Direct Numerical Simulation of particulate flow with heat transfer
Numerical simulations of heat transfer in non-isothermal particulate flows are important to better understand the flow pattern. The complexity of numerical algorithms coupling the heat and mass transfer and the considerable computational resources required limit the number of such direct simulations...
Uloženo v:
| Vydáno v: | The International journal of heat and fluid flow Ročník 31; číslo 6; s. 1050 - 1057 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY
Elsevier Inc
01.12.2010
Elsevier |
| Témata: | |
| ISSN: | 0142-727X, 1879-2278 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Numerical simulations of heat transfer in non-isothermal particulate flows are important to better understand the flow pattern. The complexity of numerical algorithms coupling the heat and mass transfer and the considerable computational resources required limit the number of such direct simulations that can be reasonably performed. We suggest a Distributed Lagrange Multiplier/Fictitious Domain (DLM/FD) method to compute the temperature distribution and the heat exchange between the fluid and solid phases. The Boussinesq approximation is considered for the flow/temperature fields coupling. We employ a Finite Element Method (FEM) to solve the fluid flow conservation equations for mass, momentum and energy. The motion of particles is computed by a Discrete Element Method (DEM). On each particle, heat transfer is solved using a FEM. For each class of particles, we generate a single FEM grid and translate/rotate it at each time step to match the physical configuration of each particle. Distributed Lagrange multipliers for both the velocity and temperature fields are introduced to treat the fluid/solid interaction. This work is an extension of the method we proposed in
Yu et al. (2006). Two two-dimensional (2D) test cases are proposed to validate the implementation by comparing our computational results with those reported in the literature. Finally, the sedimentation of a single sphere in a semi-infinite channel is presented and the results are discussed. |
|---|---|
| AbstractList | Numerical simulations of heat transfer in non-isothermal particulate flows are important to better understand the flow pattern. The complexity of numerical algorithms coupling the heat and mass transfer and the considerable computational resources required limit the number of such direct simulations that can be reasonably performed. We suggest a Distributed Lagrange Multiplier/Fictitious Domain (DLM/FD) method to compute the temperature distribution and the heat exchange between the fluid and solid phases. The Boussinesq approximation is considered for the flow/temperature fields coupling. We employ a Finite Element Method (FEM) to solve the fluid flow conservation equations for mass, momentum and energy. The motion of particles is computed by a Discrete Element Method (DEM). On each particle, heat transfer is solved using a FEM. For each class of particles, we generate a single FEM grid and translate/rotate it at each time step to match the physical configuration of each particle. Distributed Lagrange multipliers for both the velocity and temperature fields are introduced to treat the fluid/solid interaction. This work is an extension of the method we proposed in Yu et al. (2006). Two two-dimensional (2D) test cases are proposed to validate the implementation by comparing our computational results with those reported in the literature. Finally, the sedimentation of a single sphere in a semi-infinite channel is presented and the results are discussed. Numerical simulations of heat transfer in non-isothermal particulate flows are important to better understand the flow pattern. The complexity of numerical algorithms coupling the heat and mass transfer and the considerable computational resources required limit the number of such direct simulations that can be reasonably performed. We suggest a Distributed Lagrange Multiplier/Fictitious Domain (DLM/FD) method to compute the temperature distribution and the heat exchange between the fluid and solid phases. The Boussinesq approximation is considered for the flow/temperature fields coupling. We employ a Finite Element Method (FEM) to solve the fluid flow conservation equations for mass, momentum and energy. The motion of particles is computed by a Discrete Element Method (DEM). On each particle, heat transfer is solved using a FEM. For each class of particles, we generate a single FEM grid and translate/rotate it at each time step to match the physical configuration of each particle. Distributed Lagrange multipliers for both the velocity and temperature fields are introduced to treat the fluid/solid interaction. This work is an extension of the method we proposed in Yu et al. (2006). Two two-dimensional (2D) test cases are proposed to validate the implementation by comparing our computational results with those reported in the literature. Finally, the sedimentation of a single sphere in a semi-infinite channel is presented and the results are discussed. |
| Author | Dan, C. Wachs, A. |
| Author_xml | – sequence: 1 givenname: C. surname: Dan fullname: Dan, C. organization: Fluid Mechanics Department, IFP, 1 et 4, Avenue du Bois Préau, 92852 Rueil-Malmaison Cedex, France – sequence: 2 givenname: A. surname: Wachs fullname: Wachs, A. email: anthony.wachs@ifp.fr organization: Fluid Mechanics Department, IFP, 1 et 4, Avenue du Bois Préau, 92852 Rueil-Malmaison Cedex, France |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23504689$$DView record in Pascal Francis |
| BookMark | eNqNkTFPwzAQhS0EEi3wH7IgppSzk9rOwAAFChKCgQ5sluNchKs0KbZDxb_HacvC1Okk-917fp_H5LjtWiTkksKEAuXXy4ldfqIOddPbqm66zYRBvAMxARBHZESlKFLGhDwmI6A5SwUTH6dk7P0SADjkYkTu7q1DE5LXfoXOGt0k73bVNzrYrk26OllrF6wZDjAZIpKNDZ_JkJoEp1tfozsnJ7VuPF7s5xlZPD4sZk_py9v8eXb7kpqsmIbUTAWrZKY5opCaaVPxXOdxljSjvDBCApNIi7wop7qUmYSSlhnnhklZCp2dkaud7dp1Xz36oFbWG2wa3WLXeyUzykAInkfl5V6pfWxUx3ca69Xa2ZV2P4plU8i5LKJuttMZ13nvsFbGhm3zWM02ioIaOKul-sdZDZwVCBU5R5ebfy5_QYfuz3f7GNl9W3TKG4utwWr7M6rq7IFOv7ylp5s |
| CODEN | IJHFD2 |
| CitedBy_id | crossref_primary_10_1016_j_powtec_2023_119239 crossref_primary_10_1016_j_ijheatmasstransfer_2019_119206 crossref_primary_10_1016_j_ijheatmasstransfer_2015_05_098 crossref_primary_10_1016_j_coche_2014_05_005 crossref_primary_10_1016_j_ijheatmasstransfer_2018_07_100 crossref_primary_10_1016_j_ijmultiphaseflow_2021_103736 crossref_primary_10_1016_j_ijheatfluidflow_2016_04_002 crossref_primary_10_1016_j_powtec_2019_05_067 crossref_primary_10_1016_j_ces_2012_06_055 crossref_primary_10_1016_j_proeng_2016_02_104 crossref_primary_10_1016_j_ijheatmasstransfer_2018_05_007 crossref_primary_10_1080_01457632_2017_1421296 crossref_primary_10_1016_j_powtec_2022_117766 crossref_primary_10_1063_5_0271039 crossref_primary_10_1016_j_ces_2019_01_004 crossref_primary_10_1016_j_ijheatmasstransfer_2017_03_052 crossref_primary_10_1146_annurev_fluid_010313_141344 crossref_primary_10_1017_jfm_2017_709 crossref_primary_10_1017_jfm_2020_45 crossref_primary_10_1016_j_partic_2024_01_005 crossref_primary_10_1016_j_icheatmasstransfer_2020_104892 crossref_primary_10_1002_ceat_201900236 crossref_primary_10_1016_j_powtec_2019_07_054 crossref_primary_10_1016_j_ces_2020_115478 crossref_primary_10_3390_coatings9050300 crossref_primary_10_1016_j_ces_2011_06_075 crossref_primary_10_1007_s40997_020_00348_7 crossref_primary_10_1016_j_jcp_2023_111929 crossref_primary_10_1016_j_powtec_2019_01_028 crossref_primary_10_1016_j_compfluid_2021_105064 crossref_primary_10_1016_j_ijheatmasstransfer_2017_06_046 crossref_primary_10_1088_1367_2630_ab0a94 crossref_primary_10_1016_j_ijheatmasstransfer_2012_06_085 crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_068 crossref_primary_10_1016_j_compchemeng_2011_02_013 crossref_primary_10_1016_j_ifset_2025_104197 crossref_primary_10_1016_j_ces_2014_05_039 crossref_primary_10_1016_j_jaerosci_2016_09_002 crossref_primary_10_1016_j_ces_2014_05_036 crossref_primary_10_1016_j_ijthermalsci_2014_03_008 crossref_primary_10_1016_j_apt_2016_11_007 crossref_primary_10_1017_jfm_2025_10506 crossref_primary_10_3390_su17020480 crossref_primary_10_1016_j_powtec_2017_05_039 crossref_primary_10_1016_j_cej_2021_130391 crossref_primary_10_1016_j_ijheatfluidflow_2021_108873 crossref_primary_10_1016_j_powtec_2016_02_038 crossref_primary_10_1108_HFF_05_2024_0372 crossref_primary_10_1016_j_ijheatmasstransfer_2025_126687 crossref_primary_10_1016_j_ijmultiphaseflow_2019_103184 crossref_primary_10_1002_mren201500062 crossref_primary_10_1016_j_ces_2020_115659 |
| Cites_doi | 10.1016/j.compfluid.2008.04.013 10.1016/j.jcp.2006.01.016 10.1016/S0301-9322(98)00048-2 10.1080/10407790590935975 10.1016/j.ijheatmasstransfer.2007.10.005 10.1016/j.jcp.2006.10.028 10.1016/S0301-9322(03)00035-1 10.1016/j.ijheatmasstransfer.2008.07.023 10.1016/j.compfluid.2009.01.005 10.1063/1.1512918 10.1016/j.jaerosci.2004.09.011 10.1063/1.2911022 10.1017/S0022112003003938 |
| ContentType | Journal Article Conference Proceeding |
| Copyright | 2010 Elsevier Inc. 2015 INIST-CNRS |
| Copyright_xml | – notice: 2010 Elsevier Inc. – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7TB 7U5 8FD FR3 H8D KR7 L7M |
| DOI | 10.1016/j.ijheatfluidflow.2010.07.007 |
| DatabaseName | CrossRef Pascal-Francis Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Physics |
| EISSN | 1879-2278 |
| EndPage | 1057 |
| ExternalDocumentID | 23504689 10_1016_j_ijheatfluidflow_2010_07_007 S0142727X10001335 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADHUB ADIYS ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SPD SSG SST SSZ T5K TN5 UHS VH1 VOH WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 7TB 7U5 8FD FR3 H8D KR7 L7M |
| ID | FETCH-LOGICAL-c395t-c572d83a6ee78a2acd64a42acb13169c78028e1949b5ab8380b1b366c288b7a3 |
| ISICitedReferencesCount | 62 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000285122500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0142-727X |
| IngestDate | Sun Sep 28 03:27:08 EDT 2025 Mon Jul 21 09:13:40 EDT 2025 Tue Nov 18 22:54:53 EST 2025 Sat Nov 29 02:47:08 EST 2025 Fri Feb 23 02:26:35 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Finite Element Method Heat transfer Discrete Element Method Distributed Lagrange Multiplier/Fictitious Domain Temperature distribution Digital simulation Distributed Lagrange Multiplier/Fictitious Discrete element method Particle suspension Sedimentation Finite element method Lagrange multiplier Two-phase flow Heat mass transfer Modelling Domain |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c395t-c572d83a6ee78a2acd64a42acb13169c78028e1949b5ab8380b1b366c288b7a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 831207764 |
| PQPubID | 23500 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_831207764 pascalfrancis_primary_23504689 crossref_citationtrail_10_1016_j_ijheatfluidflow_2010_07_007 crossref_primary_10_1016_j_ijheatfluidflow_2010_07_007 elsevier_sciencedirect_doi_10_1016_j_ijheatfluidflow_2010_07_007 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-12-01 |
| PublicationDateYYYYMMDD | 2010-12-01 |
| PublicationDate_xml | – month: 12 year: 2010 text: 2010-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY |
| PublicationTitle | The International journal of heat and fluid flow |
| PublicationYear | 2010 |
| Publisher | Elsevier Inc Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier |
| References | Feng, Michaelides (bib2) 2009; 38 Mograbi, Bar-Ziv (bib9) 2005; 36 TenCate, Nieuwstad, Derksen, Van den Akker (bib11) 2002; 14 Glowinski, Pan, Helsa, Joseph (bib6) 1999; 25 Wachs (bib13) 2009; 38 Kotouc, Bouchet, Dusek (bib8) 2008; 51 Kim, Choi (bib7) 2004; 18 Pacheco, Pacheco-Vega, Rodic, Peck (bib10) 2005; 48 Veeramani, Minev, Nandakumar (bib12) 2007; 224 Yu, Shao, Wachs (bib14) 2006; 217 Gan, Feng, Hu (bib5) 2003; 29 Gan, Chang, Feng, Hu (bib4) 2003; 481 Feng, Michaelides (bib3) 2009; 52 Feng, Michaelides (bib1) 2008; 20 Kim (10.1016/j.ijheatfluidflow.2010.07.007_bib7) 2004; 18 Gan (10.1016/j.ijheatfluidflow.2010.07.007_bib4) 2003; 481 Veeramani (10.1016/j.ijheatfluidflow.2010.07.007_bib12) 2007; 224 Pacheco (10.1016/j.ijheatfluidflow.2010.07.007_bib10) 2005; 48 Glowinski (10.1016/j.ijheatfluidflow.2010.07.007_bib6) 1999; 25 Gan (10.1016/j.ijheatfluidflow.2010.07.007_bib5) 2003; 29 Mograbi (10.1016/j.ijheatfluidflow.2010.07.007_bib9) 2005; 36 Wachs (10.1016/j.ijheatfluidflow.2010.07.007_bib13) 2009; 38 Yu (10.1016/j.ijheatfluidflow.2010.07.007_bib14) 2006; 217 Feng (10.1016/j.ijheatfluidflow.2010.07.007_bib1) 2008; 20 Feng (10.1016/j.ijheatfluidflow.2010.07.007_bib3) 2009; 52 Feng (10.1016/j.ijheatfluidflow.2010.07.007_bib2) 2009; 38 Kotouc (10.1016/j.ijheatfluidflow.2010.07.007_bib8) 2008; 51 TenCate (10.1016/j.ijheatfluidflow.2010.07.007_bib11) 2002; 14 |
| References_xml | – volume: 38 start-page: 1608 year: 2009 end-page: 1628 ident: bib13 article-title: A DEM-DLM/FD method for direct numerical simulation of particulate flows: sedimentation of polygonal isometric particles in a newtonian fluid with collisions publication-title: Comput. Fluids – volume: 224 start-page: 867 year: 2007 end-page: 879 ident: bib12 article-title: A fictitious domain formulation for flows with rigid particles: a non-Lagrange multiplier version publication-title: J. Comput. Phys. – volume: 29 start-page: 751 year: 2003 end-page: 769 ident: bib5 article-title: Simulation of the sedimentation of melting solid particles publication-title: Int. J. Multiphase Flow – volume: 51 start-page: 2686 year: 2008 end-page: 2700 ident: bib8 article-title: Loss of axisymmetry in the mixed convection, assisting flow past a heated sphere publication-title: Int. J. Heat Mass Transfer – volume: 52 start-page: 777 year: 2009 end-page: 786 ident: bib3 article-title: Heat transfer in particulate flows with direct numerical simulation publication-title: Int. J. Heat Mass Transfer – volume: 14 start-page: 4012 year: 2002 ident: bib11 article-title: Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity publication-title: Phys. Fluids – volume: 20 start-page: 675 year: 2008 end-page: 684 ident: bib1 article-title: Inclusion of heat transfer computations for particle laden flows publication-title: Phys. Fluids – volume: 38 start-page: 370 year: 2009 end-page: 381 ident: bib2 article-title: Robust treatment of no-slip boundary condition and velocity updating for the lattice-Boltzmann simulation of particulate flows publication-title: Comput. Fluids – volume: 25 start-page: 755 year: 1999 end-page: 794 ident: bib6 article-title: A distributed Lagrange multiplier/fictitious domain method for particulate flows publication-title: Int. J. Multiphase Flow – volume: 217 start-page: 424 year: 2006 end-page: 452 ident: bib14 article-title: A fictitious domain method for particulate flows with heat transfer publication-title: J. Comput. Phys. – volume: 18 start-page: 1026 year: 2004 end-page: 1035 ident: bib7 article-title: An immersed boundary finite-volume method for simulations of the heat transfer in complex geometries publication-title: Korean Soc. Mech. Eng. Int. J. – volume: 36 start-page: 387 year: 2005 end-page: 409 ident: bib9 article-title: Dynamics of a spherical particle in mixed convection flow field publication-title: J. Aerosol Sci. – volume: 48 start-page: 1 year: 2005 end-page: 24 ident: bib10 article-title: Numerical simulation of heat transfer and fluid problems using an immersed-boundary finite-volume method on non-staggered grids publication-title: Numer. Heat Transfer B – volume: 481 start-page: 385 year: 2003 end-page: 411 ident: bib4 article-title: Direct numerical simulation of the sedimentation of solid particles with thermal convection publication-title: J. Fluid Mech. – volume: 38 start-page: 370 issue: 2 year: 2009 ident: 10.1016/j.ijheatfluidflow.2010.07.007_bib2 article-title: Robust treatment of no-slip boundary condition and velocity updating for the lattice-Boltzmann simulation of particulate flows publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2008.04.013 – volume: 217 start-page: 424 issue: 2 year: 2006 ident: 10.1016/j.ijheatfluidflow.2010.07.007_bib14 article-title: A fictitious domain method for particulate flows with heat transfer publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.01.016 – volume: 25 start-page: 755 year: 1999 ident: 10.1016/j.ijheatfluidflow.2010.07.007_bib6 article-title: A distributed Lagrange multiplier/fictitious domain method for particulate flows publication-title: Int. J. Multiphase Flow doi: 10.1016/S0301-9322(98)00048-2 – volume: 48 start-page: 1 year: 2005 ident: 10.1016/j.ijheatfluidflow.2010.07.007_bib10 article-title: Numerical simulation of heat transfer and fluid problems using an immersed-boundary finite-volume method on non-staggered grids publication-title: Numer. Heat Transfer B doi: 10.1080/10407790590935975 – volume: 51 start-page: 2686 issue: 11–12 year: 2008 ident: 10.1016/j.ijheatfluidflow.2010.07.007_bib8 article-title: Loss of axisymmetry in the mixed convection, assisting flow past a heated sphere publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2007.10.005 – volume: 224 start-page: 867 issue: 2 year: 2007 ident: 10.1016/j.ijheatfluidflow.2010.07.007_bib12 article-title: A fictitious domain formulation for flows with rigid particles: a non-Lagrange multiplier version publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.10.028 – volume: 29 start-page: 751 year: 2003 ident: 10.1016/j.ijheatfluidflow.2010.07.007_bib5 article-title: Simulation of the sedimentation of melting solid particles publication-title: Int. J. Multiphase Flow doi: 10.1016/S0301-9322(03)00035-1 – volume: 52 start-page: 777 issue: 3–4 year: 2009 ident: 10.1016/j.ijheatfluidflow.2010.07.007_bib3 article-title: Heat transfer in particulate flows with direct numerical simulation publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2008.07.023 – volume: 38 start-page: 1608 issue: 8 year: 2009 ident: 10.1016/j.ijheatfluidflow.2010.07.007_bib13 article-title: A DEM-DLM/FD method for direct numerical simulation of particulate flows: sedimentation of polygonal isometric particles in a newtonian fluid with collisions publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2009.01.005 – volume: 14 start-page: 4012 year: 2002 ident: 10.1016/j.ijheatfluidflow.2010.07.007_bib11 article-title: Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity publication-title: Phys. Fluids doi: 10.1063/1.1512918 – volume: 36 start-page: 387 issue: 3 year: 2005 ident: 10.1016/j.ijheatfluidflow.2010.07.007_bib9 article-title: Dynamics of a spherical particle in mixed convection flow field publication-title: J. Aerosol Sci. doi: 10.1016/j.jaerosci.2004.09.011 – volume: 20 start-page: 675 year: 2008 ident: 10.1016/j.ijheatfluidflow.2010.07.007_bib1 article-title: Inclusion of heat transfer computations for particle laden flows publication-title: Phys. Fluids doi: 10.1063/1.2911022 – volume: 481 start-page: 385 year: 2003 ident: 10.1016/j.ijheatfluidflow.2010.07.007_bib4 article-title: Direct numerical simulation of the sedimentation of solid particles with thermal convection publication-title: J. Fluid Mech. doi: 10.1017/S0022112003003938 – volume: 18 start-page: 1026 year: 2004 ident: 10.1016/j.ijheatfluidflow.2010.07.007_bib7 article-title: An immersed boundary finite-volume method for simulations of the heat transfer in complex geometries publication-title: Korean Soc. Mech. Eng. Int. J. |
| SSID | ssj0006047 |
| Score | 2.2451982 |
| Snippet | Numerical simulations of heat transfer in non-isothermal particulate flows are important to better understand the flow pattern. The complexity of numerical... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1050 |
| SubjectTerms | Analytical and numerical techniques Computation Computational fluid dynamics Computer simulation Discrete Element Method Distributed Lagrange Multiplier/Fictitious Domain Exact sciences and technology Finite Element Method Fluid flow Fluids Fundamental areas of phenomenology (including applications) Heat transfer Heat transfer in inhomogeneous media, in porous media, and through interfaces Mathematical models Physics Temperature distribution |
| Title | Direct Numerical Simulation of particulate flow with heat transfer |
| URI | https://dx.doi.org/10.1016/j.ijheatfluidflow.2010.07.007 https://www.proquest.com/docview/831207764 |
| Volume | 31 |
| WOSCitedRecordID | wos000285122500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2278 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006047 issn: 0142-727X databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKBmgICeiGVj4mP8DTFJRPf0g8UMbQ4KGatEr0LdhOIqUqabW0Y38-Z8dO2nXAeODFqSzZsnO__u5yPt8h9IZKVkiSSy-AL2svZoR7TAri8UhnE0_i0M8KU2yCjkZsMuHnvd53dxfmakaril1f88V_FTX0gbD11dl_EHc7KXTAbxA6tCB2aLcFf7v-aQMinadvLT-EJl9zYlDMVqVu5z_XYdNQ4PFo1ZzkzI4vyh-2wpcJjjZI0x25Gdr4cc2cS2MCd8G-n4ajDS_st-HJ2UXnPbWehq2oDXcFZsMbCeZ5aGrdt3RqSb3c4kaw5Pw1PasLDN_K4Y07YfqunOrVm5ehN2TD8HTGSdopL3dgf0OntZGGYZT4MWH8HtoNI8KAA3eHX04nX1ttTfy4uVJvt_IQve1iAP-whN_ZMY8XogbpFE1ZlC0Nb8yW8VN00F3oxOctVJ6hXl710RP7BYItv9d99GgtPWUfPTDhwareRx8bWOAWFriDBZ4XeA0WWG8Ba1hgvSvsYHGAxp9Pxydnnq2-4amIJ0tPJTTMWCRInlMmQqEyEosYnjKIAsIVZWCa5gGPuUyEZBHzZSAjQlTImKQieo52qnmVHyLME8lpRnTuSp2NiAM3JJIylUVCURg8QO_dq0yVzUyvC6TMUheCOE1vSCLVkkh9HTtBB4i0wxdNipa7Dvzg5JZae7OxI1OA4l2nONqQd7sAh7sBwg4AKRC3Po0TVT5f1SkDNtS5tOIXf5vjJdrr_o6v0M7ycpW_RvfV1bKsL48soH8B9c28Zw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=The+International+journal+of+heat+and+fluid+flow&rft.atitle=Direct+Numerical+Simulation+of+particulate+flow+with+heat+transfer&rft.au=DAN%2C+C&rft.au=WACHS%2C+A&rft.date=2010-12-01&rft.pub=Elsevier&rft.issn=0142-727X&rft.volume=31&rft.issue=6&rft.spage=1050&rft.epage=1057&rft_id=info:doi/10.1016%2Fj.ijheatfluidflow.2010.07.007&rft.externalDBID=n%2Fa&rft.externalDocID=23504689 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-727X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-727X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-727X&client=summon |