Direct Numerical Simulation of particulate flow with heat transfer

Numerical simulations of heat transfer in non-isothermal particulate flows are important to better understand the flow pattern. The complexity of numerical algorithms coupling the heat and mass transfer and the considerable computational resources required limit the number of such direct simulations...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The International journal of heat and fluid flow Ročník 31; číslo 6; s. 1050 - 1057
Hlavní autoři: Dan, C., Wachs, A.
Médium: Journal Article Konferenční příspěvek
Jazyk:angličtina
Vydáno: New York, NY Elsevier Inc 01.12.2010
Elsevier
Témata:
ISSN:0142-727X, 1879-2278
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Numerical simulations of heat transfer in non-isothermal particulate flows are important to better understand the flow pattern. The complexity of numerical algorithms coupling the heat and mass transfer and the considerable computational resources required limit the number of such direct simulations that can be reasonably performed. We suggest a Distributed Lagrange Multiplier/Fictitious Domain (DLM/FD) method to compute the temperature distribution and the heat exchange between the fluid and solid phases. The Boussinesq approximation is considered for the flow/temperature fields coupling. We employ a Finite Element Method (FEM) to solve the fluid flow conservation equations for mass, momentum and energy. The motion of particles is computed by a Discrete Element Method (DEM). On each particle, heat transfer is solved using a FEM. For each class of particles, we generate a single FEM grid and translate/rotate it at each time step to match the physical configuration of each particle. Distributed Lagrange multipliers for both the velocity and temperature fields are introduced to treat the fluid/solid interaction. This work is an extension of the method we proposed in Yu et al. (2006). Two two-dimensional (2D) test cases are proposed to validate the implementation by comparing our computational results with those reported in the literature. Finally, the sedimentation of a single sphere in a semi-infinite channel is presented and the results are discussed.
AbstractList Numerical simulations of heat transfer in non-isothermal particulate flows are important to better understand the flow pattern. The complexity of numerical algorithms coupling the heat and mass transfer and the considerable computational resources required limit the number of such direct simulations that can be reasonably performed. We suggest a Distributed Lagrange Multiplier/Fictitious Domain (DLM/FD) method to compute the temperature distribution and the heat exchange between the fluid and solid phases. The Boussinesq approximation is considered for the flow/temperature fields coupling. We employ a Finite Element Method (FEM) to solve the fluid flow conservation equations for mass, momentum and energy. The motion of particles is computed by a Discrete Element Method (DEM). On each particle, heat transfer is solved using a FEM. For each class of particles, we generate a single FEM grid and translate/rotate it at each time step to match the physical configuration of each particle. Distributed Lagrange multipliers for both the velocity and temperature fields are introduced to treat the fluid/solid interaction. This work is an extension of the method we proposed in Yu et al. (2006). Two two-dimensional (2D) test cases are proposed to validate the implementation by comparing our computational results with those reported in the literature. Finally, the sedimentation of a single sphere in a semi-infinite channel is presented and the results are discussed.
Numerical simulations of heat transfer in non-isothermal particulate flows are important to better understand the flow pattern. The complexity of numerical algorithms coupling the heat and mass transfer and the considerable computational resources required limit the number of such direct simulations that can be reasonably performed. We suggest a Distributed Lagrange Multiplier/Fictitious Domain (DLM/FD) method to compute the temperature distribution and the heat exchange between the fluid and solid phases. The Boussinesq approximation is considered for the flow/temperature fields coupling. We employ a Finite Element Method (FEM) to solve the fluid flow conservation equations for mass, momentum and energy. The motion of particles is computed by a Discrete Element Method (DEM). On each particle, heat transfer is solved using a FEM. For each class of particles, we generate a single FEM grid and translate/rotate it at each time step to match the physical configuration of each particle. Distributed Lagrange multipliers for both the velocity and temperature fields are introduced to treat the fluid/solid interaction. This work is an extension of the method we proposed in Yu et al. (2006). Two two-dimensional (2D) test cases are proposed to validate the implementation by comparing our computational results with those reported in the literature. Finally, the sedimentation of a single sphere in a semi-infinite channel is presented and the results are discussed.
Author Dan, C.
Wachs, A.
Author_xml – sequence: 1
  givenname: C.
  surname: Dan
  fullname: Dan, C.
  organization: Fluid Mechanics Department, IFP, 1 et 4, Avenue du Bois Préau, 92852 Rueil-Malmaison Cedex, France
– sequence: 2
  givenname: A.
  surname: Wachs
  fullname: Wachs, A.
  email: anthony.wachs@ifp.fr
  organization: Fluid Mechanics Department, IFP, 1 et 4, Avenue du Bois Préau, 92852 Rueil-Malmaison Cedex, France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23504689$$DView record in Pascal Francis
BookMark eNqNkTFPwzAQhS0EEi3wH7IgppSzk9rOwAAFChKCgQ5sluNchKs0KbZDxb_HacvC1Okk-917fp_H5LjtWiTkksKEAuXXy4ldfqIOddPbqm66zYRBvAMxARBHZESlKFLGhDwmI6A5SwUTH6dk7P0SADjkYkTu7q1DE5LXfoXOGt0k73bVNzrYrk26OllrF6wZDjAZIpKNDZ_JkJoEp1tfozsnJ7VuPF7s5xlZPD4sZk_py9v8eXb7kpqsmIbUTAWrZKY5opCaaVPxXOdxljSjvDBCApNIi7wop7qUmYSSlhnnhklZCp2dkaud7dp1Xz36oFbWG2wa3WLXeyUzykAInkfl5V6pfWxUx3ca69Xa2ZV2P4plU8i5LKJuttMZ13nvsFbGhm3zWM02ioIaOKul-sdZDZwVCBU5R5ebfy5_QYfuz3f7GNl9W3TKG4utwWr7M6rq7IFOv7ylp5s
CODEN IJHFD2
CitedBy_id crossref_primary_10_1016_j_powtec_2023_119239
crossref_primary_10_1016_j_ijheatmasstransfer_2019_119206
crossref_primary_10_1016_j_ijheatmasstransfer_2015_05_098
crossref_primary_10_1016_j_coche_2014_05_005
crossref_primary_10_1016_j_ijheatmasstransfer_2018_07_100
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103736
crossref_primary_10_1016_j_ijheatfluidflow_2016_04_002
crossref_primary_10_1016_j_powtec_2019_05_067
crossref_primary_10_1016_j_ces_2012_06_055
crossref_primary_10_1016_j_proeng_2016_02_104
crossref_primary_10_1016_j_ijheatmasstransfer_2018_05_007
crossref_primary_10_1080_01457632_2017_1421296
crossref_primary_10_1016_j_powtec_2022_117766
crossref_primary_10_1063_5_0271039
crossref_primary_10_1016_j_ces_2019_01_004
crossref_primary_10_1016_j_ijheatmasstransfer_2017_03_052
crossref_primary_10_1146_annurev_fluid_010313_141344
crossref_primary_10_1017_jfm_2017_709
crossref_primary_10_1017_jfm_2020_45
crossref_primary_10_1016_j_partic_2024_01_005
crossref_primary_10_1016_j_icheatmasstransfer_2020_104892
crossref_primary_10_1002_ceat_201900236
crossref_primary_10_1016_j_powtec_2019_07_054
crossref_primary_10_1016_j_ces_2020_115478
crossref_primary_10_3390_coatings9050300
crossref_primary_10_1016_j_ces_2011_06_075
crossref_primary_10_1007_s40997_020_00348_7
crossref_primary_10_1016_j_jcp_2023_111929
crossref_primary_10_1016_j_powtec_2019_01_028
crossref_primary_10_1016_j_compfluid_2021_105064
crossref_primary_10_1016_j_ijheatmasstransfer_2017_06_046
crossref_primary_10_1088_1367_2630_ab0a94
crossref_primary_10_1016_j_ijheatmasstransfer_2012_06_085
crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_068
crossref_primary_10_1016_j_compchemeng_2011_02_013
crossref_primary_10_1016_j_ifset_2025_104197
crossref_primary_10_1016_j_ces_2014_05_039
crossref_primary_10_1016_j_jaerosci_2016_09_002
crossref_primary_10_1016_j_ces_2014_05_036
crossref_primary_10_1016_j_ijthermalsci_2014_03_008
crossref_primary_10_1016_j_apt_2016_11_007
crossref_primary_10_1017_jfm_2025_10506
crossref_primary_10_3390_su17020480
crossref_primary_10_1016_j_powtec_2017_05_039
crossref_primary_10_1016_j_cej_2021_130391
crossref_primary_10_1016_j_ijheatfluidflow_2021_108873
crossref_primary_10_1016_j_powtec_2016_02_038
crossref_primary_10_1108_HFF_05_2024_0372
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126687
crossref_primary_10_1016_j_ijmultiphaseflow_2019_103184
crossref_primary_10_1002_mren201500062
crossref_primary_10_1016_j_ces_2020_115659
Cites_doi 10.1016/j.compfluid.2008.04.013
10.1016/j.jcp.2006.01.016
10.1016/S0301-9322(98)00048-2
10.1080/10407790590935975
10.1016/j.ijheatmasstransfer.2007.10.005
10.1016/j.jcp.2006.10.028
10.1016/S0301-9322(03)00035-1
10.1016/j.ijheatmasstransfer.2008.07.023
10.1016/j.compfluid.2009.01.005
10.1063/1.1512918
10.1016/j.jaerosci.2004.09.011
10.1063/1.2911022
10.1017/S0022112003003938
ContentType Journal Article
Conference Proceeding
Copyright 2010 Elsevier Inc.
2015 INIST-CNRS
Copyright_xml – notice: 2010 Elsevier Inc.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7TB
7U5
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatfluidflow.2010.07.007
DatabaseName CrossRef
Pascal-Francis
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1879-2278
EndPage 1057
ExternalDocumentID 23504689
10_1016_j_ijheatfluidflow_2010_07_007
S0142727X10001335
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADHUB
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSG
SST
SSZ
T5K
TN5
UHS
VH1
VOH
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7TB
7U5
8FD
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c395t-c572d83a6ee78a2acd64a42acb13169c78028e1949b5ab8380b1b366c288b7a3
ISICitedReferencesCount 62
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000285122500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0142-727X
IngestDate Sun Sep 28 03:27:08 EDT 2025
Mon Jul 21 09:13:40 EDT 2025
Tue Nov 18 22:54:53 EST 2025
Sat Nov 29 02:47:08 EST 2025
Fri Feb 23 02:26:35 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Finite Element Method
Heat transfer
Discrete Element Method
Distributed Lagrange Multiplier/Fictitious Domain
Temperature distribution
Digital simulation
Distributed Lagrange Multiplier/Fictitious
Discrete element method
Particle suspension
Sedimentation
Finite element method
Lagrange multiplier
Two-phase flow
Heat mass transfer
Modelling
Domain
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c395t-c572d83a6ee78a2acd64a42acb13169c78028e1949b5ab8380b1b366c288b7a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 831207764
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_831207764
pascalfrancis_primary_23504689
crossref_citationtrail_10_1016_j_ijheatfluidflow_2010_07_007
crossref_primary_10_1016_j_ijheatfluidflow_2010_07_007
elsevier_sciencedirect_doi_10_1016_j_ijheatfluidflow_2010_07_007
PublicationCentury 2000
PublicationDate 2010-12-01
PublicationDateYYYYMMDD 2010-12-01
PublicationDate_xml – month: 12
  year: 2010
  text: 2010-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle The International journal of heat and fluid flow
PublicationYear 2010
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Feng, Michaelides (bib2) 2009; 38
Mograbi, Bar-Ziv (bib9) 2005; 36
TenCate, Nieuwstad, Derksen, Van den Akker (bib11) 2002; 14
Glowinski, Pan, Helsa, Joseph (bib6) 1999; 25
Wachs (bib13) 2009; 38
Kotouc, Bouchet, Dusek (bib8) 2008; 51
Kim, Choi (bib7) 2004; 18
Pacheco, Pacheco-Vega, Rodic, Peck (bib10) 2005; 48
Veeramani, Minev, Nandakumar (bib12) 2007; 224
Yu, Shao, Wachs (bib14) 2006; 217
Gan, Feng, Hu (bib5) 2003; 29
Gan, Chang, Feng, Hu (bib4) 2003; 481
Feng, Michaelides (bib3) 2009; 52
Feng, Michaelides (bib1) 2008; 20
Kim (10.1016/j.ijheatfluidflow.2010.07.007_bib7) 2004; 18
Gan (10.1016/j.ijheatfluidflow.2010.07.007_bib4) 2003; 481
Veeramani (10.1016/j.ijheatfluidflow.2010.07.007_bib12) 2007; 224
Pacheco (10.1016/j.ijheatfluidflow.2010.07.007_bib10) 2005; 48
Glowinski (10.1016/j.ijheatfluidflow.2010.07.007_bib6) 1999; 25
Gan (10.1016/j.ijheatfluidflow.2010.07.007_bib5) 2003; 29
Mograbi (10.1016/j.ijheatfluidflow.2010.07.007_bib9) 2005; 36
Wachs (10.1016/j.ijheatfluidflow.2010.07.007_bib13) 2009; 38
Yu (10.1016/j.ijheatfluidflow.2010.07.007_bib14) 2006; 217
Feng (10.1016/j.ijheatfluidflow.2010.07.007_bib1) 2008; 20
Feng (10.1016/j.ijheatfluidflow.2010.07.007_bib3) 2009; 52
Feng (10.1016/j.ijheatfluidflow.2010.07.007_bib2) 2009; 38
Kotouc (10.1016/j.ijheatfluidflow.2010.07.007_bib8) 2008; 51
TenCate (10.1016/j.ijheatfluidflow.2010.07.007_bib11) 2002; 14
References_xml – volume: 38
  start-page: 1608
  year: 2009
  end-page: 1628
  ident: bib13
  article-title: A DEM-DLM/FD method for direct numerical simulation of particulate flows: sedimentation of polygonal isometric particles in a newtonian fluid with collisions
  publication-title: Comput. Fluids
– volume: 224
  start-page: 867
  year: 2007
  end-page: 879
  ident: bib12
  article-title: A fictitious domain formulation for flows with rigid particles: a non-Lagrange multiplier version
  publication-title: J. Comput. Phys.
– volume: 29
  start-page: 751
  year: 2003
  end-page: 769
  ident: bib5
  article-title: Simulation of the sedimentation of melting solid particles
  publication-title: Int. J. Multiphase Flow
– volume: 51
  start-page: 2686
  year: 2008
  end-page: 2700
  ident: bib8
  article-title: Loss of axisymmetry in the mixed convection, assisting flow past a heated sphere
  publication-title: Int. J. Heat Mass Transfer
– volume: 52
  start-page: 777
  year: 2009
  end-page: 786
  ident: bib3
  article-title: Heat transfer in particulate flows with direct numerical simulation
  publication-title: Int. J. Heat Mass Transfer
– volume: 14
  start-page: 4012
  year: 2002
  ident: bib11
  article-title: Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity
  publication-title: Phys. Fluids
– volume: 20
  start-page: 675
  year: 2008
  end-page: 684
  ident: bib1
  article-title: Inclusion of heat transfer computations for particle laden flows
  publication-title: Phys. Fluids
– volume: 38
  start-page: 370
  year: 2009
  end-page: 381
  ident: bib2
  article-title: Robust treatment of no-slip boundary condition and velocity updating for the lattice-Boltzmann simulation of particulate flows
  publication-title: Comput. Fluids
– volume: 25
  start-page: 755
  year: 1999
  end-page: 794
  ident: bib6
  article-title: A distributed Lagrange multiplier/fictitious domain method for particulate flows
  publication-title: Int. J. Multiphase Flow
– volume: 217
  start-page: 424
  year: 2006
  end-page: 452
  ident: bib14
  article-title: A fictitious domain method for particulate flows with heat transfer
  publication-title: J. Comput. Phys.
– volume: 18
  start-page: 1026
  year: 2004
  end-page: 1035
  ident: bib7
  article-title: An immersed boundary finite-volume method for simulations of the heat transfer in complex geometries
  publication-title: Korean Soc. Mech. Eng. Int. J.
– volume: 36
  start-page: 387
  year: 2005
  end-page: 409
  ident: bib9
  article-title: Dynamics of a spherical particle in mixed convection flow field
  publication-title: J. Aerosol Sci.
– volume: 48
  start-page: 1
  year: 2005
  end-page: 24
  ident: bib10
  article-title: Numerical simulation of heat transfer and fluid problems using an immersed-boundary finite-volume method on non-staggered grids
  publication-title: Numer. Heat Transfer B
– volume: 481
  start-page: 385
  year: 2003
  end-page: 411
  ident: bib4
  article-title: Direct numerical simulation of the sedimentation of solid particles with thermal convection
  publication-title: J. Fluid Mech.
– volume: 38
  start-page: 370
  issue: 2
  year: 2009
  ident: 10.1016/j.ijheatfluidflow.2010.07.007_bib2
  article-title: Robust treatment of no-slip boundary condition and velocity updating for the lattice-Boltzmann simulation of particulate flows
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2008.04.013
– volume: 217
  start-page: 424
  issue: 2
  year: 2006
  ident: 10.1016/j.ijheatfluidflow.2010.07.007_bib14
  article-title: A fictitious domain method for particulate flows with heat transfer
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.01.016
– volume: 25
  start-page: 755
  year: 1999
  ident: 10.1016/j.ijheatfluidflow.2010.07.007_bib6
  article-title: A distributed Lagrange multiplier/fictitious domain method for particulate flows
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/S0301-9322(98)00048-2
– volume: 48
  start-page: 1
  year: 2005
  ident: 10.1016/j.ijheatfluidflow.2010.07.007_bib10
  article-title: Numerical simulation of heat transfer and fluid problems using an immersed-boundary finite-volume method on non-staggered grids
  publication-title: Numer. Heat Transfer B
  doi: 10.1080/10407790590935975
– volume: 51
  start-page: 2686
  issue: 11–12
  year: 2008
  ident: 10.1016/j.ijheatfluidflow.2010.07.007_bib8
  article-title: Loss of axisymmetry in the mixed convection, assisting flow past a heated sphere
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2007.10.005
– volume: 224
  start-page: 867
  issue: 2
  year: 2007
  ident: 10.1016/j.ijheatfluidflow.2010.07.007_bib12
  article-title: A fictitious domain formulation for flows with rigid particles: a non-Lagrange multiplier version
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.10.028
– volume: 29
  start-page: 751
  year: 2003
  ident: 10.1016/j.ijheatfluidflow.2010.07.007_bib5
  article-title: Simulation of the sedimentation of melting solid particles
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/S0301-9322(03)00035-1
– volume: 52
  start-page: 777
  issue: 3–4
  year: 2009
  ident: 10.1016/j.ijheatfluidflow.2010.07.007_bib3
  article-title: Heat transfer in particulate flows with direct numerical simulation
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2008.07.023
– volume: 38
  start-page: 1608
  issue: 8
  year: 2009
  ident: 10.1016/j.ijheatfluidflow.2010.07.007_bib13
  article-title: A DEM-DLM/FD method for direct numerical simulation of particulate flows: sedimentation of polygonal isometric particles in a newtonian fluid with collisions
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2009.01.005
– volume: 14
  start-page: 4012
  year: 2002
  ident: 10.1016/j.ijheatfluidflow.2010.07.007_bib11
  article-title: Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity
  publication-title: Phys. Fluids
  doi: 10.1063/1.1512918
– volume: 36
  start-page: 387
  issue: 3
  year: 2005
  ident: 10.1016/j.ijheatfluidflow.2010.07.007_bib9
  article-title: Dynamics of a spherical particle in mixed convection flow field
  publication-title: J. Aerosol Sci.
  doi: 10.1016/j.jaerosci.2004.09.011
– volume: 20
  start-page: 675
  year: 2008
  ident: 10.1016/j.ijheatfluidflow.2010.07.007_bib1
  article-title: Inclusion of heat transfer computations for particle laden flows
  publication-title: Phys. Fluids
  doi: 10.1063/1.2911022
– volume: 481
  start-page: 385
  year: 2003
  ident: 10.1016/j.ijheatfluidflow.2010.07.007_bib4
  article-title: Direct numerical simulation of the sedimentation of solid particles with thermal convection
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112003003938
– volume: 18
  start-page: 1026
  year: 2004
  ident: 10.1016/j.ijheatfluidflow.2010.07.007_bib7
  article-title: An immersed boundary finite-volume method for simulations of the heat transfer in complex geometries
  publication-title: Korean Soc. Mech. Eng. Int. J.
SSID ssj0006047
Score 2.245296
Snippet Numerical simulations of heat transfer in non-isothermal particulate flows are important to better understand the flow pattern. The complexity of numerical...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1050
SubjectTerms Analytical and numerical techniques
Computation
Computational fluid dynamics
Computer simulation
Discrete Element Method
Distributed Lagrange Multiplier/Fictitious Domain
Exact sciences and technology
Finite Element Method
Fluid flow
Fluids
Fundamental areas of phenomenology (including applications)
Heat transfer
Heat transfer in inhomogeneous media, in porous media, and through interfaces
Mathematical models
Physics
Temperature distribution
Title Direct Numerical Simulation of particulate flow with heat transfer
URI https://dx.doi.org/10.1016/j.ijheatfluidflow.2010.07.007
https://www.proquest.com/docview/831207764
Volume 31
WOSCitedRecordID wos000285122500010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2278
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006047
  issn: 0142-727X
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbKBmgICeiGVn5MPsBpCkpix7ElDpQxNDhUk1aJ3oLtOFKqklZLO_bnYzt20q4DxoGLG1myZef78t7r8_N7ALxROREq4iqICWMBVjIPKFUsCHmSIImLNOTcFptIRyM6mbDzXu-7vwtzNUuril5fs8V_hVr3abDN1dl_gLudVHfoZw26bjXsut0G_nb90wZEek_fWn4II3ztiUExW5Wmnf9cp00jAo9Hq-YkZ3Z8Uf5wFb5scLRlmulQdmjjx7VzLq0J3AX7fhqONryw34YnZxed99R5GraiNvwVmA1vpDbPY1vrvhWnTqiXW7JRW3Lhmp41BYZvleGNO2H6rpya1duXYTbkwvBMxsm0U17-wP6GTmsjDWOUhJhQdg_sxohQLQN3h19OJ19bbU1C3Fypd1t5CN52MYB_WMLv7JjHC15rdIqmLMqWhrdmy_gpOOgudMLzlirPQE9VffDE_QOBTr7XffBoLT1lHzyw4cGy3gcfG1rAlhawowWcF3CNFtBsARpaQLMr6GlxAMafT8cnZ4GrvhFIxJJlIJM0ziniRKmU8pjLnGCO9a-IUESYTKk2TVXEMBMJFxTRUEQCESJjSkXK0XOwU80rdQhgosWECBFO80RgHEtRMB5iLHJtm_JCRAPw3r_KTLrM9KZAyizzIYjT7AYSmUEiC03sRDoApB2-aFK03HXgB49b5uzNxo7MNBXvOsXRBt7tAjzvBgB6AmRacJvTOF6p-arOKIpik0sLv_jbHC_BXvc5vgI7y8uVeg3uy6tlWV8eOUL_Ate_vhg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=The+International+journal+of+heat+and+fluid+flow&rft.atitle=Direct+Numerical+Simulation+of+particulate+flow+with+heat+transfer&rft.au=DAN%2C+C&rft.au=WACHS%2C+A&rft.date=2010-12-01&rft.pub=Elsevier&rft.issn=0142-727X&rft.volume=31&rft.issue=6&rft.spage=1050&rft.epage=1057&rft_id=info:doi/10.1016%2Fj.ijheatfluidflow.2010.07.007&rft.externalDBID=n%2Fa&rft.externalDocID=23504689
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-727X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-727X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-727X&client=summon