Strong duality in minimizing a quadratic form subject to two homogeneous quadratic inequalities over the unit sphere

In this paper, we study the strong duality for an optimization problem to minimize a homogeneous quadratic function subject to two homogeneous quadratic constraints over the unit sphere, called Problem (P) in this paper. When a feasible (P) fails to have a Slater point, we show that (P) always adopt...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of global optimization Ročník 76; číslo 1; s. 121 - 135
Hlavní autori: Nguyen, Van-Bong, Nguyen, Thi Ngan, Sheu, Ruey-Lin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.01.2020
Springer
Springer Nature B.V
Predmet:
ISSN:0925-5001, 1573-2916
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we study the strong duality for an optimization problem to minimize a homogeneous quadratic function subject to two homogeneous quadratic constraints over the unit sphere, called Problem (P) in this paper. When a feasible (P) fails to have a Slater point, we show that (P) always adopts the strong duality. When (P) has a Slater point, we propose a set of conditions, called “ Property J ”, on an SDP relaxation of (P) and its conical dual. We show that (P) has the strong duality if and only if there exists at least one optimal solution to the SDP relaxation of (P) which fails Property J. Our techniques are based on various extensions of S-lemma as well as the matrix rank-one decomposition procedure introduced by Ai and Zhang. Many nontrivial examples are constructed to help understand the mechanism.
AbstractList In this paper, we study the strong duality for an optimization problem to minimize a homogeneous quadratic function subject to two homogeneous quadratic constraints over the unit sphere, called Problem (P) in this paper. When a feasible (P) fails to have a Slater point, we show that (P) always adopts the strong duality. When (P) has a Slater point, we propose a set of conditions, called "Property J", on an SDP relaxation of (P) and its conical dual. We show that (P) has the strong duality if and only if there exists at least one optimal solution to the SDP relaxation of (P) which fails Property J. Our techniques are based on various extensions of S-lemma as well as the matrix rank-one decomposition procedure introduced by Ai and Zhang. Many nontrivial examples are constructed to help understand the mechanism.
In this paper, we study the strong duality for an optimization problem to minimize a homogeneous quadratic function subject to two homogeneous quadratic constraints over the unit sphere, called Problem (P) in this paper. When a feasible (P) fails to have a Slater point, we show that (P) always adopts the strong duality. When (P) has a Slater point, we propose a set of conditions, called “ Property J ”, on an SDP relaxation of (P) and its conical dual. We show that (P) has the strong duality if and only if there exists at least one optimal solution to the SDP relaxation of (P) which fails Property J. Our techniques are based on various extensions of S-lemma as well as the matrix rank-one decomposition procedure introduced by Ai and Zhang. Many nontrivial examples are constructed to help understand the mechanism.
Audience Academic
Author Sheu, Ruey-Lin
Nguyen, Van-Bong
Nguyen, Thi Ngan
Author_xml – sequence: 1
  givenname: Van-Bong
  orcidid: 0000-0001-9046-8448
  surname: Nguyen
  fullname: Nguyen, Van-Bong
  email: nvbong@ttn.edu.vn
  organization: Department of Mathematics, Tay Nguyen University
– sequence: 2
  givenname: Thi Ngan
  surname: Nguyen
  fullname: Nguyen, Thi Ngan
  organization: Department of Mathematics, Tay Nguyen University
– sequence: 3
  givenname: Ruey-Lin
  surname: Sheu
  fullname: Sheu, Ruey-Lin
  organization: Department of Mathematics, National Cheng Kung University
BookMark eNp9kctqHDEQRUVwIGMnP5CVIOt29GhNt5bGxHHA4IWTtdCjNKNhWpqR1DbO11t2B2K8MLUouNxTRdU9RScxRUDoKyXnlJDhe6FklGNHqOwIGbnoxAe0omLgHZN0fYJWRLImEkI_odNSdoQQOQq2QvWu5hQ32M16H-ojDhFPIYYp_A1N1fg4a5d1DRb7lCdcZrMDW3FNuD4kvE1T2kCENJdXzhDh-DIuQMHpHjKuW8BzDBWXwxYyfEYfvd4X-PKvn6E_Vz9-X153N7c_f11e3HSWS1E7QygdqDO9sSAY1bw3WpjRucFrx1y_1pwPvvfSOs7kCOAlgLECDF8bx3t-hr4tcw85HWcoVe3SnGNbqRgnpBecctFc54tro_egQvSpZm1bOZiCbX_2oekXAx17Noi1bMC4ADanUjJ4ZUNtl6fYwLBXlKjnUNQSimqhqJdQ1PMu9gY95DDp_Pg-xBeoNHPcQP5_xjvUE6YppHM
CitedBy_id crossref_primary_10_1007_s10107_024_02105_z
crossref_primary_10_1007_s10898_022_01225_0
Cites_doi 10.1007/s10107-013-0716-2
10.1080/10556789308805542
10.1007/978-0-387-74759-0_540
10.1007/s10957-013-0417-2
10.1023/A:1021798932766
10.1137/07070601X
10.1137/1.9780898719857
10.1287/moor.2017.0879
10.1137/0904038
10.1016/j.laa.2018.10.011
10.1137/S1052623497322735
10.1017/S0962492900002518
10.1007/s10898-015-0315-2
10.1137/S003614450444614X
10.1090/S0002-9939-1961-0122827-1
10.1287/moor.28.2.246.14485
10.1137/1038003
10.1007/978-0-387-74759-0_538
10.1007/s10107-015-0893-2
10.1016/j.orl.2014.12.002
10.1137/15100624X
10.1007/s10589-013-9635-7
10.1287/moor.1030.0069
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
COPYRIGHT 2020 Springer
Journal of Global Optimization is a copyright of Springer, (2019). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: COPYRIGHT 2020 Springer
– notice: Journal of Global Optimization is a copyright of Springer, (2019). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2O
M2P
M7S
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1007/s10898-019-00835-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Science Database (ProQuest)
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Sciences (General)
Computer Science
EISSN 1573-2916
EndPage 135
ExternalDocumentID A718427569
10_1007_s10898_019_00835_5
GroupedDBID -52
-57
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29K
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8U
Z8W
Z92
ZMTXR
ZWQNP
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c395t-b01171db4bce521a34ba5b8dd7fad2d46a337f4f9cd3298eef9eebc5eb36bd343
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000488894500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-5001
IngestDate Tue Nov 04 23:19:17 EST 2025
Sat Nov 29 10:09:50 EST 2025
Sat Nov 29 01:59:35 EST 2025
Tue Nov 18 21:10:50 EST 2025
Fri Feb 21 02:42:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 90C20
CDT problem
49M20
Joint numerical range
90C46
90C22
90C26
Quadratically constrained quadratic programming
Slater condition
S-lemma
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-b01171db4bce521a34ba5b8dd7fad2d46a337f4f9cd3298eef9eebc5eb36bd343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9046-8448
PQID 2300453135
PQPubID 29930
PageCount 15
ParticipantIDs proquest_journals_2300453135
gale_infotracacademiconefile_A718427569
crossref_citationtrail_10_1007_s10898_019_00835_5
crossref_primary_10_1007_s10898_019_00835_5
springer_journals_10_1007_s10898_019_00835_5
PublicationCentury 2000
PublicationDate 20200100
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 1
  year: 2020
  text: 20200100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal Dealing with Theoretical and Computational Aspects of Seeking Global Optima and Their Applications in Science, Management and Engineering
PublicationTitle Journal of global optimization
PublicationTitleAbbrev J Glob Optim
PublicationYear 2020
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Vanderberghe, Boyd (CR29) 1995; 38
Ai, Zhang (CR1) 2009; 19
Bazarra, Sherali, Shetty (CR3) 1993
Fallahi, Salahi (CR9) 2014; 162
Hsia, Lin, Sheu (CR14) 2014; 10
Wolkowicz, Saigal, Vandenberghe (CR30) 2000
De Angelis, Toraldo, Floudas, Pardalos (CR8) 2009
Ferreira, Nemeth, Xiao (CR11) 2019; 562
Brickman (CR5) 1961; 12
Nguyen, Sheu, Xia (CR19) 2016; 64
Polyak (CR23) 1998; 99
Locatelli (CR16) 2015; 43
Moré (CR17) 1993; 2
Pitsoulis, Floudas, Pardalos (CR21) 2009
Pólik, Terlaky (CR22) 2007; 49
Solodov (CR27) 2004; 29
Boggs, Tolle (CR4) 1995; 4
Hao (CR13) 1982; 26
Yuan (CR33) 2015; 151
Ye, Floudas, Pardalos (CR32) 1992
Rendl, Wolkowicz (CR25) 1997; 77
Ferreira, Nemeth, Xiao (CR10) 2019; 562
Andreani, Martinez, Ramos, Silva (CR2) 2018; 43
Pardalos, Resende (CR20) 2002
Celis, Dennis, Tapia, Boggs, Byrd, Schnabel (CR6) 1984
Sturm, Zhang (CR28) 2003; 28
Moré, Sorensen (CR18) 1983; 4
Sakaue, Nakatsukasa, Takeda, Iwata (CR26) 2016; 26
Gould, Lucidi, Roma, Toint (CR12) 1999; 9
Conn, Gould, Toint (CR7) 2000
Yakubovich (CR31) 1977; 4
Pong, Wolkowicz (CR24) 2014; 58
Jeyakumar, Li (CR15) 2014; 147
L Pitsoulis (835_CR21) 2009
TK Pong (835_CR24) 2014; 58
PL De Angelis (835_CR8) 2009
VB Nguyen (835_CR19) 2016; 64
W Ai (835_CR1) 2009; 19
(835_CR30) 2000
OP Ferreira (835_CR10) 2019; 562
NIM Gould (835_CR12) 1999; 9
L Vanderberghe (835_CR29) 1995; 38
M Locatelli (835_CR16) 2015; 43
(835_CR20) 2002
OP Ferreira (835_CR11) 2019; 562
Y Ye (835_CR32) 1992
L Brickman (835_CR5) 1961; 12
MS Bazarra (835_CR3) 1993
JJ Moré (835_CR18) 1983; 4
MR Celis (835_CR6) 1984
PH Hao (835_CR13) 1982; 26
MV Solodov (835_CR27) 2004; 29
BT Polyak (835_CR23) 1998; 99
JF Sturm (835_CR28) 2003; 28
AR Conn (835_CR7) 2000
VA Yakubovich (835_CR31) 1977; 4
S Sakaue (835_CR26) 2016; 26
S Fallahi (835_CR9) 2014; 162
Y Yuan (835_CR33) 2015; 151
PT Boggs (835_CR4) 1995; 4
F Rendl (835_CR25) 1997; 77
R Andreani (835_CR2) 2018; 43
Y Hsia (835_CR14) 2014; 10
V Jeyakumar (835_CR15) 2014; 147
JJ Moré (835_CR17) 1993; 2
I Pólik (835_CR22) 2007; 49
References_xml – volume: 147
  start-page: 171
  issue: 1–2
  year: 2014
  end-page: 206
  ident: CR15
  article-title: Trust-region problems with linear inequality constraints: exact SDP relaxation, global optimality and robust optimization
  publication-title: Math. Program.
  doi: 10.1007/s10107-013-0716-2
– volume: 2
  start-page: 189
  year: 1993
  end-page: 209
  ident: CR17
  article-title: Generalization of the trust region problem
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556789308805542
– start-page: 3170
  year: 2009
  end-page: 3171
  ident: CR21
  article-title: Quadratic programming with bound constraints
  publication-title: Encyclopedia of Optimization
  doi: 10.1007/978-0-387-74759-0_540
– volume: 162
  start-page: 249
  year: 2014
  end-page: 256
  ident: CR9
  article-title: On the indefinite quadratic fractional optimization with two quadratic constraints
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-013-0417-2
– year: 2000
  ident: CR30
  publication-title: Handbook on Semidefinite Programming: Theory, Algorithms, and Applications
– volume: 77
  start-page: 273
  issue: 2, Ser. B
  year: 1997
  end-page: 299
  ident: CR25
  article-title: A semidefinite framework for trust region subproblems with applications to large scale minimization
  publication-title: Math. Program.
– volume: 99
  start-page: 553
  year: 1998
  end-page: 583
  ident: CR23
  article-title: Convexity of quadratic transformations and its use in control and optimization
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1021798932766
– volume: 19
  start-page: 1735
  issue: 4
  year: 2009
  end-page: 1756
  ident: CR1
  article-title: Strong duality for the CDT subproblem: a necessary and sufficient condition
  publication-title: SIAM J. Optim.
  doi: 10.1137/07070601X
– year: 2000
  ident: CR7
  publication-title: Trust-Region Methods
  doi: 10.1137/1.9780898719857
– volume: 43
  start-page: 693
  issue: 3
  year: 2018
  end-page: 717
  ident: CR2
  article-title: Strict constraint qualifications and sequential optimality conditions for constrained optimization
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2017.0879
– volume: 4
  start-page: 553
  issue: 3
  year: 1983
  end-page: 572
  ident: CR18
  article-title: Computing a trust region step
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0904038
– volume: 562
  start-page: 205
  year: 2019
  end-page: 222
  ident: CR10
  article-title: On the spherical quasi-convexity of quadratic functions
  publication-title: Linear Algebra Its Appl.
  doi: 10.1016/j.laa.2018.10.011
– start-page: 71
  year: 1984
  end-page: 82
  ident: CR6
  article-title: A trust region algorithm for nonlinear equality constrained optimization
  publication-title: Numerical Optimization
– volume: 9
  start-page: 504
  issue: 2
  year: 1999
  end-page: 525
  ident: CR12
  article-title: Solving the trust-region subproblem using the Lanczos method
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623497322735
– volume: 4
  start-page: 1
  year: 1995
  end-page: 51
  ident: CR4
  article-title: Sequential quadratic programming
  publication-title: Acta Numer.
  doi: 10.1017/S0962492900002518
– year: 2002
  ident: CR20
  publication-title: Handbook of Applied Optimization
– volume: 26
  start-page: 105
  year: 1982
  end-page: 119
  ident: CR13
  article-title: Quadratically Constrained quadratic programming: some applications and a method for solution
  publication-title: Z. Oper. Res.
– volume: 64
  start-page: 399
  year: 2016
  end-page: 416
  ident: CR19
  article-title: Maximizing the sum of a generalized Rayleigh quotient and another Rayleigh quotient on the unit sphere via semidefinite programming
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-015-0315-2
– volume: 49
  start-page: 371
  issue: 3
  year: 2007
  end-page: 418
  ident: CR22
  article-title: A survey of the S-lemma
  publication-title: SIAM Rev.
  doi: 10.1137/S003614450444614X
– volume: 4
  start-page: 73
  year: 1977
  end-page: 93
  ident: CR31
  article-title: S-procedure in nonlinear control theory
  publication-title: Vestnik Leningr. Univ.
– volume: 12
  start-page: 61
  year: 1961
  end-page: 66
  ident: CR5
  article-title: On the field of values of a matrix
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1961-0122827-1
– volume: 562
  start-page: 205
  year: 2019
  end-page: 222
  ident: CR11
  article-title: On the spherical quasi-convexity of quadratic functions
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2018.10.011
– volume: 28
  start-page: 246
  year: 2003
  end-page: 267
  ident: CR28
  article-title: On cones of nonnegative quadratic functions
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.28.2.246.14485
– year: 1993
  ident: CR3
  publication-title: Nonlinear Programming Theory and Algorithms
– volume: 38
  start-page: 49
  year: 1995
  end-page: 95
  ident: CR29
  article-title: Semidefinite programming
  publication-title: SIAM Rev.
  doi: 10.1137/1038003
– start-page: 3161
  year: 2009
  end-page: 3166
  ident: CR8
  article-title: Quadratic programming with bound constraints
  publication-title: Encyclopedia of Optimization
  doi: 10.1007/978-0-387-74759-0_538
– year: 1992
  ident: CR32
  article-title: A new complexity result on minimization of a quadratic function with a sphere constraint
  publication-title: Recent Advances in Global Optimization
– volume: 151
  start-page: 249
  issue: 1
  year: 2015
  end-page: 281
  ident: CR33
  article-title: Recent advances in trust region algorithms
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0893-2
– volume: 43
  start-page: 126
  issue: 2
  year: 2015
  end-page: 131
  ident: CR16
  article-title: Some results for quadratic problems with one or two quadratic constraints
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2014.12.002
– volume: 26
  start-page: 1669
  issue: 3
  year: 2016
  end-page: 1694
  ident: CR26
  article-title: Solving generalized CDT problems via two-parameter eigenvalues
  publication-title: SIAM J. Optim.
  doi: 10.1137/15100624X
– volume: 58
  start-page: 273
  year: 2014
  end-page: 322
  ident: CR24
  article-title: The generalized trust region subproblem
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-013-9635-7
– volume: 10
  start-page: 461
  issue: 3
  year: 2014
  end-page: 481
  ident: CR14
  article-title: A revisit to quadratic programming with one inequality quadratic constraint via matrix pencil
  publication-title: Pac. J. Optim.
– volume: 29
  start-page: 64
  issue: 1
  year: 2004
  end-page: 79
  ident: CR27
  article-title: On the sequential quadratically constrained quadratic programming methods
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1030.0069
– volume-title: Handbook on Semidefinite Programming: Theory, Algorithms, and Applications
  year: 2000
  ident: 835_CR30
– volume: 43
  start-page: 693
  issue: 3
  year: 2018
  ident: 835_CR2
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.2017.0879
– volume: 64
  start-page: 399
  year: 2016
  ident: 835_CR19
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-015-0315-2
– volume: 162
  start-page: 249
  year: 2014
  ident: 835_CR9
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-013-0417-2
– volume: 19
  start-page: 1735
  issue: 4
  year: 2009
  ident: 835_CR1
  publication-title: SIAM J. Optim.
  doi: 10.1137/07070601X
– volume: 562
  start-page: 205
  year: 2019
  ident: 835_CR10
  publication-title: Linear Algebra Its Appl.
  doi: 10.1016/j.laa.2018.10.011
– volume: 147
  start-page: 171
  issue: 1–2
  year: 2014
  ident: 835_CR15
  publication-title: Math. Program.
  doi: 10.1007/s10107-013-0716-2
– volume: 10
  start-page: 461
  issue: 3
  year: 2014
  ident: 835_CR14
  publication-title: Pac. J. Optim.
– volume: 2
  start-page: 189
  year: 1993
  ident: 835_CR17
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556789308805542
– volume-title: Nonlinear Programming Theory and Algorithms
  year: 1993
  ident: 835_CR3
– volume: 4
  start-page: 73
  year: 1977
  ident: 835_CR31
  publication-title: Vestnik Leningr. Univ.
– volume: 562
  start-page: 205
  year: 2019
  ident: 835_CR11
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2018.10.011
– volume: 43
  start-page: 126
  issue: 2
  year: 2015
  ident: 835_CR16
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2014.12.002
– start-page: 3161
  volume-title: Encyclopedia of Optimization
  year: 2009
  ident: 835_CR8
  doi: 10.1007/978-0-387-74759-0_538
– volume: 26
  start-page: 105
  year: 1982
  ident: 835_CR13
  publication-title: Z. Oper. Res.
– volume-title: Recent Advances in Global Optimization
  year: 1992
  ident: 835_CR32
– volume: 4
  start-page: 553
  issue: 3
  year: 1983
  ident: 835_CR18
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0904038
– volume: 9
  start-page: 504
  issue: 2
  year: 1999
  ident: 835_CR12
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623497322735
– volume: 49
  start-page: 371
  issue: 3
  year: 2007
  ident: 835_CR22
  publication-title: SIAM Rev.
  doi: 10.1137/S003614450444614X
– volume: 99
  start-page: 553
  year: 1998
  ident: 835_CR23
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1021798932766
– start-page: 3170
  volume-title: Encyclopedia of Optimization
  year: 2009
  ident: 835_CR21
  doi: 10.1007/978-0-387-74759-0_540
– volume-title: Handbook of Applied Optimization
  year: 2002
  ident: 835_CR20
– volume: 151
  start-page: 249
  issue: 1
  year: 2015
  ident: 835_CR33
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0893-2
– volume-title: Trust-Region Methods
  year: 2000
  ident: 835_CR7
  doi: 10.1137/1.9780898719857
– volume: 29
  start-page: 64
  issue: 1
  year: 2004
  ident: 835_CR27
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.1030.0069
– volume: 12
  start-page: 61
  year: 1961
  ident: 835_CR5
  publication-title: Proc. Am. Math. Soc.
  doi: 10.1090/S0002-9939-1961-0122827-1
– volume: 58
  start-page: 273
  year: 2014
  ident: 835_CR24
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-013-9635-7
– volume: 4
  start-page: 1
  year: 1995
  ident: 835_CR4
  publication-title: Acta Numer.
  doi: 10.1017/S0962492900002518
– start-page: 71
  volume-title: Numerical Optimization
  year: 1984
  ident: 835_CR6
– volume: 77
  start-page: 273
  issue: 2, Ser. B
  year: 1997
  ident: 835_CR25
  publication-title: Math. Program.
– volume: 26
  start-page: 1669
  issue: 3
  year: 2016
  ident: 835_CR26
  publication-title: SIAM J. Optim.
  doi: 10.1137/15100624X
– volume: 38
  start-page: 49
  year: 1995
  ident: 835_CR29
  publication-title: SIAM Rev.
  doi: 10.1137/1038003
– volume: 28
  start-page: 246
  year: 2003
  ident: 835_CR28
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.28.2.246.14485
SSID ssj0009852
Score 2.2553306
Snippet In this paper, we study the strong duality for an optimization problem to minimize a homogeneous quadratic function subject to two homogeneous quadratic...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 121
SubjectTerms Computer Science
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Quadratic equations
Quadratic forms
Real Functions
SummonAdditionalLinks – databaseName: Science Database (ProQuest)
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSx0xEB-s7UEPbbWKz6rMoVDFhrqbZD9ORUTx0IrQCt5CvtY-0Lfq7ir2r29mX57PKnrpebNJYCYzk8n8fgPwido5aF94ZrNSs-DxHTOJSJjkrvLOuUxkPVD4e350VJyelscx4dbEssqJTewNtast5ci_pkQNFRSGy2-XV4y6RtHramyh8Qpeh8gmoZKuH-nxlHS36Dvu7JSpZDLY4wiaidC5gsBlBOGhKITJfxzTY_P85J20dz8H7_534-_hbQw8cXesKQsw40eLMP-AjnARFuJBb3AzslFvfYD2JyXLz9D16Ms7HI6Q6Eguhn_CP6jxqtOOtMgihb_YdIYyO9jW2N7W-Lu-qIOK-rprHowMS47BnOGajlRDiiEMxS5YF2yI5sAvwcnB_q-9QxZbNTDLS9kyQ9RyiTPCWB8CAs2F0dIUzuWVdqkTmeY8r0RVWsfTsvC-Kr03VoarfGYcF3wZZkf1yK8Apsbmfsdww60XmjudVUJqnmteUbGhGUAykZOykcec2mmcqykDM8lWBdmqXrZKDmD7_p_LMYvHi6M_k_gVHfEws9URqRD2R2RZajf4c0G0-eUA1iYyV_HsN2oq8AF8mWjN9PPz666-PNtHmEvpst_nf9Zgtr3u_Dq8sTftsLne6DX_L2XxCzI
  priority: 102
  providerName: ProQuest
Title Strong duality in minimizing a quadratic form subject to two homogeneous quadratic inequalities over the unit sphere
URI https://link.springer.com/article/10.1007/s10898-019-00835-5
https://www.proquest.com/docview/2300453135
Volume 76
WOSCitedRecordID wos000488894500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1573-2916
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009852
  issn: 0925-5001
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RlgMcKF1AXSgrH5AAgaXd2HkdS9UKCbqsujwKl8iv0JXoBpoERH99Z7xOd3lKcBnJysSx5PGMM_b3DcADKuegXOa4SXLFMeJbrkdyxGNhS2etTWTigcIv0_E4Oz7OJwEUVne33bsjSe-pV8BuGcHBCHRD-wYer8EGhruMCjYcTd8uqXYzX2dnmEeog144QGV-38cP4ehnp_zL6agPOgeb_zfcm3AjbDLZ7sIqtuCKm_dgsyvgwMJ67sH1FTZCbB1eUrjWPdgKWjV7FKipH9-CZkqZ84_MeijmdzabM-ImOZ2dYw9MsS-tsmRShtFemNWtpjQPayrWfKvYSXVaob26qq1XNHEAC2Qn_rMzulDKcBSsRVfDauI8cLfhzcH-673nPNRt4EbkccM18cyNrJbaONwdKCG1inVmbVoqG1mZKCHSUpa5sSLKM-fK3DltYvyvT7QVUtyB9Xk1d9vAIm1SN9RCC-OkElYlpYyVSJUo6eah7sOom77CBFJzqq3xqVjSMdM8FDgPhZ-HIu7Dk8t3Pi8oPf6q_ZCsoqD1jj0bFWALOD5izip2MbhL4tDP-7DTGU4RHEFdRMRohn5OYEdPO0NZPv7zd-_-m_o9uBZRJsAnh3ZgvTlr3X24ar42s_psAGvpu_cD2Hi2P54cYetFylEeDvdIRq-8nJBMpygn8YeBX1IXmwAUjQ
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bT9RAFD5BNBEfVFDjKuo8aNToRLYz08uDMUQlENYNiZjwNs6tuIlsgbYS_FH-Rs_pTl3UyBsPPncuTfudy1y-7wA8pnIOJuSBu7QwHCO-53Yoh1wJXwbvfSrTjig8ysbjfG-v2FmAHz0Xhq5V9j6xc9S-crRH_iohaSgEjFBvDo84VY2i09W-hMYMFtvh9ASXbPXrrXf4f58kycb73bebPFYV4E4UquGWVNCG3krrAsYuI6Q1yubeZ6XxiZepESIrZVk4L5IiD6EsQrBO4aoztV5IgeNegsuSlMXoqmCyMxf5zbsKP2tForhC_x9JOpGqlxOZjShDlPVw9Vsg_DMc_HUu24W7jRv_24e6CddjYs3WZ5awDAthugLXzsgtrsBydGQ1exbVtp_fguYjHQbsM9-xS0_ZZMpIbuVg8h37MMOOWuPJShyj9J7VraWdK9ZUrDmp2JfqoEITDFVbn2mJU87IqhOci-7IMkyzWYvek9Uk4xBuw6cL-RZ3YHFaTcNdYIl1WVizwgoXpBHepKVURmRGlHSZ0g5g2ONCu6jTTuVCvuq5wjRhSSOWdIclrQbw4lefw5lKybmtnxLcNLkwHNmZyMTA9yMxML2O-YqksgDFAFZ7jOno22o9B9gAXvYonT_-97z3zh_tEVzd3P0w0qOt8fZ9WEpoY6Pb61qFxea4DQ_givvWTOrjh53VMfh80ej9CeA6bDo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAcgBYQCwV8AAECq93YzuOAUEVZUbVarQRIFRfjV2AlummbhKr8NH4dM1mHLSB664Fz_IiSzzNje75vAB5ROQcT8sBdWhiOHt9zO5RDroQvg_c-lWlHFN7NxuN8b6-YLMGPngtDaZW9TewMta8cnZGvJyQNhYARar2MaRGTrdGrg0NOFaToprUvpzGHyE44OcbtW_1yewv_9eMkGb15__otjxUGuBOFarglRbSht9K6gH7MCGmNsrn3WWl84mVqhMhKWRbOi6TIQyiLEKxTuANNrRdS4LgX4GKGe0xKJ5yojwvB37yr9rNRJIor9AWRsBNpezkR24g-RBEQV785xT9dw193tJ3rG13_nz_aDbgWA262OV8hK7AUZqtw9ZQM4yqsRANXs6dRhfvZTWje0SXBZ-Y71ukJm84YybDsT79jH2bYYWs8rR7HKOxndWvpRIs1FWuOK_al2q9waYaqrU-1xCnnJNYpzkW5swzDb9aiVWU1yTuEW_DhXL7FbVieVbNwB1hiXRY2rLDCBWmEN2kplRGZESUlWdoBDHuMaBf126mMyFe9UJ4mXGnEle5wpdUAnv_qczBXLzmz9ROCnibThiM7Exka-H4kEqY3MY6RVC6gGMBajzcdbV6tF2AbwIsesYvH_5737tmjPYTLCFq9uz3euQdXEjrv6I7A1mC5OWrDfbjkvjXT-uhBtwAZfDpv8P4EpvN1Jg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strong+duality+in+minimizing+a+quadratic+form+subject+to+two+homogeneous+quadratic+inequalities+over+the+unit+sphere&rft.jtitle=Journal+of+global+optimization&rft.au=Nguyen%2C+Van-Bong&rft.au=Nguyen%2C+Thi+Ngan&rft.au=Sheu%2C+Ruey-Lin&rft.date=2020-01-01&rft.pub=Springer&rft.issn=0925-5001&rft.volume=76&rft.issue=1&rft.spage=121&rft_id=info:doi/10.1007%2Fs10898-019-00835-5&rft.externalDocID=A718427569
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-5001&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-5001&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-5001&client=summon