900 MHz radiation does not induce micronucleus formation in different cell types
The exposure of the population to non-ionising electromagnetic radiation is still increasing, mainly due to mobile communication. Whether low-intensity electromagnetic fields can cause other effects apart from heating has been a subject of debate. One of the effects, which were proposed to be caused...
Uložené v:
| Vydané v: | Mutagenesis Ročník 27; číslo 4; s. 477 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
01.07.2012
|
| Predmet: | |
| ISSN: | 1464-3804, 1464-3804 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The exposure of the population to non-ionising electromagnetic radiation is still increasing, mainly due to mobile communication. Whether low-intensity electromagnetic fields can cause other effects apart from heating has been a subject of debate. One of the effects, which were proposed to be caused by mobile phone radiation, is the occurrence of mitotic disturbances. The aim of this study was to investigate possible consequences of these mitotic disturbances as manifest genomic damage, i.e. micronucleus induction. Cells were irradiated at a frequency of 900 MHz, which is located in one of the main frequency bands applied for mobile communication. Two cell types were used, HaCaT cells as human cells and A(L) cells (human-hamster hybrid cells), in which mitotic disturbances had been reported to occur. After different post-exposure incubation periods, cells were fixed and micronucleus frequencies were evaluated. Both cell types did not show any genomic damage after exposure. To adapt the protocol for the micronucleus test into the direction of the protocol for mitotic disturbances, the post-exposure incubation period was reduced and exposure time was extended to one cell cycle length. This did not result in any increase of the genomic damage. In conclusion, micronucleus induction was not observed as a consequence of exposure to non-ionising radiation, even though this agent was reported to cause mitotic disturbances under similar experimental conditions. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1464-3804 1464-3804 |
| DOI: | 10.1093/mutage/ges007 |