The Role of Myeloperoxidase in Biomolecule Modification, Chronic Inflammation, and Disease
The release of myeloperoxidase (MPO) by activated leukocytes is critical in innate immune responses. MPO produces hypochlorous acid (HOCl) and other strong oxidants, which kill bacteria and other invading pathogens. However, MPO also drives the development of numerous chronic inflammatory pathologie...
Gespeichert in:
| Veröffentlicht in: | Antioxidants & redox signaling Jg. 32; H. 13; S. 957 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
01.05.2020
|
| Schlagworte: | |
| ISSN: | 1557-7716, 1557-7716 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The release of myeloperoxidase (MPO) by activated leukocytes is critical in innate immune responses. MPO produces hypochlorous acid (HOCl) and other strong oxidants, which kill bacteria and other invading pathogens. However, MPO also drives the development of numerous chronic inflammatory pathologies, including atherosclerosis, neurodegenerative disease, lung disease, arthritis, cancer, and kidney disease, which are globally responsible for significant patient mortality and morbidity.
The development of imaging approaches to precisely identify the localization of MPO and the molecular targets of HOCl
is an important advance, as typically the involvement of MPO in inflammatory disease has been inferred by its presence, together with the detection of biomarkers of HOCl, in biological fluids or diseased tissues. This will provide valuable information in regard to the cell types responsible for releasing MPO
, together with new insight into potential therapeutic opportunities.
Although there is little doubt as to the value of MPO inhibition as a protective strategy to mitigate tissue damage during chronic inflammation in experimental models, the impact of long-term inhibition of MPO as a therapeutic strategy for human disease remains uncertain, in light of the potential effects on innate immunity.
The development of more targeted MPO inhibitors or a treatment regimen designed to reduce MPO-associated host tissue damage without compromising pathogen killing by the innate immune system is therefore an important future direction. Similarly, a partial MPO inhibition strategy may be sufficient to maintain adequate bacterial activity while decreasing the propagation of inflammatory pathologies. |
|---|---|
| AbstractList | The release of myeloperoxidase (MPO) by activated leukocytes is critical in innate immune responses. MPO produces hypochlorous acid (HOCl) and other strong oxidants, which kill bacteria and other invading pathogens. However, MPO also drives the development of numerous chronic inflammatory pathologies, including atherosclerosis, neurodegenerative disease, lung disease, arthritis, cancer, and kidney disease, which are globally responsible for significant patient mortality and morbidity.
The development of imaging approaches to precisely identify the localization of MPO and the molecular targets of HOCl
is an important advance, as typically the involvement of MPO in inflammatory disease has been inferred by its presence, together with the detection of biomarkers of HOCl, in biological fluids or diseased tissues. This will provide valuable information in regard to the cell types responsible for releasing MPO
, together with new insight into potential therapeutic opportunities.
Although there is little doubt as to the value of MPO inhibition as a protective strategy to mitigate tissue damage during chronic inflammation in experimental models, the impact of long-term inhibition of MPO as a therapeutic strategy for human disease remains uncertain, in light of the potential effects on innate immunity.
The development of more targeted MPO inhibitors or a treatment regimen designed to reduce MPO-associated host tissue damage without compromising pathogen killing by the innate immune system is therefore an important future direction. Similarly, a partial MPO inhibition strategy may be sufficient to maintain adequate bacterial activity while decreasing the propagation of inflammatory pathologies. Significance: The release of myeloperoxidase (MPO) by activated leukocytes is critical in innate immune responses. MPO produces hypochlorous acid (HOCl) and other strong oxidants, which kill bacteria and other invading pathogens. However, MPO also drives the development of numerous chronic inflammatory pathologies, including atherosclerosis, neurodegenerative disease, lung disease, arthritis, cancer, and kidney disease, which are globally responsible for significant patient mortality and morbidity. Recent Advances: The development of imaging approaches to precisely identify the localization of MPO and the molecular targets of HOCl in vivo is an important advance, as typically the involvement of MPO in inflammatory disease has been inferred by its presence, together with the detection of biomarkers of HOCl, in biological fluids or diseased tissues. This will provide valuable information in regard to the cell types responsible for releasing MPO in vivo, together with new insight into potential therapeutic opportunities. Critical Issues: Although there is little doubt as to the value of MPO inhibition as a protective strategy to mitigate tissue damage during chronic inflammation in experimental models, the impact of long-term inhibition of MPO as a therapeutic strategy for human disease remains uncertain, in light of the potential effects on innate immunity. Future Directions: The development of more targeted MPO inhibitors or a treatment regimen designed to reduce MPO-associated host tissue damage without compromising pathogen killing by the innate immune system is therefore an important future direction. Similarly, a partial MPO inhibition strategy may be sufficient to maintain adequate bacterial activity while decreasing the propagation of inflammatory pathologies.Significance: The release of myeloperoxidase (MPO) by activated leukocytes is critical in innate immune responses. MPO produces hypochlorous acid (HOCl) and other strong oxidants, which kill bacteria and other invading pathogens. However, MPO also drives the development of numerous chronic inflammatory pathologies, including atherosclerosis, neurodegenerative disease, lung disease, arthritis, cancer, and kidney disease, which are globally responsible for significant patient mortality and morbidity. Recent Advances: The development of imaging approaches to precisely identify the localization of MPO and the molecular targets of HOCl in vivo is an important advance, as typically the involvement of MPO in inflammatory disease has been inferred by its presence, together with the detection of biomarkers of HOCl, in biological fluids or diseased tissues. This will provide valuable information in regard to the cell types responsible for releasing MPO in vivo, together with new insight into potential therapeutic opportunities. Critical Issues: Although there is little doubt as to the value of MPO inhibition as a protective strategy to mitigate tissue damage during chronic inflammation in experimental models, the impact of long-term inhibition of MPO as a therapeutic strategy for human disease remains uncertain, in light of the potential effects on innate immunity. Future Directions: The development of more targeted MPO inhibitors or a treatment regimen designed to reduce MPO-associated host tissue damage without compromising pathogen killing by the innate immune system is therefore an important future direction. Similarly, a partial MPO inhibition strategy may be sufficient to maintain adequate bacterial activity while decreasing the propagation of inflammatory pathologies. |
| Author | Hawkins, Clare L Davies, Michael J |
| Author_xml | – sequence: 1 givenname: Michael J surname: Davies fullname: Davies, Michael J organization: Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen N, Denmark – sequence: 2 givenname: Clare L surname: Hawkins fullname: Hawkins, Clare L organization: Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen N, Denmark |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31989833$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkEtLxDAUhYOMOA9dupUsXdiaR9MmSx1fAzMIMm7clDS9YSJtUpspOP_egiO4updzvns43Dma-OABoUtKUkqkutV9TBlhJJWEkxM0o0IUSVHQfPJvn6J5jJ-EEEYpOUNTTpVUkvMZ-tjuAL-FBnCweHOAJnTQh29X6wjYeXzvQju6ZhiJTaiddUbvXfA3eLnrg3cGr7xtdNseVe1r_OAijOfn6NTqJsLFcS7Q-9PjdvmSrF-fV8u7dWK4EvtEE6qNkGO3PFdgJVWZzimtmRp1RoRlOYAlVLBM06LKpMqhqqUFI0BLqNgCXf_mdn34GiDuy9ZFA02jPYQhloxnhWC8kGxEr47oULVQl13vWt0fyr9_sB8DEmOo |
| CitedBy_id | crossref_primary_10_3390_jcm14176019 crossref_primary_10_1016_j_pharmthera_2021_108052 crossref_primary_10_1016_j_jchf_2023_03_002 crossref_primary_10_3389_fmed_2023_1270368 crossref_primary_10_1093_femsle_fnad063 crossref_primary_10_3390_s23115251 crossref_primary_10_1016_j_ecoenv_2025_117726 crossref_primary_10_1016_j_freeradbiomed_2023_10_383 crossref_primary_10_3390_cells12222621 crossref_primary_10_1038_s41598_021_92142_x crossref_primary_10_1186_s12951_022_01299_8 crossref_primary_10_3390_nu16223930 crossref_primary_10_1016_j_placenta_2025_09_012 crossref_primary_10_1111_imr_13154 crossref_primary_10_1186_s12889_025_21384_5 crossref_primary_10_1016_j_cellsig_2024_111568 crossref_primary_10_1038_s41598_025_94168_x crossref_primary_10_1016_j_freeradbiomed_2021_02_021 crossref_primary_10_1111_apa_17478 crossref_primary_10_1016_j_molstruc_2024_138528 crossref_primary_10_1016_j_jep_2023_116338 crossref_primary_10_33808_clinexphealthsci_1061083 crossref_primary_10_1016_j_freeradbiomed_2020_03_001 crossref_primary_10_1371_journal_pone_0289183 crossref_primary_10_3390_antiox12111936 crossref_primary_10_1080_15376516_2021_1919810 crossref_primary_10_3390_antibiotics9060336 crossref_primary_10_3390_ijms232012250 crossref_primary_10_3390_cells10123486 crossref_primary_10_1016_j_freeradbiomed_2024_03_009 crossref_primary_10_3389_fimmu_2023_1201651 crossref_primary_10_3390_antiox12020478 crossref_primary_10_1016_j_phytochem_2022_113518 crossref_primary_10_1155_2022_1992039 crossref_primary_10_1016_j_freeradbiomed_2023_06_021 crossref_primary_10_12944_CRNFSJ_10_2_9 crossref_primary_10_3390_antiox11030505 crossref_primary_10_3390_antiox10020296 crossref_primary_10_1016_j_pulmoe_2023_10_006 crossref_primary_10_3390_biom15040547 crossref_primary_10_1111_1756_185X_14213 crossref_primary_10_1142_S1088424621500024 crossref_primary_10_1042_BST20230860 crossref_primary_10_3390_antiox11112237 crossref_primary_10_3389_fimmu_2023_1255003 crossref_primary_10_1038_s41584_021_00747_3 crossref_primary_10_3390_antiox11050967 crossref_primary_10_3390_antiox11122419 crossref_primary_10_7717_peerj_10675 crossref_primary_10_3390_ani13030375 crossref_primary_10_1016_j_resp_2024_104240 crossref_primary_10_1088_1361_6528_ac3ce4 crossref_primary_10_1016_j_redox_2020_101602 crossref_primary_10_1016_j_snb_2023_133815 crossref_primary_10_1016_j_obmed_2024_100557 crossref_primary_10_1007_s42114_022_00467_6 crossref_primary_10_1111_mmi_15032 crossref_primary_10_1007_s11010_022_04478_1 crossref_primary_10_1016_j_cbi_2024_110942 crossref_primary_10_3390_ijms24065704 crossref_primary_10_1016_j_heliyon_2024_e33154 crossref_primary_10_3390_biologics5030027 crossref_primary_10_1016_j_snb_2023_134712 crossref_primary_10_3390_antiox14070852 crossref_primary_10_1016_j_freeradbiomed_2024_04_230 crossref_primary_10_1007_s11101_023_09896_7 crossref_primary_10_3390_ijms222312863 crossref_primary_10_1016_j_cbi_2025_111581 crossref_primary_10_3389_fphys_2025_1501158 crossref_primary_10_3390_antiox12030548 crossref_primary_10_1183_16000617_0095_2022 crossref_primary_10_1007_s00204_023_03562_9 crossref_primary_10_3390_cells13171471 crossref_primary_10_1016_j_freeradbiomed_2020_07_033 crossref_primary_10_1016_j_rvsc_2023_01_002 crossref_primary_10_1155_2021_6258865 crossref_primary_10_3390_antiox10040562 crossref_primary_10_3390_ijms242115680 crossref_primary_10_3390_antiox11061113 crossref_primary_10_3390_antiox12061143 crossref_primary_10_1007_s00210_023_02851_5 crossref_primary_10_3389_fonc_2022_887220 crossref_primary_10_1007_s10695_024_01420_8 crossref_primary_10_1038_s41419_023_05890_1 crossref_primary_10_1186_s12933_025_02887_2 crossref_primary_10_3390_antiox9121255 crossref_primary_10_1007_s12011_021_02790_3 crossref_primary_10_3390_antiox11020408 crossref_primary_10_1089_ars_2023_0314 crossref_primary_10_1016_j_phrs_2024_107540 crossref_primary_10_1016_j_acthis_2022_151959 crossref_primary_10_1002_tox_24279 crossref_primary_10_3389_fnut_2023_1144346 crossref_primary_10_3390_antiox12010033 crossref_primary_10_3390_ijms26104570 crossref_primary_10_1042_BSR20253205 crossref_primary_10_3390_antiox11010025 crossref_primary_10_3390_antiox13010132 crossref_primary_10_3390_cells10102736 crossref_primary_10_1016_j_freeradbiomed_2022_05_012 crossref_primary_10_1039_D2FO02722D crossref_primary_10_3390_antiox11122342 crossref_primary_10_3390_biom15040478 crossref_primary_10_1002_cbdv_202100724 crossref_primary_10_1016_j_saa_2022_122193 crossref_primary_10_3390_antiox11050890 crossref_primary_10_3390_antiox13040472 crossref_primary_10_1515_hsz_2020_0264 crossref_primary_10_3390_antiox10040518 crossref_primary_10_1128_aac_00307_23 crossref_primary_10_1007_s40495_024_00371_1 crossref_primary_10_1016_j_microb_2024_100050 crossref_primary_10_1073_pnas_2119368119 crossref_primary_10_1016_j_freeradbiomed_2021_07_007 crossref_primary_10_1016_j_freeradbiomed_2022_09_016 crossref_primary_10_1038_s41531_025_00941_0 crossref_primary_10_3390_biomedicines10010098 crossref_primary_10_1016_j_foodres_2023_113743 crossref_primary_10_3390_antiox13080921 crossref_primary_10_1016_j_abb_2024_110155 crossref_primary_10_1016_j_snb_2025_137460 crossref_primary_10_1016_j_mtbio_2025_101912 crossref_primary_10_1155_2022_8631038 crossref_primary_10_1371_journal_pone_0316390 crossref_primary_10_3390_ijms24021243 crossref_primary_10_3389_fpubh_2025_1596844 crossref_primary_10_3390_biom14101308 crossref_primary_10_1016_j_molliq_2022_120137 crossref_primary_10_1016_j_abb_2022_109397 crossref_primary_10_3390_diagnostics14151660 crossref_primary_10_1007_s10735_025_10465_9 crossref_primary_10_1016_j_bbrc_2025_152643 crossref_primary_10_3390_antiox13010023 crossref_primary_10_1016_j_ijbiomac_2021_11_165 crossref_primary_10_1210_clinem_dgab663 crossref_primary_10_3390_ijms24033016 crossref_primary_10_3390_cells13151290 crossref_primary_10_1016_j_rbc_2023_100010 crossref_primary_10_1016_j_rbc_2023_100011 crossref_primary_10_59761_RCR5144 crossref_primary_10_3390_antiox11081616 crossref_primary_10_1111_cpr_13725 crossref_primary_10_1016_j_biopha_2023_116023 crossref_primary_10_3390_antiox13070788 crossref_primary_10_1111_apt_18234 crossref_primary_10_1128_msystems_00697_25 crossref_primary_10_1007_s12013_025_01719_0 crossref_primary_10_3389_fpsyt_2022_813304 crossref_primary_10_1016_j_rbc_2023_100002 crossref_primary_10_3389_fmars_2023_1273614 crossref_primary_10_3390_antiox12020420 crossref_primary_10_2147_CIA_S425393 crossref_primary_10_1016_j_toxlet_2025_04_013 crossref_primary_10_1007_s00210_024_03733_0 crossref_primary_10_1016_j_diabres_2021_109046 crossref_primary_10_1016_j_apmt_2024_102197 crossref_primary_10_1016_j_fbio_2024_104458 crossref_primary_10_1111_eci_14296 crossref_primary_10_1111_jfd_13934 crossref_primary_10_1038_s41598_025_12238_6 crossref_primary_10_3390_antiox11101983 crossref_primary_10_1016_j_thromres_2022_10_005 crossref_primary_10_1186_s10020_024_00806_x crossref_primary_10_3390_biom12111630 crossref_primary_10_1016_j_bbrc_2025_151578 crossref_primary_10_1016_j_intimp_2023_110803 crossref_primary_10_1016_j_rmed_2024_107886 crossref_primary_10_3389_fmed_2022_828174 crossref_primary_10_1080_14756366_2025_2456282 crossref_primary_10_1002_mdc3_70112 crossref_primary_10_3390_molecules28166055 crossref_primary_10_1016_j_freeradbiomed_2024_01_020 crossref_primary_10_1016_j_freeradbiomed_2020_08_018 crossref_primary_10_3390_ijms241914585 crossref_primary_10_1016_j_fsi_2023_108585 crossref_primary_10_1371_journal_pone_0240317 crossref_primary_10_1177_17534259231189195 crossref_primary_10_1016_j_pharmthera_2020_107685 crossref_primary_10_1371_journal_ppat_1011902 crossref_primary_10_1016_j_jinorgbio_2025_112927 crossref_primary_10_3390_biomedicines11051308 crossref_primary_10_1128_msystems_00929_23 crossref_primary_10_1016_j_jinorgbio_2022_111979 crossref_primary_10_1016_j_indcrop_2024_118395 crossref_primary_10_1007_s12013_024_01628_8 crossref_primary_10_1016_j_jddst_2025_107292 crossref_primary_10_1016_j_physbeh_2025_115065 crossref_primary_10_1016_j_ijbiomac_2024_139114 crossref_primary_10_1089_ars_2020_8176 crossref_primary_10_1007_s00018_020_03591_y crossref_primary_10_1038_s41598_022_14138_5 crossref_primary_10_1093_jleuko_qiad033 crossref_primary_10_1016_j_freeradbiomed_2022_06_222 crossref_primary_10_3389_fped_2023_1154139 crossref_primary_10_1186_s12872_024_03822_1 crossref_primary_10_3390_antiox12081587 crossref_primary_10_1016_j_freeradbiomed_2022_08_039 crossref_primary_10_1038_s41467_024_45261_8 crossref_primary_10_1016_j_freeradbiomed_2020_04_023 crossref_primary_10_1002_jcp_30954 crossref_primary_10_1038_s41598_022_13317_8 crossref_primary_10_31482_mmsl_2022_013 crossref_primary_10_1177_1721727X221110989 crossref_primary_10_1002_chem_202104342 crossref_primary_10_3390_antiox9090852 crossref_primary_10_3389_fimmu_2024_1360700 crossref_primary_10_3390_ijms231810735 crossref_primary_10_1016_j_ejmech_2025_117832 crossref_primary_10_1042_BST20230254 crossref_primary_10_4103_abr_abr_151_22 |
| ContentType | Journal Article |
| DBID | NPM 7X8 |
| DOI | 10.1089/ars.2020.8030 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine Chemistry |
| EISSN | 1557-7716 |
| ExternalDocumentID | 31989833 |
| Genre | Journal Article |
| GroupedDBID | --- 0R~ 23M 4.4 5GY 5RE ABBKN ABJNI ACGFS ACPRK ADBBV AENEX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BNQNF CS3 EBS F5P IER IHR IM4 MV1 NPM NQHIM O9- P2P RML UE5 7X8 SCNPE |
| ID | FETCH-LOGICAL-c395t-a01ac58002669ef8194a611d291ac205f26eef01524a17b4896ebd8fec5ea8eb2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 243 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000525464000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1557-7716 |
| IngestDate | Thu Sep 04 15:10:36 EDT 2025 Thu Jan 02 22:58:37 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Keywords | oxidation myeloperoxidase inflammation hypohalous acid oxidative stress |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c395t-a01ac58002669ef8194a611d291ac205f26eef01524a17b4896ebd8fec5ea8eb2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://www.liebertpub.com/doi/pdf/10.1089/ars.2020.8030 |
| PMID | 31989833 |
| PQID | 2347523782 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2347523782 pubmed_primary_31989833 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-May-01 20200501 |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 05 year: 2020 text: 2020-May-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Antioxidants & redox signaling |
| PublicationTitleAlternate | Antioxid Redox Signal |
| PublicationYear | 2020 |
| SSID | ssj0002110 |
| Score | 2.6743193 |
| SecondaryResourceType | review_article |
| Snippet | The release of myeloperoxidase (MPO) by activated leukocytes is critical in innate immune responses. MPO produces hypochlorous acid (HOCl) and other strong... Significance: The release of myeloperoxidase (MPO) by activated leukocytes is critical in innate immune responses. MPO produces hypochlorous acid (HOCl) and... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 957 |
| Title | The Role of Myeloperoxidase in Biomolecule Modification, Chronic Inflammation, and Disease |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31989833 https://www.proquest.com/docview/2347523782 |
| Volume | 32 |
| WOSCitedRecordID | wos000525464000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA_qRL34Mb_mFxE8Wte0aZucRKdDDx1DFIaXkqYJDFwztyn63_vSZuwkCF56KBTS917yfr-8x-8hdFEwGRSEcw_Aq_RonGuPhzyySpgBy7mmRLFq2ETS67HBgPfdhdvUtVXOz8TqoC6MtHfk7SCkCZAmSGjX43fPTo2y1VU3QmMZNUKAMnZjJoOFWrglN5VeapQAiiSx09j0GW8DawRyGPhXrGqA_g1dVlmmu_Xf9W2jTYcv8U0dEDtoSZVNtN6Zj3VrorXUVdN30SvECH4ybwobjdNv2zykJuZrWEBmw8MS3w7NqJ6eq3BqCttUVPnxEjtJXfxYaoiokXsrygLf1QWfPfTSvX_uPHhu1oInwTUzT_hEyMiixzjmSgNOoCImpAg4sSKOkQ5ipTRgh4AKkuSU8VjlBdNKRkowoOf7aKU0pTpEOPKl9bNgwK6tTZjkWiRUEw3ciIaqhc7nFszg322BQpTKfEyzhQ1b6KB2QzauRTey0DZ3sTA8-sPXx2jD-rbuSzxBDQ07WZ2iVfk5G04nZ1WQwLPXT38Abq7Fmg |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Role+of+Myeloperoxidase+in+Biomolecule+Modification%2C+Chronic+Inflammation%2C+and+Disease&rft.jtitle=Antioxidants+%26+redox+signaling&rft.au=Davies%2C+Michael+J&rft.au=Hawkins%2C+Clare+L&rft.date=2020-05-01&rft.eissn=1557-7716&rft.volume=32&rft.issue=13&rft.spage=957&rft_id=info:doi/10.1089%2Fars.2020.8030&rft_id=info%3Apmid%2F31989833&rft_id=info%3Apmid%2F31989833&rft.externalDocID=31989833 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-7716&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-7716&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-7716&client=summon |