi: 10.1109/TIE.2015.2475515
– ident: ref34
  doi: 10.1038/srep26733
– ident: ref38
  doi: 10.1109/TNNLS.2015.2503772
– ident: ref11
  doi: 10.1049/iet-cta.2016.1161
– ident: ref29
  doi: 10.1109/TNNLS.2013.2271357
– ident: ref9
  doi: 10.1016/j.physa.2012.07.007
– year: 1988
  ident: ref12
  publication-title: Inequalities
– ident: ref33
  doi: 10.1109/TNNLS.2014.2387443
– ident: ref28
  doi: 10.1109/9.754809
– ident: ref19
  doi: 10.4173/mic.2009.1.3
– ident: ref27
  doi: 10.1016/j.amc.2017.02.041
– ident: ref13
  doi: 10.1016/j.inffus.2017.03.003
– ident: ref39
  doi: 10.1109/TCYB.2016.2568281
– ident: ref5
  doi: 10.1016/j.amc.2013.10.068
– ident: ref42
  doi: 10.1016/j.neucom.2018.07.086
– ident: ref24
  doi: 10.1137/060657935
– ident: ref22
  doi: 10.1109/TCYB.2015.2399334
– ident: ref14
  doi: 10.1016/j.automatica.2018.07.027
– ident: ref35
  doi: 10.1016/0167-6911(92)90097-C
– ident: ref32
  doi: 10.1016/j.amc.2017.05.007
– volume: 24
  start-page: 1177
  year: 2013
  ident: ref36
  article-title: Sampled-data exponential synchronization of complex dynamical networks with time-varying coupling delay
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2253122
– ident: ref3
  doi: 10.1109/TIE.2017.2701776
– ident: ref16
  doi: 10.1109/TFUZZ.2014.2350534
– ident: ref4
  doi: 10.1016/j.physrep.2005.10.009
– ident: ref23
  doi: 10.1016/j.jfranklin.2016.08.021
– ident: ref7
  doi: 10.1109/TSP.2017.2686375
– volume: 23
  start-page: 1345
  year: 2012
  ident: ref18
  article-title: Adaptive pinning control of deteriorated nonlinear coupling networks with circuit realization
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2012.2202246
– ident: ref25
  doi: 10.1109/TCYB.2015.2509170
– ident: ref40
  doi: 10.1109/TCYB.2016.2536748
– ident: ref17
  doi: 10.1016/j.neucom.2018.08.060
– ident: ref1
  doi: 10.1080/00207721.2012.670309
– ident: ref20
  doi: 10.1080/03081079.2014.973725
– year: 2005
  ident: ref8
  publication-title: Convex Optimization & Euclidean Distance Geometry
– ident: ref30
  doi: 10.1109/TNN.2010.2090669
– ident: ref43
  doi: 10.1109/TCYB.2014.2386781
– ident: ref10
  doi: 10.1109/TAC.2005.858689
– ident: ref26
  doi: 10.1109/TCYB.2017.2729164
– ident: ref21
  doi: 10.1109/TCYB.2017.2653242
– ident: ref41
  doi: 10.1109/TNNLS.2017.2678681
– ident: ref37
  doi: 10.1109/TIE.2016.2587246
– ident: ref6
  doi: 10.1016/j.inffus.2016.06.008
– ident: ref2
  doi: 10.1109/TMECH.2017.2700459
– ident: ref15
  doi: 10.1016/j.automatica.2015.11.008
SSID ssj0000605649
Score 2.6385546
Snippet In this paper, a new recursive state estimation problem is discussed for a class of discrete time-varying stochastic complex networks with uncertain inner...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1955
SubjectTerms Algorithms
Boundedness analysis
Complex networks
Computer simulation
Constraints
Coupling
Couplings
Covariance
Error analysis
Estimation error
Measurement
Measurement uncertainty
optimal state estimation
Quantization (signal)
signal quantization
State estimation
Stochasticity
time-varying stochastic complex networks
uncertain inner coupling
Upper bounds
Variance
variance-constrained approach
Title Variance-Constrained Recursive State Estimation for Time-Varying Complex Networks With Quantized Measurements and Uncertain Inner Coupling
URI https://ieeexplore.ieee.org/document/8784419
https://www.ncbi.nlm.nih.gov/pubmed/31395561
https://www.proquest.com/docview/2409379563
https://www.proquest.com/docview/2270016067
Volume 31
WOSCitedRecordID wos000542953000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FQcutFCgaUtlJG7gNrET2zki1AqkEvFoYW9REk9gpSpbdTcV4ifwq5lxskFIgMQtUuxx5JmJvxnPA-BZltYe68pJE1dGppg66eoEJSaqNeh9Y9pQxPXcFoWbzfJ3G_BiyoVBxBB8hsf8GO7y_aLp2VV24qyj0zvfhE1rzZCrNflTYsLlJqBdlRgllbazdY5MnJ9cFMX5Rw7kyo9VrmyWpb-dQ6Gxyt8xZjhrzrb_7yt34N6IKcXLQQjuwwZ2D2B73a9BjOq7Cz8-kWHMXJbcpjM0h0AvPrDHnYPYRQCe4pSUfshnFARoBeeISJrI6VCCaV7hN1EMweNL8Xm--ire98Se-Xei9faXx3Epqs6LS1otxByIN9zjiwj0nAL85SFcnp1evHotx14MstF5tpJe1yYxGVqskBCM8zqzrW8IMPhKVTapCTpZ5VVaKU8_EY9Njdq0VYImIwTR6Eew1S063AMRa7JZ26RVrdW0UcalreOqe1wLkKyvNIJkzZmyGQuV85ZclcFgifMycLNkbpYjNyN4Ps25Hsp0_HP0LrNtGjlyLILDtQCUoyYvS0I8hODIitQRPJ1ekw7yxUrV4aKnMeH2nkxBG8HjQXAm2pogNrcg3f_zmgdwV7EFH_w6h7C1uunxCdxpblfz5c0RCfrMHQVB_wkSFPrx
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfGQIIXBoxB2YAg8QbZ2qRN2sdp2rSJW8XHDe6tahsXTpp6aHdFiD-Bv3p22itCAiTeKjVxqthufnb8AfAyiSuHVZlKE5ZGxhinMq0ilBipxqBztWl8EdeJzfN0NsvebsDrMRcGEX3wGe7zo7_Ld4u6Y1fZQWpTOr2zG3AziWMV9tlao0clJGRuPN5VkVFSaTtbZ8mE2cE0zycfOJQr21eZskkS_3YS-dYqf0eZ_rQ52fq_77wHdwdUKQ57MbgPG9g-gK11xwYxKPA2_PxIpjHzWXKjTt8eAp14zz53DmMXHnqKY1L7PqNREKQVnCUiaSInRAmmeYnfRd6Hjy_Fp_nqi3jXEYPmP4jW-S-f41KUrRMXtJqPOhBn3OWLCHScBPz5IVycHE-PTuXQjUHWOktW0unKRCZBiyUShkmdTmzjaoIMrlSljSoCT1Y5FZfK0W_EYV2hNk0ZoUkIQ9R6BzbbRYuPQYSarNYmalRjNW2USeMm5bp7XA2Q7K84gGjNmaIeSpXzllwW3mQJs8Jzs2BuFgM3A3g1zvnaF-r45-htZts4cuBYAHtrASgGXV4WhHkIw5EdqQN4Mb4mLeSrlbLFRUdj_P09GYM2gEe94Iy0NYFsbkL65M9rPofbp9PzSTE5y9_swh3F9rz38uzB5uqqw6dwq_62mi-vnnlxvwZVYf1Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variance-Constrained+Recursive+State+Estimation+for+Time-Varying+Complex+Networks+With+Quantized+Measurements+and+Uncertain+Inner+Coupling&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Hu%2C+Jun&rft.au=Wang%2C+Zidong&rft.au=Guo-Ping%2C+Liu&rft.au=Zhang%2C+Hongxu&rft.date=2020-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2162-237X&rft.eissn=2162-2388&rft.volume=31&rft.issue=6&rft.spage=1955&rft_id=info:doi/10.1109%2FTNNLS.2019.2927554&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon