hp-VPINNs: Variational physics-informed neural networks with domain decomposition

We formulate a general framework for hp-variational physics-informed neural networks (hp-VPINNs) based on the nonlinear approximation of shallow and deep neural networks and hp-refinement via domain decomposition and projection onto the space of high-order polynomials. The trial space is the space o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer methods in applied mechanics and engineering Ročník 374; číslo C; s. 113547
Hlavní autoři: Kharazmi, Ehsan, Zhang, Zhongqiang, Karniadakis, George E.M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.02.2021
Elsevier BV
Elsevier
Témata:
ISSN:0045-7825, 1879-2138
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We formulate a general framework for hp-variational physics-informed neural networks (hp-VPINNs) based on the nonlinear approximation of shallow and deep neural networks and hp-refinement via domain decomposition and projection onto the space of high-order polynomials. The trial space is the space of neural network, which is defined globally over the entire computational domain, while the test space contains piecewise polynomials. Specifically in this study, the hp-refinement corresponds to a global approximation with a local learning algorithm that can efficiently localize the network parameter optimization. We demonstrate the advantages of hp-VPINNs in both accuracy and training cost for several numerical examples of function approximation and in solving differential equations. •Development of a general framework for hp-variational physics-informed neural networks•Nonlinear approximation of neural networks, projection onto space of high-order polynomials.•Domain decomposition•Comparison with other methods that use neural networks•Local and global approximations with locally/globally defined test functions.•Different loss functions based on the variational form and integration by parts.•Detailed derivation of the hp-VPINN formulation.
AbstractList We formulate a general framework for hp-variational physics-informed neural networks (hp-VPINNs) based on the nonlinear approximation of shallow and deep neural networks and hp-refinement via domain decomposition and projection onto the space of high-order polynomials. The trial space is the space of neural network, which is defined globally over the entire computational domain, while the test space contains piecewise polynomials. Specifically in this study, the hp-refinement corresponds to a global approximation with a local learning algorithm that can efficiently localize the network parameter optimization. We demonstrate the advantages of hp-VPINNs in both accuracy and training cost for several numerical examples of function approximation and in solving differential equations. •Development of a general framework for hp-variational physics-informed neural networks•Nonlinear approximation of neural networks, projection onto space of high-order polynomials.•Domain decomposition•Comparison with other methods that use neural networks•Local and global approximations with locally/globally defined test functions.•Different loss functions based on the variational form and integration by parts.•Detailed derivation of the hp-VPINN formulation.
We formulate a general framework for hp-variational physics-informed neural networks (hp-VPINNs) based on the nonlinear approximation of shallow and deep neural networks and hp-refinement via domain decomposition and projection onto the space of high-order polynomials. The trial space is the space of neural network, which is defined globally over the entire computational domain, while the test space contains piecewise polynomials. Specifically in this study, the hp-refinement corresponds to a global approximation with a local learning algorithm that can efficiently localize the network parameter optimization. We demonstrate the advantages of hp-VPINNs in both accuracy and training cost for several numerical examples of function approximation and in solving differential equations.
ArticleNumber 113547
Author Karniadakis, George E.M.
Kharazmi, Ehsan
Zhang, Zhongqiang
Author_xml – sequence: 1
  givenname: Ehsan
  orcidid: 0000-0002-3680-5500
  surname: Kharazmi
  fullname: Kharazmi, Ehsan
  email: ehsan_kharazmi@brown.edu
  organization: Division of Applied Mathematics, Brown University, 170 Hope St, Providence, RI 02906, USA
– sequence: 2
  givenname: Zhongqiang
  surname: Zhang
  fullname: Zhang, Zhongqiang
  organization: Department of Mathematical Sciences, Worcester Polytechnic Institute, 100 Institute Rd, Worcester, MA 01609, USA
– sequence: 3
  givenname: George E.M.
  surname: Karniadakis
  fullname: Karniadakis, George E.M.
  organization: Division of Applied Mathematics, Brown University, 170 Hope St, Providence, RI 02906, USA
BackLink https://www.osti.gov/biblio/1776284$$D View this record in Osti.gov
BookMark eNp9kE1vFSEUhompibfVH-Buouu5coAZGF2Zxo8mTdVEuyVcOJPL9Q6MwLXpv5fpdOWibAjkfU7e85yTsxADEvIa6BYo9O8OWzuZLaOsvoF3Qj4jG1ByaBlwdUY2lIqulYp1L8h5zgdajwK2IT_2c3v7_ermJr9vbk3ypvgYzLGZ9_fZ29z6MMY0oWsCnlL9D1juYvqdmztf9o2Lk_GhcWjjNMfsF_gleT6aY8ZXj_cF-fX508_Lr-31ty9Xlx-vW8uHrrS7Hq3qRz4OdFAdIvTSCdULZzvjFEOnzMitHHZ0pKZD2PUAQnGhpAUnwPEL8madG3PxOltf0O5tDAFt0SBlz5SoobdraE7xzwlz0Yd4SnXBrJlQinJgktcUrCmbYs4JRz0nP5l0r4HqRa8-6KpXL3r1qrcy8j-mNniwV5LxxyfJDyuJ1c5fj2kpj8Gi82np7qJ_gv4HbBaWMA
CitedBy_id crossref_primary_10_1137_22M1520840
crossref_primary_10_1139_cgj_2023_0567
crossref_primary_10_1177_14759217231202547
crossref_primary_10_1016_j_applthermaleng_2025_127193
crossref_primary_10_1007_s11831_024_10145_z
crossref_primary_10_3390_app15148092
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126393
crossref_primary_10_1063_5_0285013
crossref_primary_10_1016_j_enganabound_2024_105944
crossref_primary_10_1155_2024_6641674
crossref_primary_10_1016_j_cma_2025_118308
crossref_primary_10_1007_s10444_023_10065_9
crossref_primary_10_1186_s40323_024_00265_3
crossref_primary_10_1016_j_engstruct_2024_118077
crossref_primary_10_1016_j_rineng_2023_101023
crossref_primary_10_1111_mice_13292
crossref_primary_10_1186_s40703_024_00217_1
crossref_primary_10_1016_j_ijheatmasstransfer_2025_127515
crossref_primary_10_3390_buildings13030650
crossref_primary_10_1016_j_physd_2023_134023
crossref_primary_10_1007_s11071_024_10309_3
crossref_primary_10_1016_j_enganabound_2025_106178
crossref_primary_10_1016_j_jestch_2023_101489
crossref_primary_10_1016_j_jocs_2022_101906
crossref_primary_10_1016_j_tafmec_2024_104717
crossref_primary_10_1002_fld_5374
crossref_primary_10_1088_0256_307X_41_12_120303
crossref_primary_10_1016_j_cma_2024_117042
crossref_primary_10_1016_j_biosystemseng_2025_01_017
crossref_primary_10_1016_j_media_2025_103564
crossref_primary_10_1515_zna_2025_0128
crossref_primary_10_1016_j_jocs_2024_102523
crossref_primary_10_1016_j_aej_2025_05_072
crossref_primary_10_1080_00295639_2022_2123211
crossref_primary_10_1016_j_cam_2024_115989
crossref_primary_10_1016_j_ijmecsci_2024_109267
crossref_primary_10_1016_j_ast_2024_108953
crossref_primary_10_1016_j_cma_2024_117035
crossref_primary_10_1016_j_jcp_2022_111121
crossref_primary_10_1016_j_cma_2024_117276
crossref_primary_10_1016_j_enganabound_2023_03_039
crossref_primary_10_1137_22M1529427
crossref_primary_10_1016_j_jhydrol_2025_134018
crossref_primary_10_3390_en15249347
crossref_primary_10_1016_j_physleta_2025_130757
crossref_primary_10_3390_a15120447
crossref_primary_10_1016_j_cma_2024_117024
crossref_primary_10_1016_j_geoen_2024_213061
crossref_primary_10_1111_mice_13480
crossref_primary_10_1007_s11071_024_10497_y
crossref_primary_10_1038_s41598_023_29822_3
crossref_primary_10_1016_j_rinam_2025_100619
crossref_primary_10_1007_s44207_024_00003_y
crossref_primary_10_1140_epjs_s11734_025_01859_7
crossref_primary_10_1016_j_jcp_2023_112751
crossref_primary_10_1016_j_cma_2023_115892
crossref_primary_10_1016_j_jcp_2022_111260
crossref_primary_10_1016_j_cma_2025_117797
crossref_primary_10_1016_j_jcp_2024_113284
crossref_primary_10_1016_j_cma_2024_117493
crossref_primary_10_1016_j_camwa_2023_11_005
crossref_primary_10_1016_j_enganabound_2024_105914
crossref_primary_10_1016_j_ifacol_2024_08_236
crossref_primary_10_1016_j_engappai_2025_112218
crossref_primary_10_1016_j_eswa_2025_127500
crossref_primary_10_1142_S0219876224500907
crossref_primary_10_1016_j_cma_2025_117889
crossref_primary_10_1016_j_cma_2021_114096
crossref_primary_10_59717_j_xinn_energy_2025_100087
crossref_primary_10_1016_j_cma_2025_117764
crossref_primary_10_1016_j_jcp_2022_111053
crossref_primary_10_3390_e25040674
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123420
crossref_primary_10_1016_j_cma_2024_117000
crossref_primary_10_1080_17455030_2023_2177499
crossref_primary_10_1088_2632_2153_ada3ab
crossref_primary_10_3390_math12233873
crossref_primary_10_1007_s42967_024_00433_7
crossref_primary_10_1016_j_compositesb_2022_110208
crossref_primary_10_3390_min14101043
crossref_primary_10_1016_j_chaos_2023_114090
crossref_primary_10_1016_j_enganabound_2024_105802
crossref_primary_10_1016_j_cma_2023_116505
crossref_primary_10_1016_j_jcp_2023_112415
crossref_primary_10_1098_rsta_2024_0324
crossref_primary_10_1016_j_compgeo_2023_105433
crossref_primary_10_1016_j_mfglet_2022_08_013
crossref_primary_10_1038_s43588_021_00158_0
crossref_primary_10_1016_j_cma_2024_117474
crossref_primary_10_1007_s00521_024_10311_1
crossref_primary_10_1016_j_energy_2025_134443
crossref_primary_10_1140_epjp_s13360_025_06644_y
crossref_primary_10_1038_s41598_025_02978_w
crossref_primary_10_1109_TETCI_2024_3377671
crossref_primary_10_1007_s11071_022_07583_4
crossref_primary_10_1186_s42774_021_00094_7
crossref_primary_10_1016_j_ijsolstr_2023_112319
crossref_primary_10_1016_j_enganabound_2022_09_024
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104603
crossref_primary_10_1016_j_cma_2022_115491
crossref_primary_10_1007_s00366_025_02170_8
crossref_primary_10_1007_s42791_025_00098_0
crossref_primary_10_1016_j_apenergy_2023_121165
crossref_primary_10_1016_j_jocs_2025_102613
crossref_primary_10_1016_j_enganabound_2023_12_012
crossref_primary_10_1016_j_jocs_2024_102318
crossref_primary_10_1109_TAP_2024_3433389
crossref_primary_10_1061__ASCE_EM_1943_7889_0002062
crossref_primary_10_3390_math13111882
crossref_primary_10_1016_j_jcp_2025_113799
crossref_primary_10_1016_j_heliyon_2023_e18820
crossref_primary_10_1016_j_camwa_2022_10_003
crossref_primary_10_3934_mfc_2025024
crossref_primary_10_1016_j_cma_2022_115839
crossref_primary_10_1016_j_cpc_2024_109428
crossref_primary_10_1016_j_jcp_2022_111868
crossref_primary_10_1134_S2070048223060066
crossref_primary_10_62517_jbdc_202501113
crossref_primary_10_1007_s40687_022_00329_z
crossref_primary_10_1063_5_0264160
crossref_primary_10_1016_j_camwa_2024_09_007
crossref_primary_10_1016_j_cma_2022_114740
crossref_primary_10_1007_s00466_023_02288_w
crossref_primary_10_1016_j_compfluid_2023_106114
crossref_primary_10_1007_s11814_023_1420_4
crossref_primary_10_1016_j_cma_2025_118284
crossref_primary_10_3390_computation12040069
crossref_primary_10_1109_MMUL_2023_3272513
crossref_primary_10_1063_5_0280743
crossref_primary_10_1016_j_jfluidstructs_2021_103367
crossref_primary_10_1063_5_0281713
crossref_primary_10_1016_j_engappai_2023_106660
crossref_primary_10_1016_j_swevo_2024_101589
crossref_primary_10_1016_j_cpc_2023_109010
crossref_primary_10_3390_a17090415
crossref_primary_10_1016_j_chaos_2022_112143
crossref_primary_10_1615_JMachLearnModelComput_2025057332
crossref_primary_10_1016_j_cma_2025_118011
crossref_primary_10_1016_j_cnsns_2024_108229
crossref_primary_10_1016_j_neucom_2021_10_036
crossref_primary_10_1080_0952813X_2023_2242356
crossref_primary_10_1063_5_0216609
crossref_primary_10_1016_j_cnsns_2024_108460
crossref_primary_10_1016_j_cma_2022_115852
crossref_primary_10_1016_j_cma_2024_116904
crossref_primary_10_1016_j_jcp_2025_114297
crossref_primary_10_1007_s00521_022_07294_2
crossref_primary_10_1016_j_jhydrol_2022_128828
crossref_primary_10_1016_j_jcp_2022_111402
crossref_primary_10_1063_5_0278224
crossref_primary_10_1016_j_enganabound_2025_106200
crossref_primary_10_1016_j_istruc_2025_109454
crossref_primary_10_1016_j_enganabound_2025_106448
crossref_primary_10_1080_17455030_2022_2083264
crossref_primary_10_1016_j_jmrt_2025_08_021
crossref_primary_10_1016_j_cma_2025_118260
crossref_primary_10_1016_j_compstruc_2022_106784
crossref_primary_10_1109_TGRS_2025_3581638
crossref_primary_10_1016_j_jcp_2025_114161
crossref_primary_10_1016_j_jcp_2024_112926
crossref_primary_10_1016_j_cma_2022_115842
crossref_primary_10_1007_s10462_022_10329_8
crossref_primary_10_1016_j_neucom_2023_126890
crossref_primary_10_1007_s10409_025_25340_x
crossref_primary_10_1016_j_cma_2022_115726
crossref_primary_10_1038_s41467_025_56168_3
crossref_primary_10_1016_j_jcp_2024_112918
crossref_primary_10_1063_5_0209068
crossref_primary_10_1016_j_compgeo_2025_107110
crossref_primary_10_1016_j_engappai_2025_111879
crossref_primary_10_1063_5_0290594
crossref_primary_10_1142_S1758825125500619
crossref_primary_10_1016_j_apm_2023_11_006
crossref_primary_10_3390_math12213315
crossref_primary_10_1007_s44379_025_00015_1
crossref_primary_10_1007_s12206_024_0624_9
crossref_primary_10_1016_j_jcp_2022_111419
crossref_primary_10_1016_j_jcp_2024_112904
crossref_primary_10_1016_j_jfluidstructs_2025_104330
crossref_primary_10_1016_j_jcp_2025_114027
crossref_primary_10_1088_1674_1056_ac9cb9
crossref_primary_10_1016_j_cma_2021_114012
crossref_primary_10_1038_s41598_024_67483_y
crossref_primary_10_1177_10775463241248555
crossref_primary_10_1016_j_neunet_2023_08_006
crossref_primary_10_1016_j_conengprac_2024_105929
crossref_primary_10_1093_imanum_drae011
crossref_primary_10_1016_j_jcp_2022_111202
crossref_primary_10_1016_j_matcom_2023_10_011
crossref_primary_10_1016_j_cma_2025_118348
crossref_primary_10_1080_17486025_2025_2502029
crossref_primary_10_1016_j_compgeo_2025_107131
crossref_primary_10_1016_j_cma_2025_118101
crossref_primary_10_1007_s00366_025_02174_4
crossref_primary_10_1007_s00366_024_01981_5
crossref_primary_10_1016_j_neunet_2025_107559
crossref_primary_10_1016_j_jcp_2025_114122
crossref_primary_10_1016_j_cma_2022_115766
crossref_primary_10_1063_5_0258420
crossref_primary_10_1016_j_neunet_2022_06_019
crossref_primary_10_1016_j_cma_2023_116012
crossref_primary_10_1007_s10915_024_02709_9
crossref_primary_10_1007_s11263_025_02476_6
crossref_primary_10_1007_s10915_025_02791_7
crossref_primary_10_1007_s10409_024_24140_x
crossref_primary_10_1115_1_4066054
crossref_primary_10_1016_j_cageo_2024_105611
crossref_primary_10_1016_j_cam_2025_116663
crossref_primary_10_1137_24M1658620
crossref_primary_10_1016_j_jcp_2022_111902
crossref_primary_10_1142_S0218202525500125
crossref_primary_10_1007_s10915_022_01980_y
crossref_primary_10_1016_j_eswa_2025_128226
crossref_primary_10_1002_gamm_202100001
crossref_primary_10_1016_j_cma_2021_114502
crossref_primary_10_1038_s41598_022_18315_4
crossref_primary_10_1007_s10915_022_01939_z
crossref_primary_10_1016_j_jcp_2024_112791
crossref_primary_10_1093_pnasnexus_pgae186
crossref_primary_10_32604_cmes_2023_031093
crossref_primary_10_1016_j_camwa_2025_02_022
crossref_primary_10_1088_1402_4896_ad5592
crossref_primary_10_1016_j_jhydrol_2024_131263
crossref_primary_10_1016_j_probengmech_2025_103807
crossref_primary_10_1016_j_ijnonlinmec_2024_104988
crossref_primary_10_1088_1402_4896_adb99f
crossref_primary_10_1007_s11600_022_00740_8
crossref_primary_10_3390_pr12102285
crossref_primary_10_1080_17538947_2024_2368705
crossref_primary_10_1016_j_cma_2024_116997
crossref_primary_10_1016_j_jmps_2022_104856
crossref_primary_10_1016_j_neunet_2024_106756
crossref_primary_10_1016_j_camwa_2023_05_004
crossref_primary_10_1016_j_ymssp_2022_109039
crossref_primary_10_1007_s11433_025_2692_7
crossref_primary_10_1016_j_advwatres_2025_105046
crossref_primary_10_1038_s41598_023_31236_0
crossref_primary_10_1016_j_engappai_2024_109388
crossref_primary_10_1002_nme_7388
crossref_primary_10_1016_j_neunet_2024_106750
crossref_primary_10_1016_j_jcp_2024_113623
crossref_primary_10_1016_j_camwa_2025_09_007
crossref_primary_10_1016_j_camwa_2025_09_009
crossref_primary_10_1007_s11071_024_09280_w
crossref_primary_10_2514_1_J063243
crossref_primary_10_1016_j_anucene_2022_109234
crossref_primary_10_1038_s42005_024_01521_z
crossref_primary_10_1007_s10409_021_01148_1
crossref_primary_10_1016_j_camwa_2022_12_008
crossref_primary_10_1016_j_inffus_2023_102041
crossref_primary_10_1007_s00707_024_03984_1
crossref_primary_10_1016_j_ecoinf_2023_102357
crossref_primary_10_1016_j_engappai_2024_109378
crossref_primary_10_1038_s44172_025_00476_5
crossref_primary_10_1016_j_engappai_2025_111869
crossref_primary_10_1016_j_tws_2024_112495
crossref_primary_10_1190_geo2022_0599_1
crossref_primary_10_1002_nme_7135
crossref_primary_10_1016_j_jcp_2025_113914
crossref_primary_10_1029_2025WR040052
crossref_primary_10_1016_j_cam_2022_114963
crossref_primary_10_1016_j_segan_2022_100943
crossref_primary_10_1016_j_cma_2023_116290
crossref_primary_10_3390_e27030275
crossref_primary_10_3390_bdcc6040140
crossref_primary_10_1016_j_aei_2023_102035
crossref_primary_10_1007_s11071_023_08361_6
crossref_primary_10_1016_j_neucom_2025_131589
crossref_primary_10_1109_JAS_2023_123537
crossref_primary_10_1109_TAI_2022_3209167
crossref_primary_10_1016_j_cma_2021_114562
crossref_primary_10_1016_j_cma_2023_116181
crossref_primary_10_1038_s41598_022_26602_3
crossref_primary_10_1137_22M1517081
crossref_primary_10_1007_s00466_023_02434_4
crossref_primary_10_1016_j_apm_2024_115906
crossref_primary_10_1007_s00366_024_02090_z
crossref_primary_10_1007_s10462_025_11278_8
crossref_primary_10_1038_s41598_025_03918_4
crossref_primary_10_1016_j_camwa_2024_07_024
crossref_primary_10_1038_s41598_023_39989_4
crossref_primary_10_1016_j_eml_2023_102051
crossref_primary_10_1190_geo2022_0479_1
crossref_primary_10_1080_12269328_2025_2499267
crossref_primary_10_1007_s10489_022_04079_x
crossref_primary_10_3390_app13126892
crossref_primary_10_1016_j_jcp_2024_113709
crossref_primary_10_1016_j_compgeo_2025_107652
crossref_primary_10_1016_j_neucom_2025_131446
crossref_primary_10_1088_1572_9494_adfc37
crossref_primary_10_1002_nme_7585
crossref_primary_10_1016_j_cma_2024_116825
crossref_primary_10_1007_s00366_022_01703_9
crossref_primary_10_1007_s00158_024_03856_1
crossref_primary_10_1016_j_physd_2023_133945
crossref_primary_10_1007_s00419_024_02622_5
crossref_primary_10_1016_j_ijmecsci_2025_110075
crossref_primary_10_1134_S106456242460194X
crossref_primary_10_1080_10407790_2023_2264489
crossref_primary_10_3390_ma16145013
crossref_primary_10_3390_pr13030841
crossref_primary_10_1016_j_jcp_2025_114085
crossref_primary_10_1016_j_jcp_2021_110683
crossref_primary_10_1016_j_neucom_2025_131318
crossref_primary_10_1016_j_cma_2022_115041
crossref_primary_10_1016_j_cma_2024_117104
crossref_primary_10_1016_j_cma_2024_117342
crossref_primary_10_1002_nme_7637
crossref_primary_10_1016_j_cma_2022_115169
crossref_primary_10_1016_j_cma_2024_117582
crossref_primary_10_1088_1402_4896_adc346
crossref_primary_10_1016_j_physd_2024_134399
crossref_primary_10_1016_j_tws_2025_113014
crossref_primary_10_1016_j_engappai_2023_107183
crossref_primary_10_1016_j_physd_2022_133629
crossref_primary_10_1016_j_cma_2024_117211
crossref_primary_10_1080_00036811_2024_2302405
crossref_primary_10_1016_j_cma_2025_117750
crossref_primary_10_1016_j_cma_2024_117691
crossref_primary_10_1016_j_neucom_2024_128675
crossref_primary_10_1063_5_0232675
crossref_primary_10_1016_j_physd_2022_133630
crossref_primary_10_1016_j_chaos_2021_111530
crossref_primary_10_1007_s11440_023_01874_9
crossref_primary_10_1016_j_cad_2024_103807
crossref_primary_10_1016_j_matcom_2024_08_008
crossref_primary_10_1016_j_cma_2024_117681
crossref_primary_10_1016_j_cnsns_2025_109049
crossref_primary_10_1002_msd2_70007
crossref_primary_10_1016_j_paerosci_2024_101046
crossref_primary_10_1088_2399_6528_ace416
crossref_primary_10_1016_j_trgeo_2025_101722
crossref_primary_10_1073_pnas_2216415120
crossref_primary_10_3390_math11051109
crossref_primary_10_1016_j_cma_2023_116546
crossref_primary_10_3390_fluids10090226
crossref_primary_10_1007_s42493_024_00106_w
crossref_primary_10_1016_j_compgeo_2025_107612
crossref_primary_10_3390_batteries11060204
crossref_primary_10_1016_j_ijmecsci_2024_109783
crossref_primary_10_1016_j_cma_2025_117852
crossref_primary_10_1016_j_cma_2023_116444
crossref_primary_10_1016_j_jcp_2022_111080
crossref_primary_10_1007_s11071_024_09642_4
crossref_primary_10_1007_s00366_024_02073_0
crossref_primary_10_1371_journal_pcbi_1011916
crossref_primary_10_1016_j_oceaneng_2022_110775
crossref_primary_10_1016_j_cma_2023_116678
crossref_primary_10_1111_str_12431
crossref_primary_10_1142_S1758825125500358
crossref_primary_10_1007_s10915_022_01950_4
crossref_primary_10_1016_j_chaos_2024_115727
crossref_primary_10_1016_j_cma_2023_116214
crossref_primary_10_1016_j_jcp_2023_112360
crossref_primary_10_1016_j_cad_2024_103709
crossref_primary_10_1121_10_0026025
crossref_primary_10_1007_s40819_025_01988_6
crossref_primary_10_1016_j_autcon_2025_105983
crossref_primary_10_1016_j_camwa_2025_07_037
crossref_primary_10_1137_23M1623707
crossref_primary_10_1002_jnm_3264
crossref_primary_10_1137_23M1584538
crossref_primary_10_1016_j_engappai_2025_112044
crossref_primary_10_1016_j_ymssp_2024_111335
crossref_primary_10_1088_2632_2153_acf116
crossref_primary_10_1016_j_cma_2024_117650
crossref_primary_10_1016_j_jcp_2024_113680
crossref_primary_10_1016_j_engappai_2024_107887
crossref_primary_10_1016_j_asoc_2024_112370
crossref_primary_10_1109_ACCESS_2024_3464644
crossref_primary_10_1007_s10483_025_3257_8
crossref_primary_10_1109_ACCESS_2024_3356173
crossref_primary_10_1016_j_icheatmasstransfer_2025_109482
crossref_primary_10_1016_j_compstruc_2025_107839
crossref_primary_10_1038_s41598_021_99037_x
crossref_primary_10_1016_j_chaos_2024_115669
crossref_primary_10_1016_j_neucom_2025_130764
crossref_primary_10_1093_imamat_hxae011
crossref_primary_10_3390_axioms12080750
crossref_primary_10_1007_s11063_024_11620_1
crossref_primary_10_1137_22M1488405
crossref_primary_10_1016_j_jelechem_2022_116918
crossref_primary_10_1016_j_ces_2023_119285
crossref_primary_10_1016_j_engappai_2025_111098
crossref_primary_10_1016_j_chaos_2022_112908
crossref_primary_10_1016_j_jcp_2021_110839
crossref_primary_10_1080_17499518_2024_2315301
crossref_primary_10_1016_j_chaos_2024_115658
crossref_primary_10_1016_j_cma_2021_113959
crossref_primary_10_1016_j_cma_2025_117914
crossref_primary_10_1016_j_est_2023_106654
crossref_primary_10_1016_j_cma_2024_117518
crossref_primary_10_1016_j_jcp_2023_112016
crossref_primary_10_3390_math13101571
crossref_primary_10_1016_j_cma_2025_117933
crossref_primary_10_1063_5_0216266
crossref_primary_10_1016_j_chaos_2023_113169
crossref_primary_10_1017_dce_2022_24
crossref_primary_10_1016_j_cma_2025_117806
crossref_primary_10_1002_msd2_70031
crossref_primary_10_1016_j_jcp_2025_113954
crossref_primary_10_1016_j_heliyon_2024_e38799
Cites_doi 10.1090/S0002-9947-2010-05070-6
10.1016/j.jcp.2020.109409
10.1007/s002110050231
10.1111/j.1365-246X.2006.02978.x
10.1137/18M1229845
10.1016/j.jcp.2018.10.045
10.1016/j.cma.2020.113028
10.1111/j.1365-246X.2004.02453.x
10.1016/j.jfa.2010.02.001
10.1006/jcph.1995.1209
10.1016/j.jcp.2017.07.050
10.1016/j.cma.2019.112789
10.1016/j.jcp.2019.109020
10.1016/0196-8858(92)90016-P
10.1007/s10915-019-00935-0
10.1016/j.cma.2019.112790
10.1007/s40304-018-0127-z
10.4171/022-3/69
10.1016/j.neucom.2018.06.056
10.1137/S1064827501380630
10.1016/j.jcp.2017.11.039
10.1016/j.jcp.2018.08.029
10.1016/j.compfluid.2014.11.006
10.1017/S0962492900002816
10.1103/PhysRevFluids.4.124501
10.1007/s40687-018-0160-2
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Feb 1, 2021
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Feb 1, 2021
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
OTOTI
DOI 10.1016/j.cma.2020.113547
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
OSTI.GOV
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
ExternalDocumentID 1776284
10_1016_j_cma_2020_113547
S0045782520307325
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
VH1
VOH
WUQ
ZY4
~HD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
AALMO
AAPBV
ABPIF
ABPTK
OTOTI
PQEST
ID FETCH-LOGICAL-c395t-b6ec86f3f90985ee167d4864dc5ad82ed8af3c79b0f0a5e1b611483487c1d41d3
ISICitedReferencesCount 476
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000608741800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7825
IngestDate Thu May 18 22:32:30 EDT 2023
Sun Nov 09 07:32:15 EST 2025
Tue Nov 18 21:22:13 EST 2025
Sat Nov 29 07:25:29 EST 2025
Fri Feb 23 02:48:56 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Partial differential equations
Variational neural network
hp-refinement
Physics-informed learning
Domain decomposition
VPINNs
Automatic differentiation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c395t-b6ec86f3f90985ee167d4864dc5ad82ed8af3c79b0f0a5e1b611483487c1d41d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
ORCID 0000-0002-3680-5500
0000000236805500
OpenAccessLink https://www.sciencedirect.com/science/article/am/pii/S0045782520307325
PQID 2488031273
PQPubID 2045269
ParticipantIDs osti_scitechconnect_1776284
proquest_journals_2488031273
crossref_primary_10_1016_j_cma_2020_113547
crossref_citationtrail_10_1016_j_cma_2020_113547
elsevier_sciencedirect_doi_10_1016_j_cma_2020_113547
PublicationCentury 2000
PublicationDate 2021-02-01
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: Netherlands
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
– name: Elsevier
References Li, Tang, Wu, Liao (b8) 2019
Raissi, Perdikaris, Karniadakis (b3) 2019; 378
Raissi, Perdikaris, Karniadakis (b52) 2017; 348
Novak, Ritter (b40) 1996; 75
Jagtap, Kharazmi, Karniadakis (b37) 2020; 365
E.J. Candès, et al. Compressive sampling, in: Proceedings of the International Congress of Mathematicians, Vol. 3, Madrid, Spain, 2006, pp. 1433–1452.
Ohlsson, Yang, Dong, Sastry (b14) 2013
Berg, Nyström (b1) 2018; 317
Liao, Ming (b7) 2019
Sirignano, Spiliopoulos (b23) 2018; 375
Yang, Zhang, Karniadakis (b24) 2018
Jagtap, Kawaguchi, Karniadakis (b30) 2019
Bao, Ye, Zang, Zhou (b35) 2020
Daubechies (b11) 1992
Candès, Wakin (b16) 2008; 25
Mao, Jagtap, Karniadakis (b4) 2020; 360
Tariyal, Majumdar, Singh, Vatsa (b12) 2016
Xu, Tartakovsky, Burghardt, Darve (b58) 2020
E, Yu (b2) 2018; 6
Kharazmi, Zhang, Karniadakis (b25) 2019
Davis (b13) 1994
Tromp, Tape, Liu (b47) 2005; 160
Zang, Bao, Ye, Zhou (b34) 2020
Al-Aradi, Correia, Naiff, Jardim, Saporito (b33) 2019
Khodayi-Mehr, Zavlanos (b26) 2019
van Leeuwen, Herrmann (b51) 2015; 32
Meng, Karniadakis (b55) 2020; 401
Smolyak (b39) 1963; 4
Shin, Darbon, Karniadakis (b60) 2020
Kingma, Ba (b42) 2014
Bradley (b45) 2010
Shin, Zhang, Karniadakis (b61) 2020
Finlayson, Scriven (b22) 1966; 19
Haghighat, Juanes (b32) 2020
Jagtap, Kawaguchi, Karniadakis (b31) 2019
Morokoff, Caflisch (b38) 1995; 122
Khodayi-mehr, Zavlanos (b36) 2018
Kharazmi, Zayernouri (b48) 2019; 80
Raissi, Babaee, Givi (b28) 2019; 4
Mhaskar, Poggio (b20) 2019
Cyr, Gulian, Patel, Perego, Trask (b41) 2019
Cao, Li, Petzold, Serban (b46) 2003; 24
Hangelbroek, Ron (b18) 2010; 259
DeVore (b10) 2009
Karniadakis, Sherwin (b43) 2013
Raissi, Karniadakis (b53) 2018; 357
Khoo, Lu, Ying (b5) 2019; 6
Xu, Darve (b57) 2020
Samaniego, Anitescu, Goswami, Nguyen-Thanh, Guo, Hamdia, Zhuang, Rabczuk (b6) 2020; 362
DeVore (b9) 1998; 7
Mojtabi, Deville (b59) 2015; 107
Mhaskar, Micchelli (b19) 1992; 13
Daubechies, DeVore, Foucart, Hanin, Petrova (b21) 2019
Yang, Meng, Karniadakis (b56) 2020
Allaire (b50) 2015; 836
DeVore, Ron (b17) 2010; 362
Pang, Lu, Karniadakis (b29) 2019; 41
M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al. Tensorflow: A system for large-scale machine learning, in: 12th {USENIX} Symposium on Operating Systems Design and Implementation, {OSDI} 16, 2016, pp. 265–283.
Plessix (b49) 2006; 167
Lu, Meng, Mao, Karniadakis (b44) 2019
Wang, Teng, Perdikaris (b27) 2020
Ohlsson (10.1016/j.cma.2020.113547_b14) 2013
Mao (10.1016/j.cma.2020.113547_b4) 2020; 360
Daubechies (10.1016/j.cma.2020.113547_b21) 2019
Shin (10.1016/j.cma.2020.113547_b61) 2020
Lu (10.1016/j.cma.2020.113547_b44) 2019
Jagtap (10.1016/j.cma.2020.113547_b31) 2019
Raissi (10.1016/j.cma.2020.113547_b53) 2018; 357
Kingma (10.1016/j.cma.2020.113547_b42) 2014
Khoo (10.1016/j.cma.2020.113547_b5) 2019; 6
Haghighat (10.1016/j.cma.2020.113547_b32) 2020
Smolyak (10.1016/j.cma.2020.113547_b39) 1963; 4
Plessix (10.1016/j.cma.2020.113547_b49) 2006; 167
DeVore (10.1016/j.cma.2020.113547_b9) 1998; 7
Yang (10.1016/j.cma.2020.113547_b56) 2020
Hangelbroek (10.1016/j.cma.2020.113547_b18) 2010; 259
Xu (10.1016/j.cma.2020.113547_b58) 2020
Tariyal (10.1016/j.cma.2020.113547_b12) 2016
Pang (10.1016/j.cma.2020.113547_b29) 2019; 41
Mhaskar (10.1016/j.cma.2020.113547_b20) 2019
Cyr (10.1016/j.cma.2020.113547_b41) 2019
10.1016/j.cma.2020.113547_b15
Zang (10.1016/j.cma.2020.113547_b34) 2020
Karniadakis (10.1016/j.cma.2020.113547_b43) 2013
10.1016/j.cma.2020.113547_b54
Raissi (10.1016/j.cma.2020.113547_b28) 2019; 4
Xu (10.1016/j.cma.2020.113547_b57) 2020
Cao (10.1016/j.cma.2020.113547_b46) 2003; 24
Li (10.1016/j.cma.2020.113547_b8) 2019
Novak (10.1016/j.cma.2020.113547_b40) 1996; 75
E (10.1016/j.cma.2020.113547_b2) 2018; 6
Yang (10.1016/j.cma.2020.113547_b24) 2018
Khodayi-mehr (10.1016/j.cma.2020.113547_b36) 2018
Davis (10.1016/j.cma.2020.113547_b13) 1994
Al-Aradi (10.1016/j.cma.2020.113547_b33) 2019
Bao (10.1016/j.cma.2020.113547_b35) 2020
Sirignano (10.1016/j.cma.2020.113547_b23) 2018; 375
Morokoff (10.1016/j.cma.2020.113547_b38) 1995; 122
Kharazmi (10.1016/j.cma.2020.113547_b48) 2019; 80
Tromp (10.1016/j.cma.2020.113547_b47) 2005; 160
Shin (10.1016/j.cma.2020.113547_b60) 2020
DeVore (10.1016/j.cma.2020.113547_b10) 2009
Allaire (10.1016/j.cma.2020.113547_b50) 2015; 836
Daubechies (10.1016/j.cma.2020.113547_b11) 1992
Raissi (10.1016/j.cma.2020.113547_b52) 2017; 348
Meng (10.1016/j.cma.2020.113547_b55) 2020; 401
Jagtap (10.1016/j.cma.2020.113547_b30) 2019
Kharazmi (10.1016/j.cma.2020.113547_b25) 2019
Wang (10.1016/j.cma.2020.113547_b27) 2020
Bradley (10.1016/j.cma.2020.113547_b45) 2010
DeVore (10.1016/j.cma.2020.113547_b17) 2010; 362
Khodayi-Mehr (10.1016/j.cma.2020.113547_b26) 2019
Jagtap (10.1016/j.cma.2020.113547_b37) 2020; 365
Berg (10.1016/j.cma.2020.113547_b1) 2018; 317
Finlayson (10.1016/j.cma.2020.113547_b22) 1966; 19
van Leeuwen (10.1016/j.cma.2020.113547_b51) 2015; 32
Candès (10.1016/j.cma.2020.113547_b16) 2008; 25
Samaniego (10.1016/j.cma.2020.113547_b6) 2020; 362
Liao (10.1016/j.cma.2020.113547_b7) 2019
Mhaskar (10.1016/j.cma.2020.113547_b19) 1992; 13
Mojtabi (10.1016/j.cma.2020.113547_b59) 2015; 107
Raissi (10.1016/j.cma.2020.113547_b3) 2019; 378
References_xml – year: 2019
  ident: b7
  article-title: Deep Nitsche method: Deep Ritz method with essential boundary conditions
– year: 2020
  ident: b61
  article-title: Error estimates of residual minimization using neural networks for linear PDEs
– volume: 7
  start-page: 51
  year: 1998
  end-page: 150
  ident: b9
  article-title: Nonlinear approximation
  publication-title: Acta Numer.
– volume: 19
  start-page: 735
  year: 1966
  end-page: 748
  ident: b22
  article-title: The method of weighted residuals—A review
  publication-title: Appl. Mech. Rev.
– year: 2018
  ident: b24
  article-title: Physics-informed generative adversarial networks for stochastic differential equations
– year: 2020
  ident: b32
  article-title: SciANN: A Keras wrapper for scientific computations and physics-informed deep learning using artificial neural networks
– year: 2019
  ident: b44
  article-title: DeepXDE: A deep learning library for solving differential equations
– year: 2019
  ident: b8
  article-title: D3M: A deep domain decomposition method for partial differential equations
– volume: 360
  year: 2020
  ident: b4
  article-title: Physics-informed neural networks for high-speed flows
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2020
  ident: b56
  article-title: B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data
– volume: 4
  start-page: 240
  year: 1963
  end-page: 243
  ident: b39
  article-title: Quadrature and interpolation formulas for tensor products of certain classes of functions
  publication-title: Sov. Math. Dokl.
– year: 2018
  ident: b36
  article-title: Deep learning for robotic mass transport cloaking
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: b3
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– volume: 317
  start-page: 28
  year: 2018
  end-page: 41
  ident: b1
  article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries
  publication-title: Neurocomputing
– volume: 365
  year: 2020
  ident: b37
  article-title: Conservative physics-informed neural networks on discrete domains for conservation laws
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 41
  start-page: A2603
  year: 2019
  end-page: A2626
  ident: b29
  article-title: FPINNs: Fractional physics-informed neural networks
  publication-title: SIAM J. Sci. Comput.
– year: 2020
  ident: b57
  article-title: Physics constrained learning for data-driven inverse modeling from sparse observations
– year: 2020
  ident: b58
  article-title: Inverse modeling of viscoelasticity materials using physics constrained learning
– volume: 75
  start-page: 79
  year: 1996
  end-page: 97
  ident: b40
  article-title: High dimensional integration of smooth functions over cubes
  publication-title: Numer. Math.
– volume: 13
  start-page: 350
  year: 1992
  end-page: 373
  ident: b19
  article-title: Approximation by superposition of sigmoidal and radial basis functions
  publication-title: Adv. in Appl. Math.
– volume: 362
  year: 2020
  ident: b6
  article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications
  publication-title: Comput. Methods Appl. Mech. Engrg.
– reference: E.J. Candès, et al. Compressive sampling, in: Proceedings of the International Congress of Mathematicians, Vol. 3, Madrid, Spain, 2006, pp. 1433–1452.
– reference: M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al. Tensorflow: A system for large-scale machine learning, in: 12th {USENIX} Symposium on Operating Systems Design and Implementation, {OSDI} 16, 2016, pp. 265–283.
– year: 2016
  ident: b12
  article-title: Greedy deep dictionary learning
– year: 2014
  ident: b42
  article-title: Adam: A method for stochastic optimization
– year: 2020
  ident: b34
  article-title: Weak adversarial networks for high-dimensional partial differential equations
  publication-title: J. Comput. Phys.
– year: 2019
  ident: b33
  article-title: Applications of the deep Galerkin method to solving partial integro-differential and Hamilton-Jacobi-Bellman equations
– year: 2020
  ident: b35
  article-title: Numerical solution of inverse problems by weak adversarial networks
– start-page: 169
  year: 2009
  end-page: 201
  ident: b10
  article-title: Nonlinear approximation and its applications
  publication-title: Multiscale, Nonlinear and Adaptive Approximation
– volume: 348
  start-page: 683
  year: 2017
  end-page: 693
  ident: b52
  article-title: Machine learning of linear differential equations using Gaussian processes
  publication-title: J. Comput. Phys.
– volume: 6
  start-page: 1
  year: 2018
  end-page: 12
  ident: b2
  article-title: The deep Ritz method: A deep learning-based numerical algorithm for solving variational problems
  publication-title: Commun. Math. Stat.
– year: 1992
  ident: b11
  article-title: Ten Lectures on Wavelets, Vol. 61
– volume: 80
  start-page: 110
  year: 2019
  end-page: 140
  ident: b48
  article-title: Fractional sensitivity equation method: Application to fractional model construction
  publication-title: J. Sci. Comput.
– volume: 836
  start-page: 33
  year: 2015
  end-page: 36
  ident: b50
  article-title: A review of adjoint methods for sensitivity analysis, uncertainty quantification and optimization in numerical codes
  publication-title: Ing. Automob.
– volume: 107
  start-page: 189
  year: 2015
  end-page: 195
  ident: b59
  article-title: One-dimensional linear advection–diffusion equation: Analytical and finite element solutions
  publication-title: Comput. & Fluids
– volume: 6
  start-page: 1
  year: 2019
  ident: b5
  article-title: Solving for high-dimensional committor functions using artificial neural networks
  publication-title: Res. Math. Sci.
– year: 1994
  ident: b13
  article-title: Adaptive Nonlinear Approximations
– year: 2013
  ident: b43
  article-title: Spectral/
– volume: 32
  year: 2015
  ident: b51
  article-title: A penalty method for PDE-constrained optimization in inverse problems
  publication-title: Inverse Problems
– volume: 160
  start-page: 195
  year: 2005
  end-page: 216
  ident: b47
  article-title: Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels
  publication-title: Geophys. J. Int.
– start-page: 109
  year: 2019
  end-page: 136
  ident: b30
  article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks
  publication-title: J. Comput. Phys.
– year: 2019
  ident: b41
  article-title: Robust training and initialization of deep neural networks: An adaptive basis viewpoint
– volume: 375
  start-page: 1339
  year: 2018
  end-page: 1364
  ident: b23
  article-title: DGM: A deep learning algorithm for solving partial differential equations
  publication-title: J. Comput. Phys.
– volume: 122
  start-page: 218
  year: 1995
  end-page: 230
  ident: b38
  article-title: Quasi-Monte Carlo integration
  publication-title: J. Comput. Phys.
– year: 2020
  ident: b60
  article-title: On the convergence and generalization of physics informed neural networks
– year: 2019
  ident: b20
  article-title: Function approximation by deep networks
– volume: 4
  year: 2019
  ident: b28
  article-title: Deep learning of turbulent scalar mixing
  publication-title: Phys. Rev. Fluids
– volume: 357
  start-page: 125
  year: 2018
  end-page: 141
  ident: b53
  article-title: Hidden physics models: Machine learning of nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– volume: 401
  year: 2020
  ident: b55
  article-title: A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse PDE problems
  publication-title: J. Comput. Phys.
– volume: 167
  start-page: 495
  year: 2006
  end-page: 503
  ident: b49
  article-title: A review of the adjoint-state method for computing the gradient of a functional with geophysical applications
  publication-title: Geophys. J. Int.
– year: 2020
  ident: b27
  article-title: Understanding and mitigating gradient pathologies in physics-informed neural networks
– year: 2019
  ident: b26
  article-title: VarNet: Variational neural networks for the solution of partial differential equations
– volume: 25
  start-page: 21
  year: 2008
  end-page: 30
  ident: b16
  article-title: An introduction to compressive sampling [a sensing/sampling paradigm that goes against the common knowledge in data acquisition]
  publication-title: IEEE Signal Process. Mag.
– volume: 259
  start-page: 203
  year: 2010
  end-page: 219
  ident: b18
  article-title: Nonlinear approximation using Gaussian kernels
  publication-title: J. Funct. Anal.
– start-page: 115
  year: 2013
  end-page: 119
  ident: b14
  article-title: Nonlinear basis pursuit
  publication-title: 2013 Asilomar Conference on Signals, Systems and Computers
– year: 2019
  ident: b21
  article-title: Nonlinear approximation and (deep) ReLU networks
– year: 2019
  ident: b31
  article-title: Locally adaptive activation functions with slope recovery term for deep and physics-informed neural networks
– volume: 362
  start-page: 6205
  year: 2010
  end-page: 6229
  ident: b17
  article-title: Approximation using scattered shifts of a multivariate function
  publication-title: Trans. Amer. Math. Soc.
– year: 2010
  ident: b45
  article-title: PDE-Constrained Optimization and the Adjoint Method
– year: 2019
  ident: b25
  article-title: Variational physics-informed neural networks for solving partial differential equations
– volume: 24
  start-page: 1076
  year: 2003
  end-page: 1089
  ident: b46
  article-title: Adjoint sensitivity analysis for differential-algebraic equations: The adjoint DAE system and its numerical solution
  publication-title: SIAM J. Sci. Comput.
– year: 2019
  ident: 10.1016/j.cma.2020.113547_b21
– year: 2019
  ident: 10.1016/j.cma.2020.113547_b8
– year: 2014
  ident: 10.1016/j.cma.2020.113547_b42
– volume: 362
  start-page: 6205
  issue: 12
  year: 2010
  ident: 10.1016/j.cma.2020.113547_b17
  article-title: Approximation using scattered shifts of a multivariate function
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/S0002-9947-2010-05070-6
– year: 2020
  ident: 10.1016/j.cma.2020.113547_b57
– year: 2020
  ident: 10.1016/j.cma.2020.113547_b34
  article-title: Weak adversarial networks for high-dimensional partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109409
– year: 2019
  ident: 10.1016/j.cma.2020.113547_b20
– year: 2019
  ident: 10.1016/j.cma.2020.113547_b41
– year: 2019
  ident: 10.1016/j.cma.2020.113547_b44
– year: 2018
  ident: 10.1016/j.cma.2020.113547_b24
– volume: 75
  start-page: 79
  issue: 1
  year: 1996
  ident: 10.1016/j.cma.2020.113547_b40
  article-title: High dimensional integration of smooth functions over cubes
  publication-title: Numer. Math.
  doi: 10.1007/s002110050231
– year: 2020
  ident: 10.1016/j.cma.2020.113547_b60
– year: 2019
  ident: 10.1016/j.cma.2020.113547_b26
– year: 2010
  ident: 10.1016/j.cma.2020.113547_b45
– volume: 167
  start-page: 495
  issue: 2
  year: 2006
  ident: 10.1016/j.cma.2020.113547_b49
  article-title: A review of the adjoint-state method for computing the gradient of a functional with geophysical applications
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2006.02978.x
– volume: 41
  start-page: A2603
  issue: 4
  year: 2019
  ident: 10.1016/j.cma.2020.113547_b29
  article-title: FPINNs: Fractional physics-informed neural networks
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/18M1229845
– volume: 32
  issue: 1
  year: 2015
  ident: 10.1016/j.cma.2020.113547_b51
  article-title: A penalty method for PDE-constrained optimization in inverse problems
  publication-title: Inverse Problems
– year: 2020
  ident: 10.1016/j.cma.2020.113547_b32
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.cma.2020.113547_b3
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– year: 2020
  ident: 10.1016/j.cma.2020.113547_b27
– volume: 365
  year: 2020
  ident: 10.1016/j.cma.2020.113547_b37
  article-title: Conservative physics-informed neural networks on discrete domains for conservation laws
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113028
– year: 2020
  ident: 10.1016/j.cma.2020.113547_b58
– year: 2020
  ident: 10.1016/j.cma.2020.113547_b35
– volume: 160
  start-page: 195
  issue: 1
  year: 2005
  ident: 10.1016/j.cma.2020.113547_b47
  article-title: Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2004.02453.x
– year: 2019
  ident: 10.1016/j.cma.2020.113547_b7
– year: 2018
  ident: 10.1016/j.cma.2020.113547_b36
– year: 2019
  ident: 10.1016/j.cma.2020.113547_b33
– volume: 259
  start-page: 203
  issue: 1
  year: 2010
  ident: 10.1016/j.cma.2020.113547_b18
  article-title: Nonlinear approximation using Gaussian kernels
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2010.02.001
– year: 2019
  ident: 10.1016/j.cma.2020.113547_b31
– volume: 122
  start-page: 218
  issue: 2
  year: 1995
  ident: 10.1016/j.cma.2020.113547_b38
  article-title: Quasi-Monte Carlo integration
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1209
– volume: 348
  start-page: 683
  year: 2017
  ident: 10.1016/j.cma.2020.113547_b52
  article-title: Machine learning of linear differential equations using Gaussian processes
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.07.050
– start-page: 115
  year: 2013
  ident: 10.1016/j.cma.2020.113547_b14
  article-title: Nonlinear basis pursuit
– volume: 360
  year: 2020
  ident: 10.1016/j.cma.2020.113547_b4
  article-title: Physics-informed neural networks for high-speed flows
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2019.112789
– volume: 401
  year: 2020
  ident: 10.1016/j.cma.2020.113547_b55
  article-title: A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse PDE problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.109020
– volume: 13
  start-page: 350
  issue: 3
  year: 1992
  ident: 10.1016/j.cma.2020.113547_b19
  article-title: Approximation by superposition of sigmoidal and radial basis functions
  publication-title: Adv. in Appl. Math.
  doi: 10.1016/0196-8858(92)90016-P
– volume: 80
  start-page: 110
  issue: 1
  year: 2019
  ident: 10.1016/j.cma.2020.113547_b48
  article-title: Fractional sensitivity equation method: Application to fractional model construction
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-019-00935-0
– volume: 362
  year: 2020
  ident: 10.1016/j.cma.2020.113547_b6
  article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2019.112790
– year: 2020
  ident: 10.1016/j.cma.2020.113547_b56
– volume: 6
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.cma.2020.113547_b2
  article-title: The deep Ritz method: A deep learning-based numerical algorithm for solving variational problems
  publication-title: Commun. Math. Stat.
  doi: 10.1007/s40304-018-0127-z
– ident: 10.1016/j.cma.2020.113547_b15
  doi: 10.4171/022-3/69
– volume: 317
  start-page: 28
  year: 2018
  ident: 10.1016/j.cma.2020.113547_b1
  article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.06.056
– year: 2013
  ident: 10.1016/j.cma.2020.113547_b43
– volume: 24
  start-page: 1076
  issue: 3
  year: 2003
  ident: 10.1016/j.cma.2020.113547_b46
  article-title: Adjoint sensitivity analysis for differential-algebraic equations: The adjoint DAE system and its numerical solution
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827501380630
– volume: 357
  start-page: 125
  year: 2018
  ident: 10.1016/j.cma.2020.113547_b53
  article-title: Hidden physics models: Machine learning of nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.11.039
– year: 2019
  ident: 10.1016/j.cma.2020.113547_b25
– volume: 19
  start-page: 735
  issue: 9
  year: 1966
  ident: 10.1016/j.cma.2020.113547_b22
  article-title: The method of weighted residuals—A review
  publication-title: Appl. Mech. Rev.
– start-page: 169
  year: 2009
  ident: 10.1016/j.cma.2020.113547_b10
  article-title: Nonlinear approximation and its applications
– volume: 375
  start-page: 1339
  year: 2018
  ident: 10.1016/j.cma.2020.113547_b23
  article-title: DGM: A deep learning algorithm for solving partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.08.029
– volume: 4
  start-page: 240
  year: 1963
  ident: 10.1016/j.cma.2020.113547_b39
  article-title: Quadrature and interpolation formulas for tensor products of certain classes of functions
  publication-title: Sov. Math. Dokl.
– volume: 107
  start-page: 189
  year: 2015
  ident: 10.1016/j.cma.2020.113547_b59
  article-title: One-dimensional linear advection–diffusion equation: Analytical and finite element solutions
  publication-title: Comput. & Fluids
  doi: 10.1016/j.compfluid.2014.11.006
– year: 1992
  ident: 10.1016/j.cma.2020.113547_b11
– volume: 25
  start-page: 21
  issue: 2
  year: 2008
  ident: 10.1016/j.cma.2020.113547_b16
  article-title: An introduction to compressive sampling [a sensing/sampling paradigm that goes against the common knowledge in data acquisition]
  publication-title: IEEE Signal Process. Mag.
– volume: 7
  start-page: 51
  year: 1998
  ident: 10.1016/j.cma.2020.113547_b9
  article-title: Nonlinear approximation
  publication-title: Acta Numer.
  doi: 10.1017/S0962492900002816
– start-page: 109
  year: 2019
  ident: 10.1016/j.cma.2020.113547_b30
  article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks
  publication-title: J. Comput. Phys.
– year: 2020
  ident: 10.1016/j.cma.2020.113547_b61
– year: 1994
  ident: 10.1016/j.cma.2020.113547_b13
– volume: 4
  issue: 12
  year: 2019
  ident: 10.1016/j.cma.2020.113547_b28
  article-title: Deep learning of turbulent scalar mixing
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.4.124501
– volume: 836
  start-page: 33
  year: 2015
  ident: 10.1016/j.cma.2020.113547_b50
  article-title: A review of adjoint methods for sensitivity analysis, uncertainty quantification and optimization in numerical codes
  publication-title: Ing. Automob.
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.cma.2020.113547_b5
  article-title: Solving for high-dimensional committor functions using artificial neural networks
  publication-title: Res. Math. Sci.
  doi: 10.1007/s40687-018-0160-2
– ident: 10.1016/j.cma.2020.113547_b54
– year: 2016
  ident: 10.1016/j.cma.2020.113547_b12
SSID ssj0000812
Score 2.7318623
Snippet We formulate a general framework for hp-variational physics-informed neural networks (hp-VPINNs) based on the nonlinear approximation of shallow and deep...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113547
SubjectTerms Algorithms
Approximation
Artificial neural networks
Automatic differentiation
Differential equations
Domain decomposition
Domain decomposition methods
hp-refinement
Machine learning
Neural networks
Optimization
Partial differential equations
Physics-informed learning
Polynomials
Variational neural network
VPINNs
Title hp-VPINNs: Variational physics-informed neural networks with domain decomposition
URI https://dx.doi.org/10.1016/j.cma.2020.113547
https://www.proquest.com/docview/2488031273
https://www.osti.gov/biblio/1776284
Volume 374
WOSCitedRecordID wos000608741800007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwM8cBkgygbyA08gV3Eujs3bhIoAiQrEmCpeosSxV6Y17dZumpD47xzfktKKCZB4idqoriOfL8fn5u8g9LyUOtasiojJYoGDohmpclGRqhKRZEkqSi5ts4l8POaTifjY6_0IZ2EuT_Om4VdXYvFfRQ33QNjm6OxfiLv9U7gBn0HocAWxw_WPBD9dkCPw1ce21u0IXOEQ7nNBjCVxXKkm7a8s50bjKsH9Obd6PitthawpNvcVXesWbGgD4XtP23La0puyM2XOEQfeZ9VRHbZq3dBDf5_ZCoLRdK0eqI1bf53Om-MzwGw3xsRuytpYul0Q_-Vo-GG4HrGIaShyDmG0raM0TjWnGQFzxaW4ldPGPBckpo7-JajrxHX12VL9LgpxMpSWTiq23Woyx-a5waj92cxlpoqthouzG2gnzjMBSnHn4N1o8r7byjl1dPP-2UJa3BYIbkz0O8OmPwddvbXTW_Pl8B664_0OfODwch_1VLOL7nofBHsNv9xFt9cIKh-gTy2YXuE1KOFNKGEHJRyghA2UsIMS_gVKD9GXN6PD12-Jb8JBZCKyFamYkpzpRItI8EwpyvI65SytZVbWPFY1L3Ui4fWOdFRmilbMeNgJ-MGS1imtk0eo38wb9RhhTcEYNYk_zlWqmaqYgP2EV1mmJXyXAxSFFSykZ6g3jVJOi1CKeFLAohdm0Qu36AP0oh2ycPQs1_04DWIpvH3p7MYCMHTdsD0jQjPE8CpLU4AGY2gOdgRPB2g_SLbwWmBZxGZbTCi4Bk_-bc49dKt7c_ZRf3V-oZ6im_Jy9W15_szD9CeyMbNG
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=hp-VPINNs%3A+Variational+physics-informed+neural+networks+with+domain+decomposition&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Kharazmi%2C+Ehsan&rft.au=Zhang%2C+Zhongqiang&rft.au=Karniadakis%2C+George+E.M.&rft.date=2021-02-01&rft.pub=Elsevier+B.V&rft.issn=0045-7825&rft.eissn=1879-2138&rft.volume=374&rft_id=info:doi/10.1016%2Fj.cma.2020.113547&rft.externalDocID=S0045782520307325
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon