On the queue-overflow probabilities of a class of distributed scheduling algorithms

In this paper, we are interested in using large-deviations theory to characterize the asymptotic decay-rate of the queue-overflow probability for distributed wireless scheduling algorithms, as the overflow threshold approaches infinity. We consider ad hoc wireless networks where each link interferes...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer networks (Amsterdam, Netherlands : 1999) Ročník 55; číslo 1; s. 343 - 355
Hlavní autoři: Zhao, Can, Lin, Xiaojun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier B.V 07.01.2011
Elsevier
Elsevier Sequoia S.A
Témata:
ISSN:1389-1286, 1872-7069
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we are interested in using large-deviations theory to characterize the asymptotic decay-rate of the queue-overflow probability for distributed wireless scheduling algorithms, as the overflow threshold approaches infinity. We consider ad hoc wireless networks where each link interferes with a given set of other links, and we focus on a distributed scheduling algorithm called Q-SCHED, which is introduced by Gupta et al. First, we derive a lower bound on the asymptotic decay rate of the queue-overflow probability for Q-SCHED. We then present an upper bound on the decay rate for all possible algorithms operating on the same network. Finally, using these bounds, we are able to conclude that, subject to a given constraint on the asymptotic decay rate of the queue-overflow probability, Q-SCHED can support a provable fraction of the offered loads achievable by any algorithms.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ISSN:1389-1286
1872-7069
DOI:10.1016/j.comnet.2010.08.007