A critical review on correlating active sites, oxidative species and degradation routes with persulfate-based antibiotics oxidation

•PS activation by heterogeneous catalysts are compared systematically.•The relationship between active sites and oxidative species is summarized.•The information of reactive species acting on antibiotics is discussed.•The generation and function of radical and non-radicals are compared. At present,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Water research (Oxford) Ročník 235; s. 119926
Hlavní autori: Li, Ning, Ye, Jingya, Dai, Haoxi, Shao, Penghui, Liang, Lan, Kong, Lingchao, Yan, Beibei, Chen, Guanyi, Duan, Xiaoguang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Elsevier Ltd 15.05.2023
Predmet:
ISSN:0043-1354, 1879-2448, 1879-2448
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •PS activation by heterogeneous catalysts are compared systematically.•The relationship between active sites and oxidative species is summarized.•The information of reactive species acting on antibiotics is discussed.•The generation and function of radical and non-radicals are compared. At present, numerous heterogeneous catalysts have been synthesized to activate persulfate (PS) and produce various reactive species for antibiotic degradation from water. However, the systematic summary of the correlation among catalyst active sites, PS activation pathway and pollutant degradation has not been reported. This review summarized the effect of metal-based, carbon-based and metal-carbon composite catalysts on the degradation of antibiotics by activating PS. Metal and non-metal sites are conducive to inducing different oxidation pathways (SO4•−, •OH radical oxidation and 1O2 oxidation, mediated electron transfer, surface-bound reactive complexes and high-valent metal oxidation). SO4•− and •OH are easy to attack CH, S-N, CN bonds, CC double bonds and amino groups in antibiotics. 1O2 is more selective to the structure of the aniline ring and amino group, and also to attacking CS, CN and CH bonds. Surface-bound active species can cleave CC, SN, CS and CN bonds. Other non-radical pathways may also induce different antibiotic degradation routes due to differences in oxidation potential and electronic properties. This critical review clarified the functions of active sites in producing different reactive species for selective oxidation of antibiotics via featured pathways. The outcomes will provide valuable guidance of oriented-regulation of active sites in heterogeneous catalysts to produce on-demand reactive species toward high-efficiency removing antibiotics from water. [Display omitted]
AbstractList At present, numerous heterogeneous catalysts have been synthesized to activate persulfate (PS) and produce various reactive species for antibiotic degradation from water. However, the systematic summary of the correlation among catalyst active sites, PS activation pathway and pollutant degradation has not been reported. This review summarized the effect of metal-based, carbon-based and metal-carbon composite catalysts on the degradation of antibiotics by activating PS. Metal and non-metal sites are conducive to inducing different oxidation pathways (SO4•-, •OH radical oxidation and 1O2 oxidation, mediated electron transfer, surface-bound reactive complexes and high-valent metal oxidation). SO4•- and •OH are easy to attack CH, S-N, CN bonds, CC double bonds and amino groups in antibiotics. 1O2 is more selective to the structure of the aniline ring and amino group, and also to attacking CS, CN and CH bonds. Surface-bound active species can cleave CC, SN, CS and CN bonds. Other non-radical pathways may also induce different antibiotic degradation routes due to differences in oxidation potential and electronic properties. This critical review clarified the functions of active sites in producing different reactive species for selective oxidation of antibiotics via featured pathways. The outcomes will provide valuable guidance of oriented-regulation of active sites in heterogeneous catalysts to produce on-demand reactive species toward high-efficiency removing antibiotics from water.At present, numerous heterogeneous catalysts have been synthesized to activate persulfate (PS) and produce various reactive species for antibiotic degradation from water. However, the systematic summary of the correlation among catalyst active sites, PS activation pathway and pollutant degradation has not been reported. This review summarized the effect of metal-based, carbon-based and metal-carbon composite catalysts on the degradation of antibiotics by activating PS. Metal and non-metal sites are conducive to inducing different oxidation pathways (SO4•-, •OH radical oxidation and 1O2 oxidation, mediated electron transfer, surface-bound reactive complexes and high-valent metal oxidation). SO4•- and •OH are easy to attack CH, S-N, CN bonds, CC double bonds and amino groups in antibiotics. 1O2 is more selective to the structure of the aniline ring and amino group, and also to attacking CS, CN and CH bonds. Surface-bound active species can cleave CC, SN, CS and CN bonds. Other non-radical pathways may also induce different antibiotic degradation routes due to differences in oxidation potential and electronic properties. This critical review clarified the functions of active sites in producing different reactive species for selective oxidation of antibiotics via featured pathways. The outcomes will provide valuable guidance of oriented-regulation of active sites in heterogeneous catalysts to produce on-demand reactive species toward high-efficiency removing antibiotics from water.
At present, numerous heterogeneous catalysts have been synthesized to activate persulfate (PS) and produce various reactive species for antibiotic degradation from water. However, the systematic summary of the correlation among catalyst active sites, PS activation pathway and pollutant degradation has not been reported. This review summarized the effect of metal-based, carbon-based and metal-carbon composite catalysts on the degradation of antibiotics by activating PS. Metal and non-metal sites are conducive to inducing different oxidation pathways (SO , OH radical oxidation and O oxidation, mediated electron transfer, surface-bound reactive complexes and high-valent metal oxidation). SO and OH are easy to attack CH, S-N, CN bonds, CC double bonds and amino groups in antibiotics. O is more selective to the structure of the aniline ring and amino group, and also to attacking CS, CN and CH bonds. Surface-bound active species can cleave CC, SN, CS and CN bonds. Other non-radical pathways may also induce different antibiotic degradation routes due to differences in oxidation potential and electronic properties. This critical review clarified the functions of active sites in producing different reactive species for selective oxidation of antibiotics via featured pathways. The outcomes will provide valuable guidance of oriented-regulation of active sites in heterogeneous catalysts to produce on-demand reactive species toward high-efficiency removing antibiotics from water.
•PS activation by heterogeneous catalysts are compared systematically.•The relationship between active sites and oxidative species is summarized.•The information of reactive species acting on antibiotics is discussed.•The generation and function of radical and non-radicals are compared. At present, numerous heterogeneous catalysts have been synthesized to activate persulfate (PS) and produce various reactive species for antibiotic degradation from water. However, the systematic summary of the correlation among catalyst active sites, PS activation pathway and pollutant degradation has not been reported. This review summarized the effect of metal-based, carbon-based and metal-carbon composite catalysts on the degradation of antibiotics by activating PS. Metal and non-metal sites are conducive to inducing different oxidation pathways (SO4•−, •OH radical oxidation and 1O2 oxidation, mediated electron transfer, surface-bound reactive complexes and high-valent metal oxidation). SO4•− and •OH are easy to attack CH, S-N, CN bonds, CC double bonds and amino groups in antibiotics. 1O2 is more selective to the structure of the aniline ring and amino group, and also to attacking CS, CN and CH bonds. Surface-bound active species can cleave CC, SN, CS and CN bonds. Other non-radical pathways may also induce different antibiotic degradation routes due to differences in oxidation potential and electronic properties. This critical review clarified the functions of active sites in producing different reactive species for selective oxidation of antibiotics via featured pathways. The outcomes will provide valuable guidance of oriented-regulation of active sites in heterogeneous catalysts to produce on-demand reactive species toward high-efficiency removing antibiotics from water. [Display omitted]
At present, numerous heterogeneous catalysts have been synthesized to activate persulfate (PS) and produce various reactive species for antibiotic degradation from water. However, the systematic summary of the correlation among catalyst active sites, PS activation pathway and pollutant degradation has not been reported. This review summarized the effect of metal-based, carbon-based and metal-carbon composite catalysts on the degradation of antibiotics by activating PS. Metal and non-metal sites are conducive to inducing different oxidation pathways (SO₄•⁻, •OH radical oxidation and ¹O₂ oxidation, mediated electron transfer, surface-bound reactive complexes and high-valent metal oxidation). SO₄•⁻ and •OH are easy to attack CH, S-N, CN bonds, CC double bonds and amino groups in antibiotics. ¹O₂ is more selective to the structure of the aniline ring and amino group, and also to attacking CS, CN and CH bonds. Surface-bound active species can cleave CC, SN, CS and CN bonds. Other non-radical pathways may also induce different antibiotic degradation routes due to differences in oxidation potential and electronic properties. This critical review clarified the functions of active sites in producing different reactive species for selective oxidation of antibiotics via featured pathways. The outcomes will provide valuable guidance of oriented-regulation of active sites in heterogeneous catalysts to produce on-demand reactive species toward high-efficiency removing antibiotics from water.
ArticleNumber 119926
Author Li, Ning
Yan, Beibei
Chen, Guanyi
Ye, Jingya
Liang, Lan
Dai, Haoxi
Kong, Lingchao
Duan, Xiaoguang
Shao, Penghui
Author_xml – sequence: 1
  givenname: Ning
  surname: Li
  fullname: Li, Ning
  organization: School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, 300072 Tianjin, China
– sequence: 2
  givenname: Jingya
  surname: Ye
  fullname: Ye, Jingya
  organization: School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, 300072 Tianjin, China
– sequence: 3
  givenname: Haoxi
  surname: Dai
  fullname: Dai, Haoxi
  organization: School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, 300072 Tianjin, China
– sequence: 4
  givenname: Penghui
  surname: Shao
  fullname: Shao, Penghui
  organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, 330063 Nanchang, China
– sequence: 5
  givenname: Lan
  surname: Liang
  fullname: Liang, Lan
  organization: School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, 300072 Tianjin, China
– sequence: 6
  givenname: Lingchao
  surname: Kong
  fullname: Kong, Lingchao
  organization: School of Environmental Science & Engineering, Southern University of Science and Technology, 518055 Shenzhen, China
– sequence: 7
  givenname: Beibei
  surname: Yan
  fullname: Yan, Beibei
  email: yanbeibei@tju.edu.cn
  organization: School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, 300072 Tianjin, China
– sequence: 8
  givenname: Guanyi
  surname: Chen
  fullname: Chen, Guanyi
  email: chen@tju.edu.cn
  organization: School of Mechanical Engineering, Tianjin University of Commerce, 300134 Tianjin, China
– sequence: 9
  givenname: Xiaoguang
  surname: Duan
  fullname: Duan, Xiaoguang
  organization: School of Chemical Engineering and Advanced Materials, The University of Adelaide, 5005 Adelaide, SA, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37004307$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URLeFf4CQjxzIYsfOJuaAVFXlQ6rEBc7WZDwpXmXjxXa6cOaP10taDhzoydL4eWek9zljJ1OYiLGXUqylkJu32_UBcqS0rkWt1lIaU2-esJXsWlPVWncnbCWEVpVUjT5lZylthRB1rcwzdqra45doV-z3Bcfos0cYeaRbTwceJo4hRhoh--mGA2Z_Szz5TOkNDz-9g2WwJ_SUOEyOO7qJcJyXbAxzIfnB5-98TzHN4wCZqh4SuQJn3_tQ7qWHVWF6zp4OMCZ6cf-es28frr5efqquv3z8fHlxXaEyTa6MaXRHAL2jRjauEa0wGyQllGlN13Wodd8TSnSAAw6Dgh5UL2QzuLaXBtU5e73s3cfwY6aU7c4npHGEicKcbN0pXQtR7jyOtkZvOmNaWdBX9-jc78jZffQ7iL_sQ8cF0AuAMaQUafiLSGGPKu3WLirtUaVdVJbYu39i6POfvnIEPz4Wfr-EqfRZrEabiqwJyflImK0L_v8L7gDTPb-0
CitedBy_id crossref_primary_10_1016_j_cej_2025_167972
crossref_primary_10_1016_j_jhazmat_2025_138182
crossref_primary_10_1016_j_clay_2024_107260
crossref_primary_10_1016_j_jwpe_2025_107706
crossref_primary_10_1016_j_seppur_2025_133341
crossref_primary_10_1007_s40843_023_2496_5
crossref_primary_10_1016_j_watres_2024_121256
crossref_primary_10_1002_adfm_202417441
crossref_primary_10_1016_j_cej_2023_145824
crossref_primary_10_1016_j_jallcom_2025_182551
crossref_primary_10_1016_j_cej_2024_150692
crossref_primary_10_1016_j_cej_2024_154388
crossref_primary_10_1016_j_apcatb_2024_124849
crossref_primary_10_1016_j_apcatb_2025_125654
crossref_primary_10_1016_j_apcatb_2024_124285
crossref_primary_10_1016_j_hazadv_2025_100824
crossref_primary_10_1016_j_jece_2025_118962
crossref_primary_10_1016_j_watres_2023_120697
crossref_primary_10_1016_j_cej_2024_154490
crossref_primary_10_1016_j_jece_2024_114744
crossref_primary_10_1016_j_jece_2025_116427
crossref_primary_10_1016_j_watres_2025_124130
crossref_primary_10_1016_j_marpolbul_2025_118025
crossref_primary_10_1016_j_seppur_2023_125042
crossref_primary_10_1021_acs_est_5c01975
crossref_primary_10_1002_adfm_202414036
crossref_primary_10_1016_j_psep_2025_107328
crossref_primary_10_1016_j_cej_2025_167740
crossref_primary_10_1007_s11356_024_34577_z
crossref_primary_10_1007_s10562_023_04517_6
crossref_primary_10_1016_j_jwpe_2025_107845
crossref_primary_10_1016_j_jece_2024_112597
crossref_primary_10_1016_j_jece_2025_116319
crossref_primary_10_1016_j_apsusc_2025_163549
crossref_primary_10_1016_j_seppur_2025_133329
crossref_primary_10_1016_j_indcrop_2024_120317
crossref_primary_10_1016_j_apcatb_2024_124748
crossref_primary_10_1016_j_scitotenv_2024_173839
crossref_primary_10_1016_j_jhazmat_2023_132987
crossref_primary_10_1016_j_cej_2024_149562
crossref_primary_10_1038_s41598_023_41823_w
crossref_primary_10_1016_j_inoche_2025_115532
crossref_primary_10_1016_j_seppur_2025_134764
crossref_primary_10_1016_j_watres_2024_122917
crossref_primary_10_1016_j_colsurfa_2025_136142
crossref_primary_10_1016_j_cej_2024_154238
crossref_primary_10_1021_acsestengg_5c00023
crossref_primary_10_1002_adfm_202405231
crossref_primary_10_1016_j_cej_2025_166079
crossref_primary_10_1016_j_seppur_2024_127704
crossref_primary_10_1016_j_chemosphere_2024_143124
crossref_primary_10_1016_j_jwpe_2025_107745
crossref_primary_10_1038_s41467_025_57841_3
crossref_primary_10_1002_adfm_202316542
crossref_primary_10_3390_molecules29051169
crossref_primary_10_1016_j_chemosphere_2024_143369
crossref_primary_10_1016_j_cej_2023_147526
crossref_primary_10_1016_j_envres_2025_122931
crossref_primary_10_1007_s10904_025_04017_7
crossref_primary_10_1016_j_cej_2024_157970
crossref_primary_10_1016_j_jclepro_2024_141177
crossref_primary_10_1016_j_jece_2023_110988
crossref_primary_10_1016_j_scitotenv_2025_180240
crossref_primary_10_1016_j_jcis_2025_01_188
crossref_primary_10_1016_j_cej_2024_156524
crossref_primary_10_1016_j_jhazmat_2024_133895
crossref_primary_10_1016_j_apcatb_2024_124243
crossref_primary_10_1016_j_apcatb_2024_124484
crossref_primary_10_1016_j_cej_2024_148697
crossref_primary_10_1016_j_seppur_2023_125511
crossref_primary_10_1002_aic_70035
crossref_primary_10_1016_j_cej_2023_146549
crossref_primary_10_1016_j_watres_2023_120378
crossref_primary_10_1016_j_watres_2024_122255
crossref_primary_10_1016_j_psep_2024_05_001
crossref_primary_10_1016_j_cej_2024_151076
crossref_primary_10_1002_wer_70054
crossref_primary_10_1016_j_apcatb_2024_123701
crossref_primary_10_1016_j_seppur_2024_128571
crossref_primary_10_1016_j_jhazmat_2023_132972
crossref_primary_10_1016_j_seppur_2024_127486
crossref_primary_10_1016_j_seppur_2023_126059
crossref_primary_10_1016_j_cej_2025_163588
crossref_primary_10_1016_j_jece_2025_117152
crossref_primary_10_1016_j_cej_2025_167386
crossref_primary_10_1021_acsestengg_5c00084
crossref_primary_10_1016_j_pnsc_2024_07_002
crossref_primary_10_1016_j_jece_2024_114174
crossref_primary_10_1039_D4SC02621G
crossref_primary_10_1016_j_jwpe_2024_105943
crossref_primary_10_1016_j_desal_2024_118284
crossref_primary_10_1021_acs_est_5c01560
crossref_primary_10_1016_j_seppur_2024_130888
crossref_primary_10_1016_j_jallcom_2024_175447
crossref_primary_10_1039_D5EN00072F
crossref_primary_10_1016_j_colsurfa_2024_135610
crossref_primary_10_1016_j_seppur_2024_130084
crossref_primary_10_1016_j_emcon_2025_100515
crossref_primary_10_1007_s11783_025_1944_4
crossref_primary_10_1016_j_jece_2025_116642
crossref_primary_10_1016_j_jece_2023_111035
crossref_primary_10_1016_j_apcatb_2024_124807
crossref_primary_10_1016_j_jwpe_2024_106362
crossref_primary_10_1016_j_seppur_2024_127341
crossref_primary_10_1016_j_jhazmat_2024_134515
crossref_primary_10_1016_j_cej_2025_159865
crossref_primary_10_1016_j_apcatb_2025_125407
crossref_primary_10_1016_j_seppur_2024_128432
crossref_primary_10_1016_j_electacta_2025_145821
crossref_primary_10_1039_D4EN00355A
crossref_primary_10_1016_j_colsurfa_2023_133139
crossref_primary_10_1016_j_seppur_2025_135123
crossref_primary_10_1016_j_envres_2025_122218
crossref_primary_10_1016_j_cej_2024_151263
crossref_primary_10_1016_j_jwpe_2024_106057
crossref_primary_10_1016_j_rechem_2025_102379
crossref_primary_10_1016_j_cej_2024_157259
crossref_primary_10_1016_j_jcis_2024_09_104
crossref_primary_10_1016_j_apcatb_2024_124441
crossref_primary_10_1016_j_jcis_2024_06_019
crossref_primary_10_1016_j_seppur_2025_133190
crossref_primary_10_1016_j_jwpe_2025_107899
crossref_primary_10_1016_j_envpol_2024_125072
crossref_primary_10_1016_j_watres_2025_124655
crossref_primary_10_1016_j_jhazmat_2025_137146
crossref_primary_10_1016_j_cej_2024_151156
crossref_primary_10_1016_j_seppur_2024_130612
crossref_primary_10_1016_j_jhazmat_2023_133344
crossref_primary_10_1016_j_psep_2024_10_071
crossref_primary_10_1002_adfm_202516474
crossref_primary_10_1016_j_jcis_2024_06_029
crossref_primary_10_1016_j_jenvman_2024_122402
crossref_primary_10_1016_j_jece_2024_115100
crossref_primary_10_1016_j_jwpe_2024_106273
crossref_primary_10_1016_j_seppur_2025_131420
crossref_primary_10_1016_j_jece_2025_117927
crossref_primary_10_1002_adma_202505128
crossref_primary_10_1002_smll_202401970
crossref_primary_10_1002_smll_202408811
crossref_primary_10_1016_j_cej_2024_155973
crossref_primary_10_1016_j_seppur_2025_134817
crossref_primary_10_1016_j_watres_2025_124422
crossref_primary_10_1016_j_apcatb_2024_124584
crossref_primary_10_1016_j_colsurfa_2025_137759
crossref_primary_10_1016_j_scitotenv_2023_169580
crossref_primary_10_1016_j_cej_2023_146960
crossref_primary_10_1016_j_cej_2025_166116
crossref_primary_10_1016_j_cej_2023_147378
crossref_primary_10_1039_D4NR04430D
crossref_primary_10_1016_j_jhazmat_2024_135002
crossref_primary_10_1016_j_seppur_2025_134129
crossref_primary_10_1021_acs_est_5c05273
crossref_primary_10_1002_adfm_202309223
crossref_primary_10_1016_j_seppur_2024_131007
crossref_primary_10_1002_aenm_202402287
crossref_primary_10_1016_j_ces_2024_120514
crossref_primary_10_1016_j_seppur_2025_131417
crossref_primary_10_1016_j_colsurfa_2025_138036
crossref_primary_10_1016_j_seppur_2024_131364
crossref_primary_10_1016_j_jhazmat_2025_137843
crossref_primary_10_1007_s11270_024_07470_1
crossref_primary_10_1016_j_cej_2024_157903
crossref_primary_10_1016_j_seppur_2024_129844
crossref_primary_10_1016_j_jclepro_2023_138688
crossref_primary_10_1016_j_seppur_2023_125900
crossref_primary_10_1016_j_apcatb_2025_125330
crossref_primary_10_1016_j_ccr_2024_215749
crossref_primary_10_1016_j_cej_2024_154185
crossref_primary_10_1016_j_jallcom_2023_173369
crossref_primary_10_1016_j_apcatb_2024_124409
crossref_primary_10_1016_j_seppur_2024_126321
crossref_primary_10_1016_j_cej_2024_156009
crossref_primary_10_1016_j_cej_2025_161675
crossref_primary_10_1016_j_jes_2024_04_044
crossref_primary_10_1016_j_envpol_2024_124581
crossref_primary_10_1016_j_jece_2025_116346
crossref_primary_10_1016_j_cej_2024_148629
crossref_primary_10_1016_j_cep_2025_110412
crossref_primary_10_1016_j_cej_2023_144765
crossref_primary_10_1016_j_cej_2025_164833
crossref_primary_10_1016_j_envpol_2024_125439
crossref_primary_10_1016_j_jhazmat_2025_138313
crossref_primary_10_1080_10643389_2024_2393511
crossref_primary_10_1016_j_jenvman_2025_125797
crossref_primary_10_1016_j_biortech_2024_131156
crossref_primary_10_1016_j_cej_2024_150239
crossref_primary_10_1016_j_jece_2025_116476
crossref_primary_10_1016_j_seppur_2025_134211
crossref_primary_10_1016_j_jece_2023_111422
crossref_primary_10_1016_j_cej_2024_148839
crossref_primary_10_1002_anie_202502408
crossref_primary_10_1016_j_jece_2024_111988
crossref_primary_10_1021_acsestwater_5c00402
crossref_primary_10_1016_j_jscs_2024_101940
crossref_primary_10_1016_j_desal_2025_118630
crossref_primary_10_1016_j_jenvman_2024_123768
crossref_primary_10_1016_j_biortech_2024_131967
crossref_primary_10_1016_j_cherd_2025_07_008
crossref_primary_10_1002_ange_202502408
crossref_primary_10_1016_j_cej_2023_145837
crossref_primary_10_1016_j_pnsc_2023_08_015
crossref_primary_10_1016_j_jece_2024_112028
crossref_primary_10_1016_j_memsci_2023_122316
crossref_primary_10_1016_j_cej_2025_160579
crossref_primary_10_1016_j_envres_2025_121596
crossref_primary_10_1016_j_seppur_2023_126231
crossref_primary_10_1016_j_seppur_2024_126655
crossref_primary_10_1016_j_efmat_2023_09_001
Cites_doi 10.1021/acs.est.1c05980
10.1021/es501218f
10.1016/j.cej.2022.137953
10.1016/j.cej.2020.125676
10.1016/j.jhazmat.2021.127247
10.1016/j.cej.2017.07.137
10.1021/acscatal.1c03099
10.1021/acs.est.1c05374
10.1016/j.jhazmat.2021.127640
10.1016/j.jhazmat.2019.121518
10.1016/j.jhazmat.2021.125552
10.1016/j.cej.2018.11.120
10.1016/j.jhazmat.2023.130971
10.1016/j.cej.2019.123056
10.1016/j.ecoenv.2019.109605
10.1021/acs.est.2c00706
10.1016/j.apcatb.2017.11.071
10.1016/j.scitotenv.2019.134715
10.1016/j.colsurfa.2022.130174
10.1021/acs.est.0c06808
10.1016/j.jhazmat.2019.121996
10.1016/j.jclepro.2021.127584
10.1021/acsami.2c12036
10.1016/j.watres.2022.119142
10.1016/j.apcatb.2020.118850
10.1016/j.cej.2018.11.184
10.1021/acscatal.1c02031
10.1016/j.jhazmat.2021.126794
10.1016/j.cclet.2022.01.029
10.1016/j.cej.2018.09.184
10.1002/ange.202014472
10.1016/j.jhazmat.2021.127207
10.1016/j.jhazmat.2020.124454
10.1016/j.envres.2022.113964
10.1016/j.cej.2021.131776
10.1021/acsestengg.2c00129
10.1016/j.envres.2021.112538
10.1016/j.cej.2019.01.053
10.1016/j.apcatb.2016.05.075
10.1016/j.jhazmat.2020.123428
10.1039/C9NJ04379A
10.1016/j.chemosphere.2020.126351
10.1016/j.cej.2021.128454
10.1021/acs.est.1c01618
10.1016/j.cej.2022.135277
10.1021/acs.est.1c04530
10.1021/acs.est.2c00464
10.1016/j.cclet.2021.11.096
10.1016/j.cej.2021.134385
10.1038/nchem.2226
10.1016/j.cej.2021.132611
10.1016/j.cej.2020.127957
10.1016/j.cej.2021.130165
10.1021/jacs.1c00889
10.1016/j.apcatb.2023.122368
10.1016/j.apcatb.2022.121342
10.1021/acs.est.1c04600
10.1016/j.apcatb.2018.09.056
10.1002/anie.202109488
10.1016/j.cej.2021.131655
10.1016/j.cej.2021.132387
10.1016/j.cej.2021.134238
10.1016/j.cej.2019.122041
10.1021/acsestengg.2c00087
10.1016/j.watres.2022.118626
10.1016/j.cej.2021.129818
10.1016/j.jhazmat.2021.125163
10.1016/j.watres.2022.118489
10.1021/acscatal.5b00774
10.1016/j.watres.2022.118765
10.1016/j.cej.2022.135897
10.1016/j.jhazmat.2020.123043
10.1016/j.watres.2021.117741
10.1016/j.apcatb.2022.121542
10.1016/j.cej.2020.124549
10.1021/acs.est.8b05246
10.1016/j.cej.2021.134180
10.1016/j.cej.2022.136439
10.1016/j.seppur.2018.11.051
10.1016/j.envpol.2019.113795
10.1016/j.cej.2018.08.055
10.1016/j.cej.2020.128312
10.1016/j.jhazmat.2020.123103
10.1021/acs.est.1c06244
10.1016/j.watres.2022.119392
10.1016/j.watres.2017.08.049
10.1016/j.cej.2020.128392
10.1021/acs.est.8b01817
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.watres.2023.119926
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2448
ExternalDocumentID 37004307
10_1016_j_watres_2023_119926
S0043135423003627
Genre Journal Article
Review
GroupedDBID ---
--K
--M
-DZ
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TAE
TN5
TWZ
WH7
XPP
ZCA
ZMT
~02
~G-
~KM
.55
186
29R
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACKIV
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HMA
HMC
HVGLF
HZ~
H~9
MVM
OHT
R2-
SEN
SEP
WUQ
X7M
XOL
YHZ
YV5
ZXP
ZY4
~A~
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c395t-99548eaabde515d507096ce303979888c44bbec1cdacfcff3aba3b015fd7b19c3
ISICitedReferencesCount 241
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000973289500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0043-1354
1879-2448
IngestDate Sun Sep 28 07:44:31 EDT 2025
Sun Sep 28 01:41:10 EDT 2025
Wed Feb 19 02:25:05 EST 2025
Sat Nov 29 07:27:57 EST 2025
Tue Nov 18 21:46:57 EST 2025
Fri Feb 23 02:37:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Oxidative species
Heterogeneous catalysts
Active sites
Degradation routes
Persulfate
Language English
License Copyright © 2023 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c395t-99548eaabde515d507096ce303979888c44bbec1cdacfcff3aba3b015fd7b19c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 37004307
PQID 2794689971
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2834200995
proquest_miscellaneous_2794689971
pubmed_primary_37004307
crossref_primary_10_1016_j_watres_2023_119926
crossref_citationtrail_10_1016_j_watres_2023_119926
elsevier_sciencedirect_doi_10_1016_j_watres_2023_119926
PublicationCentury 2000
PublicationDate 2023-05-15
PublicationDateYYYYMMDD 2023-05-15
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Water research (Oxford)
PublicationTitleAlternate Water Res
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhong, Qiu, Shen, Wang, Yuan, Jia, Bi, Jiang (bib0092) 2021; 143
Liu, Lai, Li, Liu, Zhou, Zhang, Qin, Li, Zhang, Yi, Fu, Yan, Chen (bib0036) 2022; 427
Zhang, Zou, Peng, Liu, Zhang, He, Xiong, Liu, Lai (bib0086) 2022; 219
Ahn, Bae, Kim, Kim, Kim, Lee, Lee (bib0001) 2019; 241
Yin, Guo, Wang, Du, Wu, Chang, Ren (bib0077) 2019; 357
Song, Hou, Liu, Antonietti, Wang, Mu (bib0048) 2023; 325
Fan, Zhou, Feng, Zhou, Wen, Shih (bib0014) 2020; 383
Hua, Zheng, Adeboye, Li (bib0025) 2022; 443
Yi, Li, Li, Dai, Wang (bib0075) 2022; 2
Li, Zou, Li, Fu, Lu, Li, Zhu, Zhang (bib0030) 2022; 14
Wang, Tian, Chu, Li, Lu (bib0058) 2019; 212
Peng, Wu, Zhao, Wang, Dai, Li, Wei, Xu, Hu (bib0044) 2022; 205
Yu, Tang, Pang, Liang, Lu, Feng, Wang, Deng, Zou, Zhu, Tang (bib0078) 2022; 433
Zhou, Zhao, Wang, Chen, Chen (bib0093) 2021; 410
Miao, Zhu, Lang, Zhang, Cheng, Zhou, Zhang, Alvarez, Long (bib0041) 2021; 11
Wang, Peng, Wang, Chen, Li, Song, Cheng, Yan, Hou, Wang (bib0056) 2022; 310
Zong, Guan, Xu, Feng, Mao, Xu, Chu, Wu (bib0097) 2020; 54
Yang, Xia, Shao, Wang, Liu (bib0072) 2021; 410
Wang, Guo, Yin, Du, Wu, Luo, Liu, Sseguya, Ren (bib0050) 2019; 362
Xiao, Feng, Shi, Zhou, Wang, Ren (bib0065) 2022; 424
Chen, Zuo, Yang, Cai, Ding (bib0004) 2019; 359
Wang, Song, Li, Liu, Yan, Yu, Liang, Chen, Hou, Wang (bib0057) 2022; 421
Chen, Bi, Zhao, Chen, Hu (bib0008) 2020; 711
Gao, Han, Liu, Gou, Feng, Cheng (bib0020) 2022; 33
Zhang, Jiang, Zhong, Tian, Sun, Cui, Lu, Zou, Luo (bib0084) 2021; 60
Cui, Shao, Li, Zhang, Cui, Hu, Zhao (bib0009) 2022; 2
Liu, Pan, Xu, Wang, Zhao, Xu, Gao, Li (bib0038) 2022; 225
Chen, Li, Ji, Feng, Lan, Yao (bib0006) 2022; 95
Wu, Zhu, Huang, Wei, Ni (bib0064) 2021; 408
Weng, Cai, Xie, Dong, Zhang, Song, Shi, Jin, Wang, Wei (bib0061) 2022; 431
Fu, Zhang, Xu, Dai, Zhu (bib0015) 2022; 450
Gao, Junaid, Lin, Zhang, Xu (bib0016) 2020; 390
Duan, Ma, Xu, Wang, He, Li, Fu, Zhao (bib0012) 2022; 218
Duan, Sun, Kang, Wang, Indrawirawan, Wang (bib0013) 2015; 5
Wu, Yan, Xu, Yuan, Wang, Cui, Lin (bib0062) 2022; 428
Meng, Nie, Li, Duan, Lai, Ao, Wang, An (bib0039) 2020; 399
Zhu, Wang, Ye, Deng, Ma, Xu, Wang, Tang, Luo, Li (bib0096) 2022; 432
Guo, Nengzi, Chen, Li, Zhang, Cheng (bib0024) 2020; 398
Zeinali, Oluwoye, Altarawneh, Dlugogorski (bib0079) 2019; 184
Zhang, Chen, Wang, Le Roux, Yang, Croue (bib0087) 2014; 48
Mi, Wang, Xu, Su, Zhong, Wang, Li, Zhan (bib0040) 2021; 133
Zhang, Li, Akiyama, Bingham, Kubuki (bib0080) 2022; 56
Gao, Zhu, Lyu, Zeng, Xing, Hu (bib0022) 2018; 52
Shao, Tian, Yang, Duan, Gao, Shi, Luo, Cui, Luo, Wang (bib0047) 2018; 28
Yang, Li, Huang, Chen, Wang, Wang, Li, Hu, Yan (bib0071) 2021; 310
Yao, Wang, Yan, Zhang, Xiao, Qi, Zhu, Zhou, Sun, Duan, Li (bib0073) 2022; 56
Kohantorabi, Hosseinifard, Kazemzadeh (bib0026) 2020; 44
Gao, Wang, Ji, Li (bib0021) 2022; 429
Deng, Ge, Tan, Wang, Li, Zhou, Zhang (bib0010) 2017; 330
Wang, Qiu, Pang, Guo, Guan, Jiang (bib0059) 2022; 56
Liang, Fu, Gao, Duan (bib0034) 2022; 315
Zhang, Yang, Duan, Liu, Wang (bib0085) 2021; 11
Gao, Mao, Luo, Cao, Xie, Yang, Deng, Wei (bib0017) 2020; 259
Gao, Tian, Nie, Yang, Zhou, Wang (bib0019) 2019; 359
Thanh-Binh, Huang, Doong, Wang, Chen, Dong (bib0049) 2022; 436
Yin, Chen, He, Li, Zeng, Guo, Zhu (bib0076) 2020; 388
Yang, Ren, Hu, Zhang, Wang, Duan, Sun, Wang (bib0070) 2022; 2
Wang, Wang (bib0051) 2021; 411
Wei, Han, Bi, Gong (bib0060) 2021; 423
Yang, Wu, Cao, Li, Huo, Wang, Hu, Xu (bib0068) 2023; 451
Kovalakova, Cizmas, McDonald, Marsalek, Feng, Sharma (bib0028) 2020; 251
Ye, Zeng, Tan, Wu, Liang, Song, Tang, Zhang, Yang, Chen, Li (bib0074) 2020; 269
Zhu, Huang, Ma, Wang, Duan, Wang (bib0095) 2018; 52
Liu, Guo, Wang, Zheng, Si, Zhao, Luo, Ren (bib0035) 2021; 416
Liang, Duan, Xu, Chen, Zhang, Zhao, Qiu, Wang, Cao (bib0033) 2021; 55
Li, Lu, Yan, Li, Chen, Cheng, Hou, Wang, Duan (bib0032) 2022; 440
Cao, Wang, Ju, Jing, Duan, Ao, Jiang, Li, Ho (bib0003) 2021; 206
Gao, Tian, Fu, Wang, Nie, Yang, Deng (bib0018) 2021; 411
Li, Tian, Xiao, Huang, Gao, Cui, Wang, Duan (bib0029) 2020; 385
Liu, Nie, Li, Ao, Wang, An (bib0037) 2021; 414
Gu, Yin, Chen, Zhu, Wang (bib0023) 2022; 33
Zhang, Wu, Li, Chen, Hou (bib0088) 2023; 449
Chen, Lee, Kang, Cha, Lee, Lee (bib0005) 2022; 10
Oyekunle, Gendy, Ifthikar, Chen (bib0042) 2022; 437
Zhang, Xie, Chen, Duan, Li, Liu (bib0082) 2023; 229
Zhang, Ma, Luo, Ding, Zhou, Zeng (bib0091) 2023; 62
Kohantorabi, Moussavi, Giannakis (bib0027) 2021; 411
Chen, Oh, Hu, Sun, Webster, Li, Lim (bib0007) 2018; 225
Zhou, Jiang, Gao, Pang, Yang, Ma, Gu, Li, Wang, Wang, Yuan, Yang (bib0094) 2017; 125
Wang, Wang, Ma, Xing (bib0052) 2018; 354
Xie, He, Zhou, Li, Liu, Du, Liu, Mu, Lai (bib0066) 2022; 56
Zhang, Zhang, Teng, Zhao, Sun (bib0090) 2021; 401
Wu, Sun, Zhen, Zhu, Yang, Lu, Tian, Zhong, Ma (bib0063) 2021; 55
Shao, Dong, Zhou, Ma, Sharma, Guan (bib0046) 2022; 221
Zhang, Yan, Wan, Wang, Ye, Huang, Zeng, Yi (bib0083) 2022; 654
Zhang, Gang, Lei, Wang, Lian, Holmes, Fei, Zappi, Yao (bib0089) 2022; 214
Zhang, Yan, Liu, Chen, Zhang, Fan (bib0081) 2022; 32
Calle-Vallejo, Loffreda, Koper, Sautet (bib0002) 2015; 7
Xu, Zhou, Wu, Li, Xiong, Yao, Lai (bib0067) 2020; 399
Li, Li, Duan, Yan, Liu, Cheng, Chen, Hou, Wang (bib0031) 2021; 55
Wang, Xu, Wang (bib0054) 2019; 375
Oyekunle, Wu, Luo, Ali, Chen (bib0043) 2021; 421
Ren, Cheng, Shao, Luo, Zhang, Wang, Duan (bib0045) 2022; 56
Wang, Wang (bib0053) 2022; 423
Ding, Fu, Peng, Lei, Wang, Jiang (bib0011) 2022; 427
Yang, Ji, Li, Lin, Chen, Bi, Zheng, Xu, Zhang (bib0069) 2022; 424
Wang, Ao, Sun, Duan, Wang (bib0055) 2016; 198
Yang (10.1016/j.watres.2023.119926_bib0070) 2022; 2
Li (10.1016/j.watres.2023.119926_bib0032) 2022; 440
Duan (10.1016/j.watres.2023.119926_bib0012) 2022; 218
Liu (10.1016/j.watres.2023.119926_bib0036) 2022; 427
Zhang (10.1016/j.watres.2023.119926_bib0080) 2022; 56
Zhang (10.1016/j.watres.2023.119926_bib0087) 2014; 48
Guo (10.1016/j.watres.2023.119926_bib0024) 2020; 398
Wu (10.1016/j.watres.2023.119926_bib0063) 2021; 55
Wang (10.1016/j.watres.2023.119926_bib0051) 2021; 411
Yang (10.1016/j.watres.2023.119926_bib0069) 2022; 424
Kohantorabi (10.1016/j.watres.2023.119926_bib0027) 2021; 411
Cao (10.1016/j.watres.2023.119926_bib0003) 2021; 206
Zhang (10.1016/j.watres.2023.119926_bib0091) 2023; 62
Wang (10.1016/j.watres.2023.119926_bib0054) 2019; 375
Deng (10.1016/j.watres.2023.119926_bib0010) 2017; 330
Gao (10.1016/j.watres.2023.119926_bib0016) 2020; 390
Kohantorabi (10.1016/j.watres.2023.119926_bib0026) 2020; 44
Hua (10.1016/j.watres.2023.119926_bib0025) 2022; 443
Yin (10.1016/j.watres.2023.119926_bib0077) 2019; 357
Xiao (10.1016/j.watres.2023.119926_bib0065) 2022; 424
Zhang (10.1016/j.watres.2023.119926_bib0088) 2023; 449
Chen (10.1016/j.watres.2023.119926_bib0006) 2022; 95
Fan (10.1016/j.watres.2023.119926_bib0014) 2020; 383
Zong (10.1016/j.watres.2023.119926_bib0097) 2020; 54
Duan (10.1016/j.watres.2023.119926_bib0013) 2015; 5
Shao (10.1016/j.watres.2023.119926_bib0047) 2018; 28
Meng (10.1016/j.watres.2023.119926_bib0039) 2020; 399
Zhou (10.1016/j.watres.2023.119926_bib0094) 2017; 125
Gao (10.1016/j.watres.2023.119926_bib0017) 2020; 259
Yang (10.1016/j.watres.2023.119926_bib0071) 2021; 310
Chen (10.1016/j.watres.2023.119926_bib0008) 2020; 711
Ren (10.1016/j.watres.2023.119926_bib0045) 2022; 56
Wang (10.1016/j.watres.2023.119926_bib0056) 2022; 310
Chen (10.1016/j.watres.2023.119926_bib0007) 2018; 225
Yu (10.1016/j.watres.2023.119926_bib0078) 2022; 433
Kovalakova (10.1016/j.watres.2023.119926_bib0028) 2020; 251
Xie (10.1016/j.watres.2023.119926_bib0066) 2022; 56
Zhang (10.1016/j.watres.2023.119926_bib0090) 2021; 401
Xu (10.1016/j.watres.2023.119926_bib0067) 2020; 399
Wu (10.1016/j.watres.2023.119926_bib0062) 2022; 428
Mi (10.1016/j.watres.2023.119926_bib0040) 2021; 133
Li (10.1016/j.watres.2023.119926_bib0029) 2020; 385
Zhu (10.1016/j.watres.2023.119926_bib0095) 2018; 52
Oyekunle (10.1016/j.watres.2023.119926_bib0043) 2021; 421
Wang (10.1016/j.watres.2023.119926_bib0057) 2022; 421
Zhu (10.1016/j.watres.2023.119926_bib0096) 2022; 432
Shao (10.1016/j.watres.2023.119926_bib0046) 2022; 221
Liang (10.1016/j.watres.2023.119926_bib0033) 2021; 55
Zhou (10.1016/j.watres.2023.119926_bib0093) 2021; 410
Gao (10.1016/j.watres.2023.119926_bib0022) 2018; 52
Gao (10.1016/j.watres.2023.119926_bib0021) 2022; 429
Thanh-Binh (10.1016/j.watres.2023.119926_bib0049) 2022; 436
Wang (10.1016/j.watres.2023.119926_bib0052) 2018; 354
Fu (10.1016/j.watres.2023.119926_bib0015) 2022; 450
Zhang (10.1016/j.watres.2023.119926_bib0085) 2021; 11
Chen (10.1016/j.watres.2023.119926_bib0004) 2019; 359
Liu (10.1016/j.watres.2023.119926_bib0037) 2021; 414
Peng (10.1016/j.watres.2023.119926_bib0044) 2022; 205
Wei (10.1016/j.watres.2023.119926_bib0060) 2021; 423
Zhang (10.1016/j.watres.2023.119926_bib0081) 2022; 32
Gao (10.1016/j.watres.2023.119926_bib0019) 2019; 359
Cui (10.1016/j.watres.2023.119926_bib0009) 2022; 2
Yang (10.1016/j.watres.2023.119926_bib0068) 2023; 451
Li (10.1016/j.watres.2023.119926_bib0031) 2021; 55
Yin (10.1016/j.watres.2023.119926_bib0076) 2020; 388
Song (10.1016/j.watres.2023.119926_bib0048) 2023; 325
Wang (10.1016/j.watres.2023.119926_bib0053) 2022; 423
Gao (10.1016/j.watres.2023.119926_bib0018) 2021; 411
Gu (10.1016/j.watres.2023.119926_bib0023) 2022; 33
Liu (10.1016/j.watres.2023.119926_bib0035) 2021; 416
Zhang (10.1016/j.watres.2023.119926_bib0086) 2022; 219
Wang (10.1016/j.watres.2023.119926_bib0050) 2019; 362
Wang (10.1016/j.watres.2023.119926_bib0058) 2019; 212
Yang (10.1016/j.watres.2023.119926_bib0072) 2021; 410
Zhang (10.1016/j.watres.2023.119926_bib0089) 2022; 214
Wu (10.1016/j.watres.2023.119926_bib0064) 2021; 408
Zhang (10.1016/j.watres.2023.119926_bib0083) 2022; 654
Miao (10.1016/j.watres.2023.119926_bib0041) 2021; 11
Ahn (10.1016/j.watres.2023.119926_bib0001) 2019; 241
Liu (10.1016/j.watres.2023.119926_bib0038) 2022; 225
Weng (10.1016/j.watres.2023.119926_bib0061) 2022; 431
Li (10.1016/j.watres.2023.119926_bib0030) 2022; 14
Gao (10.1016/j.watres.2023.119926_bib0020) 2022; 33
Oyekunle (10.1016/j.watres.2023.119926_bib0042) 2022; 437
Wang (10.1016/j.watres.2023.119926_bib0055) 2016; 198
Ding (10.1016/j.watres.2023.119926_bib0011) 2022; 427
Wang (10.1016/j.watres.2023.119926_bib0059) 2022; 56
Zhang (10.1016/j.watres.2023.119926_bib0082) 2023; 229
Chen (10.1016/j.watres.2023.119926_bib0005) 2022; 10
Zhang (10.1016/j.watres.2023.119926_bib0084) 2021; 60
Zhong (10.1016/j.watres.2023.119926_bib0092) 2021; 143
Liang (10.1016/j.watres.2023.119926_bib0034) 2022; 315
Yao (10.1016/j.watres.2023.119926_bib0073) 2022; 56
Yi (10.1016/j.watres.2023.119926_bib0075) 2022; 2
Zeinali (10.1016/j.watres.2023.119926_bib0079) 2019; 184
Ye (10.1016/j.watres.2023.119926_bib0074) 2020; 269
Calle-Vallejo (10.1016/j.watres.2023.119926_bib0002) 2015; 7
References_xml – volume: 354
  start-page: 473
  year: 2018
  end-page: 480
  ident: bib0052
  article-title: Enhanced superoxide radical production for ofloxacin removal via persulfate activation with Cu-Fe oxide
  publication-title: Chem. Eng. J.
– volume: 437
  year: 2022
  ident: bib0042
  article-title: Heterogeneous activation of persulfate by metal and non-metal catalyst for the degradation of sulfamethoxazole: a review
  publication-title: Chem. Eng. J.
– volume: 711
  year: 2020
  ident: bib0008
  article-title: Enhanced degradation of triclosan by cobalt manganese spinel-type oxide activated peroxymonosulfate oxidation process via sulfate radicals and singlet oxygen: mechanisms and intermediates identification
  publication-title: Sci. Total Environ.
– volume: 408
  year: 2021
  ident: bib0064
  article-title: Mechanisms of persulfate activation on biochar derived from two different sludges: dominance of their intrinsic compositions
  publication-title: J. Hazard. Mater.
– volume: 184
  year: 2019
  ident: bib0079
  article-title: Destruction of dioxin and furan pollutants via electrophilic attack of singlet oxygen
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 330
  start-page: 1390
  year: 2017
  end-page: 1400
  ident: bib0010
  article-title: Degradation of ciprofloxacin using α-MnO
  publication-title: Chem. Eng. J.
– volume: 424
  year: 2022
  ident: bib0065
  article-title: Why the cooperation of radical and non-radical pathways in PMS system leads to a higher efficiency than a single pathway in tetracycline degradation
  publication-title: J. Hazard. Mater.
– volume: 410
  year: 2021
  ident: bib0072
  article-title: Efficient photocatalytic degradation of tetracycline under visible light by Z-scheme Ag
  publication-title: Chem. Eng. J.
– volume: 241
  start-page: 561
  year: 2019
  end-page: 569
  ident: bib0001
  article-title: Surface-loaded metal nanoparticles for peroxymonosulfate activation: efficiency and mechanism reconnaissance
  publication-title: Appl. Catal. B-Environ.
– volume: 388
  year: 2020
  ident: bib0076
  article-title: In situ photoreduction of structural Fe(III) in a metal-organic framework for peroxydisulfate activation and efficient removal of antibiotics in real wastewater
  publication-title: J. Hazard. Mater.
– volume: 432
  year: 2022
  ident: bib0096
  article-title: Magnetic Co/Fe nanocomposites derived from ferric sludge as an efficient peroxymonosulfate catalyst for ciprofloxacin degradation
  publication-title: Chem. Eng. J.
– volume: 62
  year: 2023
  ident: bib0091
  article-title: Regulating spin states in oxygen electrocatalysis
  publication-title: Angew. Chem. Int. Ed.
– volume: 359
  start-page: 373
  year: 2019
  end-page: 384
  ident: bib0004
  article-title: Rational design and synthesis of hollow Co
  publication-title: Chem. Eng. J.
– volume: 269
  year: 2020
  ident: bib0074
  article-title: Nitrogen-doped biochar fiber with graphitization from
  publication-title: Appl. Catal. B-Environ.
– volume: 225
  start-page: 243
  year: 2018
  end-page: 257
  ident: bib0007
  article-title: Enhancing sulfacetamide degradation by peroxymonosulfate activation with N-doped graphene produced through delicately-controlled nitrogen functionalization via tweaking thermal annealing processes
  publication-title: Appl. Catal. B-Environ.
– volume: 143
  start-page: 4405
  year: 2021
  end-page: 4413
  ident: bib0092
  article-title: Electronic spin moment as a catalytic descriptor for Fe single-atom catalysts supported on C
  publication-title: J. Am. Chem. Soc.
– volume: 359
  start-page: 828
  year: 2019
  end-page: 839
  ident: bib0019
  article-title: Promoted peroxymonosulfate activation into singlet oxygen over perovskite for ofloxacin degradation by controlling the oxygen defect concentration
  publication-title: Chem. Eng. J.
– volume: 431
  year: 2022
  ident: bib0061
  article-title: Hydrodynamic cavitation-enhanced heterogeneous activation of persulfate for tetracycline degradation: synergistic effects, degradation mechanism and pathways
  publication-title: Chem. Eng. J.
– volume: 411
  year: 2021
  ident: bib0018
  article-title: Copper in LaMnO
  publication-title: J. Hazard. Mater.
– volume: 423
  year: 2021
  ident: bib0060
  article-title: Fe-doped ilmenite CoTiO
  publication-title: Chem. Eng. J.
– volume: 398
  year: 2020
  ident: bib0024
  article-title: Efficient degradation of sulfamethoxazole by CuCo LDH and LDH@fibers composite membrane activating peroxymonosulfate
  publication-title: Chem. Eng. J.
– volume: 55
  start-page: 16163
  year: 2021
  end-page: 16174
  ident: bib0031
  article-title: Correlation of active sites to generated reactive species and degradation routes of organics in peroxymonosulfate activation by Co-loaded carbon
  publication-title: Environ. Sci. Technol.
– volume: 427
  year: 2022
  ident: bib0011
  article-title: Copper catalysts for radical and nonradical persulfate based advanced oxidation processes: certainties and uncertainties
  publication-title: Chem. Eng. J.
– volume: 423
  year: 2022
  ident: bib0053
  article-title: Magnetic 2D/2D oxygen doped g-C
  publication-title: J. Hazard. Mater.
– volume: 390
  year: 2020
  ident: bib0016
  article-title: Degradation of sulphachloropyridazine sodium in column reactor packed with CoFe
  publication-title: Chem. Eng. J.
– volume: 214
  year: 2022
  ident: bib0089
  article-title: Surface-bound hydroxyl radical-dominated degradation of sulfamethoxazole in the amorphous FeOOH/peroxymonosulfate system: the key role of amorphous structure enhancing electron transfer
  publication-title: Environ. Res.
– volume: 401
  year: 2021
  ident: bib0090
  article-title: Heterogeneous activation of persulfate by carbon nanofiber supported Fe
  publication-title: J. Hazard. Mater.
– volume: 428
  year: 2022
  ident: bib0062
  article-title: Synergistic effects for boosted persulfate activation in a designed Fe-Cu dual-atom site catalyst
  publication-title: Chem. Eng. J.
– volume: 375
  year: 2019
  ident: bib0054
  article-title: Nitrogen-doped graphene as peroxymonosulfate activator and electron transfer mediator for the enhanced degradation of sulfamethoxazole
  publication-title: Chem. Eng. J.
– volume: 424
  year: 2022
  ident: bib0069
  article-title: Insights into the mechanism of enhanced peroxymonosulfate degraded tetracycline using metal organic framework derived carbonyl modified carbon-coated Fe
  publication-title: J. Hazard. Mater.
– volume: 28
  year: 2018
  ident: bib0047
  article-title: Identification and regulation of active sites on nanodiamonds: establishing a highly efficient catalytic system for oxidation of organic contaminants
  publication-title: Adv. Funct. Mater.
– volume: 2
  start-page: 1858
  year: 2022
  end-page: 1869
  ident: bib0070
  article-title: Challenges in radical/nonradical-based advanced oxidation processes for carbon recycling
  publication-title: Chem. Catal.
– volume: 362
  start-page: 561
  year: 2019
  end-page: 569
  ident: bib0050
  article-title: Biochar-induced Fe(III) reduction for persulfate activation in sulfamethoxazole degradation: insight into the electron transfer, radical oxidation and degradation pathways
  publication-title: Chem. Eng. J.
– volume: 421
  year: 2022
  ident: bib0057
  article-title: Tunable active sites on biogas digestate derived biochar for sulfanilamide degradation by peroxymonosulfate activation
  publication-title: J. Hazard. Mater.
– volume: 218
  year: 2022
  ident: bib0012
  article-title: Soybean straw biochar activating peroxydisulfate to simultaneously eliminate tetracycline and tetracycline resistance bacteria: insights on the mechanism
  publication-title: Water Res.
– volume: 56
  start-page: 1492
  year: 2022
  end-page: 1509
  ident: bib0059
  article-title: Aqueous Iron(IV)-oxo complex: an emerging powerful reactive oxidant formed by Iron(II)-based advanced oxidation processes for oxidative water treatment
  publication-title: Environ. Sci. Technol.
– volume: 206
  year: 2021
  ident: bib0003
  article-title: Synchronous removal of emulsions and soluble organic contaminants via a microalgae-based membrane system: performance and mechanisms
  publication-title: Water Res.
– volume: 11
  start-page: 9569
  year: 2021
  end-page: 9577
  ident: bib0041
  article-title: Spin-state-dependent peroxymonosulfate activation of single-atom M-N moieties via a radical-free pathway
  publication-title: ACS Catal.
– volume: 52
  start-page: 8649
  year: 2018
  end-page: 8658
  ident: bib0095
  article-title: Catalytic removal of aqueous contaminants on N-doped graphitic biochars: inherent roles of adsorption and nonradical mechanisms
  publication-title: Environ. Sci. Technol.
– volume: 421
  year: 2021
  ident: bib0043
  article-title: Synergistic effects of Co and N doped on graphitic carbon as an
  publication-title: Chem. Eng. J.
– volume: 451
  year: 2023
  ident: bib0068
  article-title: Versatile pathways for oxidating organics via peroxymonosulfate activation by different single atom catalysts confining with Fe-N
  publication-title: Chem. Eng. J.
– volume: 410
  year: 2021
  ident: bib0093
  article-title: Nonradical oxidation processes in PMS-based heterogeneous catalytic system: generation, identification, oxidation characteristics, challenges response and application prospects
  publication-title: Chem. Eng. J.
– volume: 54
  start-page: 16231
  year: 2020
  end-page: 16239
  ident: bib0097
  article-title: Unraveling the overlooked involvement of high-valent cobalt-oxo species generated from the cobalt(II)-activated peroxymonosulfate process
  publication-title: Environ. Sci. Technol.
– volume: 48
  start-page: 5868
  year: 2014
  end-page: 5875
  ident: bib0087
  article-title: Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation
  publication-title: Environ. Sci. Technol.
– volume: 33
  start-page: 4792
  year: 2022
  end-page: 4797
  ident: bib0023
  article-title: A natural manganese ore as a heterogeneous catalyst to effectively activate peroxymonosulfate to oxidize organic pollutants
  publication-title: Chin. Chem. Lett.
– volume: 310
  year: 2022
  ident: bib0056
  article-title: Sulfamethoxazole degradation by regulating active sites on distilled spirits lees-derived biochar in a continuous flow fixed bed peroxymonosulfate reactor
  publication-title: Appl. Catal. B-Environ.
– volume: 55
  start-page: 10077
  year: 2021
  end-page: 10086
  ident: bib0033
  article-title: Persulfate oxidation of sulfamethoxazole by magnetic iron-char composites via nonradical pathways: Fe(IV)
  publication-title: Environ. Sci. Technol.
– volume: 385
  year: 2020
  ident: bib0029
  article-title: Structure-dependent catalysis of cuprous oxides in peroxymonosulfate activation via nonradical pathway with a high oxidation capacity
  publication-title: J. Hazard. Mater.
– volume: 449
  year: 2023
  ident: bib0088
  article-title: Applications of vacancy defect engineering in persulfate activation: performance and internal mechanism
  publication-title: J. Hazard. Mater.
– volume: 95
  start-page: 158
  year: 2022
  end-page: 166
  ident: bib0006
  article-title: Effect of the chloride ion on advanced oxidation processes catalyzed by Fe-based metallic glass for wastewater treatment
  publication-title: J. Mater. Sci. Technol.
– volume: 325
  year: 2023
  ident: bib0048
  article-title: Unsaturated single-atom CoN
  publication-title: Appl. Catal. B-Environ.
– volume: 198
  start-page: 295
  year: 2016
  end-page: 302
  ident: bib0055
  article-title: Activation of peroxymonosulfate by carbonaceous oxygen groups: experimental and density functional theory calculations
  publication-title: Appl. Catal. B-Environ.
– volume: 225
  year: 2022
  ident: bib0038
  article-title: Revealing the fundamental role of MoO
  publication-title: Water Res.
– volume: 2
  start-page: 1836
  year: 2022
  end-page: 1846
  ident: bib0075
  article-title: Unraveling the Co(IV)-mediated oxidation mechanism in a Co
  publication-title: ACS EST Eng.
– volume: 14
  start-page: 37865
  year: 2022
  end-page: 37877
  ident: bib0030
  article-title: Modulating the electronic coordination configuration and d‑band center in homo-diatomic Fe
  publication-title: ACS Appl. Mater. Interfaces
– volume: 32
  start-page: 1064
  year: 2022
  end-page: 3389
  ident: bib0081
  article-title: Nanoconfinement in advanced oxidation processes
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 2
  start-page: 2014
  year: 2022
  end-page: 2022
  ident: bib0009
  article-title: Nanoconfinement-regulated peroxymonosulfate activation via an anomalously efficient mediated electrontransfer pathway on cobalt
  publication-title: ACS ES&T Eng.
– volume: 440
  year: 2022
  ident: bib0032
  article-title: Sludge-derived biochar toward sustainable peroxymonosulfate activation: regulation of active sites and synergistic production of reaction oxygen species
  publication-title: Chem. Eng. J.
– volume: 52
  start-page: 14371
  year: 2018
  end-page: 14380
  ident: bib0022
  article-title: Electronic structure modulation of graphitic carbon nitride by oxygen doping for enhanced catalytic degradation of organic pollutants through peroxymonosulfate activation
  publication-title: Environ. Sci. Technol.
– volume: 436
  year: 2022
  ident: bib0049
  article-title: Manipulating the morphology of 3D flower-like CoMn
  publication-title: Chem. Eng. J.
– volume: 251
  year: 2020
  ident: bib0028
  article-title: Occurrence and toxicity of antibiotics in the aquatic environment: a review
  publication-title: Chemosphere
– volume: 11
  start-page: 11129
  year: 2021
  end-page: 11159
  ident: bib0085
  article-title: Density functional theory calculations for insight into the heterocatalyst reactivity and mechanism in persulfate-based advanced oxidation reactions
  publication-title: ACS Catal.
– volume: 56
  start-page: 1321
  year: 2022
  end-page: 1330
  ident: bib0080
  article-title: Elucidating the mechanistic origin of a spin state-dependent FeNx-C catalyst toward organic contaminant oxidation via peroxymonosulfate activation
  publication-title: Environ. Sci. Technol.
– volume: 56
  start-page: 78
  year: 2022
  end-page: 97
  ident: bib0045
  article-title: Origins of electron-transfer regime in persulfate-based nonradical oxidation processes
  publication-title: Environ. Sci. Technol.
– volume: 212
  start-page: 536
  year: 2019
  end-page: 544
  ident: bib0058
  article-title: Nanoscaled magnetic CuFe
  publication-title: Sep. Puri. Technol.
– volume: 219
  year: 2022
  ident: bib0086
  article-title: Insight into metal-free carbon catalysis in enhanced permanganate oxidation: changeover from electron donor to electron mediator
  publication-title: Water Res.
– volume: 7
  start-page: 403
  year: 2015
  end-page: 410
  ident: bib0002
  article-title: Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers
  publication-title: Nat. Chem.
– volume: 133
  start-page: 4638
  year: 2021
  end-page: 4643
  ident: bib0040
  article-title: Almost 100 % peroxymonosulfate conversion to singlet oxygen on single-atom CoN
  publication-title: Angew. Chem.
– volume: 315
  year: 2022
  ident: bib0034
  article-title: Accelerating radical generation from peroxymonosulfate by confined variable Co species toward ciprofloxacin mineralization: ROS quantification and mechanisms elucidation
  publication-title: Appl. Catal. B-Environ.
– volume: 205
  year: 2022
  ident: bib0044
  article-title: High efficiency degradation of tetracycline by peroxymonosulfate activated with Fe/NC catalysts: performance, intermediates, stability and mechanism
  publication-title: Environ. Res.
– volume: 10
  year: 2022
  ident: bib0005
  article-title: Catalytic persulfate activation for oxidation of organic pollutants: a critical review on mechanisms and controversies
  publication-title: J. Environ. Chem. Eng.
– volume: 259
  year: 2020
  ident: bib0017
  article-title: Experimental and theoretical insights into kinetics and mechanisms of hydroxyl and sulfate radicals-mediated degradation of sulfamethoxazole: similarities and differences
  publication-title: Environ. Pollut.
– volume: 399
  year: 2020
  ident: bib0067
  article-title: Efficient degradation of sulfamethoxazole by NiCo
  publication-title: J. Hazard. Mater.
– volume: 411
  year: 2021
  ident: bib0027
  article-title: A review of the innovations in metal- and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical
  publication-title: Chem. Eng. J.
– volume: 416
  year: 2021
  ident: bib0035
  article-title: Peroxymonosulfate activation by cobalt(II) for degradation of organic contaminants via high-valent cobalt-oxo and radical species
  publication-title: J. Hazard. Mater.
– volume: 411
  year: 2021
  ident: bib0051
  article-title: Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants
  publication-title: Chem. Eng. J.
– volume: 654
  year: 2022
  ident: bib0083
  article-title: Synthesis of Fe-N
  publication-title: Colloids Surf. A
– volume: 33
  start-page: 3713
  year: 2022
  end-page: 3720
  ident: bib0020
  article-title: CoFe
  publication-title: Chin. Chem. Lett.
– volume: 383
  year: 2020
  ident: bib0014
  article-title: Degradation mechanisms of ofloxacin and cefazolin using peroxymonosulfate activated by reduced graphene oxide-CoFe
  publication-title: Chem. Eng. J.
– volume: 429
  year: 2022
  ident: bib0021
  article-title: Degradation of antibiotic pollutants by persulfate activated with various carbon materials
  publication-title: Chem. Eng. J.
– volume: 56
  start-page: 8784
  year: 2022
  end-page: 8795
  ident: bib0066
  article-title: Effects of molecular structure on organic contaminants' degradation efficiency and dominant ROS in the advanced oxidation process with multiple ROS
  publication-title: Environ. Sci. Technol.
– volume: 310
  year: 2021
  ident: bib0071
  article-title: Facile synthesis of cobalt-iron layered double hydroxides nanosheets for direct activation of peroxymonosulfate (PMS) during degradation of fluoroquinolones antibiotics
  publication-title: J. Clean. Prod.
– volume: 60
  start-page: 21751
  year: 2021
  end-page: 21755
  ident: bib0084
  article-title: Carbon nitride supported high-loading Fe single-atom catalyst for activation of peroxymonosulfate to generate
  publication-title: Angew. Chem. Int. Ed.
– volume: 125
  start-page: 209
  year: 2017
  end-page: 218
  ident: bib0094
  article-title: Activation of peroxymonosulfate by phenols: important role of quinone intermediates and involvement of singlet oxygen
  publication-title: Water Res.
– volume: 55
  start-page: 15400
  year: 2021
  end-page: 15411
  ident: bib0063
  article-title: Oxygen vacancy-induced nonradical degradation of organics: critical trigger of oxygen (O
  publication-title: Environ. Sci. Technol.
– volume: 5
  start-page: 4629
  year: 2015
  end-page: 4636
  ident: bib0013
  article-title: Insights into heterogeneous catalysis of persulfate activation on dimensional-structured nanocarbons
  publication-title: ACS Catal.
– volume: 414
  year: 2021
  ident: bib0037
  article-title: Oily sludge derived carbons as peroxymonosulfate activators for removing aqueous organic pollutants: performances and the key role of carbonyl groups in electron-transfer mechanism
  publication-title: J. Hazard. Mater.
– volume: 450
  year: 2022
  ident: bib0015
  article-title: Peroxymonosulfate activation by iron self-doped sludge-derived biochar for degradation of perfluorooctanoic acid: a singlet oxygen-dominated nonradical pathway
  publication-title: Chem. Eng. J.
– volume: 443
  year: 2022
  ident: bib0025
  article-title: Defect- and nitrogen-rich porous carbon embedded with Co NPs derived from self-assembled Co-ZIF-8 @ anionic polyacrylamide network as PMS activator for highly efficient removal of tetracycline hydrochloride from water
  publication-title: Chem. Eng. J.
– volume: 357
  start-page: 589
  year: 2019
  end-page: 599
  ident: bib0077
  article-title: Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway: performance and mechanism
  publication-title: Chem. Eng. J.
– volume: 221
  year: 2022
  ident: bib0046
  article-title: Degradation of organic contaminants by reactive iron/manganese species: progress and challenges
  publication-title: Water Res.
– volume: 229
  year: 2023
  ident: bib0082
  article-title: Different reaction mechanisms of SO
  publication-title: Water Res.
– volume: 44
  start-page: 4185
  year: 2020
  end-page: 4198
  ident: bib0026
  article-title: Catalytic activity of a magnetic Fe
  publication-title: New J. Chem.
– volume: 399
  year: 2020
  ident: bib0039
  article-title: Insight into the effect of lignocellulosic biomass source on the performance of biochar as persulfate activator for aqueous organic pollutants remediation: epicarp and mesocarp of citrus peels as examples
  publication-title: J. Hazard. Mater.
– volume: 56
  start-page: 8833
  year: 2022
  end-page: 8843
  ident: bib0073
  article-title: Rational regulation of Co-N-C coordination for high-efficiency generation of
  publication-title: Environ. Sci. Technol.
– volume: 433
  year: 2022
  ident: bib0078
  article-title: Non-radical oxidation in environmental catalysis: recognition, identification, and perspectives
  publication-title: Chem. Eng. J.
– volume: 427
  year: 2022
  ident: bib0036
  article-title: Heteroatom doping in metal-free carbonaceous materials for the enhancement of persulfate activation
  publication-title: Chem. Eng. J.
– volume: 56
  start-page: 1321
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0080
  article-title: Elucidating the mechanistic origin of a spin state-dependent FeNx-C catalyst toward organic contaminant oxidation via peroxymonosulfate activation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c05980
– volume: 48
  start-page: 5868
  issue: 10
  year: 2014
  ident: 10.1016/j.watres.2023.119926_bib0087
  article-title: Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es501218f
– volume: 450
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0015
  article-title: Peroxymonosulfate activation by iron self-doped sludge-derived biochar for degradation of perfluorooctanoic acid: a singlet oxygen-dominated nonradical pathway
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.137953
– volume: 398
  year: 2020
  ident: 10.1016/j.watres.2023.119926_bib0024
  article-title: Efficient degradation of sulfamethoxazole by CuCo LDH and LDH@fibers composite membrane activating peroxymonosulfate
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125676
– volume: 424
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0065
  article-title: Why the cooperation of radical and non-radical pathways in PMS system leads to a higher efficiency than a single pathway in tetracycline degradation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.127247
– volume: 330
  start-page: 1390
  year: 2017
  ident: 10.1016/j.watres.2023.119926_bib0010
  article-title: Degradation of ciprofloxacin using α-MnO2 activated peroxymonosulfate process: effect of water constituents, degradation intermediates and toxicity evaluation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.07.137
– volume: 11
  start-page: 11129
  issue: 17
  year: 2021
  ident: 10.1016/j.watres.2023.119926_bib0085
  article-title: Density functional theory calculations for insight into the heterocatalyst reactivity and mechanism in persulfate-based advanced oxidation reactions
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c03099
– volume: 56
  start-page: 78
  issue: 1
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0045
  article-title: Origins of electron-transfer regime in persulfate-based nonradical oxidation processes
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c05374
– volume: 424
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0069
  article-title: Insights into the mechanism of enhanced peroxymonosulfate degraded tetracycline using metal organic framework derived carbonyl modified carbon-coated Fe0
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.127640
– volume: 385
  year: 2020
  ident: 10.1016/j.watres.2023.119926_bib0029
  article-title: Structure-dependent catalysis of cuprous oxides in peroxymonosulfate activation via nonradical pathway with a high oxidation capacity
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.121518
– volume: 414
  year: 2021
  ident: 10.1016/j.watres.2023.119926_bib0037
  article-title: Oily sludge derived carbons as peroxymonosulfate activators for removing aqueous organic pollutants: performances and the key role of carbonyl groups in electron-transfer mechanism
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.125552
– volume: 359
  start-page: 373
  year: 2019
  ident: 10.1016/j.watres.2023.119926_bib0004
  article-title: Rational design and synthesis of hollow Co3O4@Fe2O3 core-shell nanostructure for the catalytic degradation of norfloxacin by coupling with peroxymonosulfate
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.11.120
– volume: 449
  year: 2023
  ident: 10.1016/j.watres.2023.119926_bib0088
  article-title: Applications of vacancy defect engineering in persulfate activation: performance and internal mechanism
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2023.130971
– volume: 383
  year: 2020
  ident: 10.1016/j.watres.2023.119926_bib0014
  article-title: Degradation mechanisms of ofloxacin and cefazolin using peroxymonosulfate activated by reduced graphene oxide-CoFe2O4 composites
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123056
– volume: 184
  year: 2019
  ident: 10.1016/j.watres.2023.119926_bib0079
  article-title: Destruction of dioxin and furan pollutants via electrophilic attack of singlet oxygen
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2019.109605
– volume: 56
  start-page: 8833
  issue: 12
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0073
  article-title: Rational regulation of Co-N-C coordination for high-efficiency generation of 1O2 toward nearly 100% selective degradation of organic pollutants
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.2c00706
– volume: 225
  start-page: 243
  year: 2018
  ident: 10.1016/j.watres.2023.119926_bib0007
  article-title: Enhancing sulfacetamide degradation by peroxymonosulfate activation with N-doped graphene produced through delicately-controlled nitrogen functionalization via tweaking thermal annealing processes
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2017.11.071
– volume: 711
  year: 2020
  ident: 10.1016/j.watres.2023.119926_bib0008
  article-title: Enhanced degradation of triclosan by cobalt manganese spinel-type oxide activated peroxymonosulfate oxidation process via sulfate radicals and singlet oxygen: mechanisms and intermediates identification
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.134715
– volume: 654
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0083
  article-title: Synthesis of Fe-Nx site-based iron-nitrogen co-doped biochar catalysts for efficient removal of sulfamethoxazole from water by activation of persulfate: electron transfer mechanism of non-free radical degradation
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2022.130174
– volume: 436
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0049
  article-title: Manipulating the morphology of 3D flower-like CoMn2O4 bimetallic catalyst for enhancing the activation of peroxymonosulfate toward the degradation of selected persistent pharmaceuticals in water
  publication-title: Chem. Eng. J.
– volume: 54
  start-page: 16231
  issue: 24
  year: 2020
  ident: 10.1016/j.watres.2023.119926_bib0097
  article-title: Unraveling the overlooked involvement of high-valent cobalt-oxo species generated from the cobalt(II)-activated peroxymonosulfate process
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c06808
– volume: 388
  year: 2020
  ident: 10.1016/j.watres.2023.119926_bib0076
  article-title: In situ photoreduction of structural Fe(III) in a metal-organic framework for peroxydisulfate activation and efficient removal of antibiotics in real wastewater
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.121996
– volume: 310
  year: 2021
  ident: 10.1016/j.watres.2023.119926_bib0071
  article-title: Facile synthesis of cobalt-iron layered double hydroxides nanosheets for direct activation of peroxymonosulfate (PMS) during degradation of fluoroquinolones antibiotics
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.127584
– volume: 14
  start-page: 37865
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0030
  article-title: Modulating the electronic coordination configuration and d‑band center in homo-diatomic Fe2N6 catalysts for enhanced peroxymonosulfate activation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c12036
– volume: 225
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0038
  article-title: Revealing the fundamental role of MoO2 in promoting efficient and stable activation of persulfate by iron carbon based catalysts: efficient Fe2+/Fe3+ cycling to generate reactive species
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.119142
– volume: 269
  year: 2020
  ident: 10.1016/j.watres.2023.119926_bib0074
  article-title: Nitrogen-doped biochar fiber with graphitization from Boehmeria nivea for promoted peroxymonosulfate activation and non-radical degradation pathways with enhancing electron transfer
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2020.118850
– volume: 359
  start-page: 828
  year: 2019
  ident: 10.1016/j.watres.2023.119926_bib0019
  article-title: Promoted peroxymonosulfate activation into singlet oxygen over perovskite for ofloxacin degradation by controlling the oxygen defect concentration
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.11.184
– volume: 2
  start-page: 1858
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0070
  article-title: Challenges in radical/nonradical-based advanced oxidation processes for carbon recycling
  publication-title: Chem. Catal.
– volume: 11
  start-page: 9569
  year: 2021
  ident: 10.1016/j.watres.2023.119926_bib0041
  article-title: Spin-state-dependent peroxymonosulfate activation of single-atom M-N moieties via a radical-free pathway
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c02031
– volume: 421
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0057
  article-title: Tunable active sites on biogas digestate derived biochar for sulfanilamide degradation by peroxymonosulfate activation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.126794
– volume: 33
  start-page: 4792
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0023
  article-title: A natural manganese ore as a heterogeneous catalyst to effectively activate peroxymonosulfate to oxidize organic pollutants
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2022.01.029
– volume: 357
  start-page: 589
  year: 2019
  ident: 10.1016/j.watres.2023.119926_bib0077
  article-title: Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway: performance and mechanism
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.09.184
– volume: 133
  start-page: 4638
  year: 2021
  ident: 10.1016/j.watres.2023.119926_bib0040
  article-title: Almost 100 % peroxymonosulfate conversion to singlet oxygen on single-atom CoN2+2 sites
  publication-title: Angew. Chem.
  doi: 10.1002/ange.202014472
– volume: 10
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0005
  article-title: Catalytic persulfate activation for oxidation of organic pollutants: a critical review on mechanisms and controversies
  publication-title: J. Environ. Chem. Eng.
– volume: 423
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0053
  article-title: Magnetic 2D/2D oxygen doped g-C3N4/biochar composite to activate peroxymonosulfate for degradation of emerging organic pollutants
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.127207
– volume: 408
  year: 2021
  ident: 10.1016/j.watres.2023.119926_bib0064
  article-title: Mechanisms of persulfate activation on biochar derived from two different sludges: dominance of their intrinsic compositions
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.124454
– volume: 62
  year: 2023
  ident: 10.1016/j.watres.2023.119926_bib0091
  article-title: Regulating spin states in oxygen electrocatalysis
  publication-title: Angew. Chem. Int. Ed.
– volume: 451
  year: 2023
  ident: 10.1016/j.watres.2023.119926_bib0068
  article-title: Versatile pathways for oxidating organics via peroxymonosulfate activation by different single atom catalysts confining with Fe-N4 or Cu-N4 sites
  publication-title: Chem. Eng. J.
– volume: 214
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0089
  article-title: Surface-bound hydroxyl radical-dominated degradation of sulfamethoxazole in the amorphous FeOOH/peroxymonosulfate system: the key role of amorphous structure enhancing electron transfer
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2022.113964
– volume: 427
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0011
  article-title: Copper catalysts for radical and nonradical persulfate based advanced oxidation processes: certainties and uncertainties
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131776
– volume: 2
  start-page: 2014
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0009
  article-title: Nanoconfinement-regulated peroxymonosulfate activation via an anomalously efficient mediated electrontransfer pathway on cobalt
  publication-title: ACS ES&T Eng.
  doi: 10.1021/acsestengg.2c00129
– volume: 205
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0044
  article-title: High efficiency degradation of tetracycline by peroxymonosulfate activated with Fe/NC catalysts: performance, intermediates, stability and mechanism
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2021.112538
– volume: 362
  start-page: 561
  year: 2019
  ident: 10.1016/j.watres.2023.119926_bib0050
  article-title: Biochar-induced Fe(III) reduction for persulfate activation in sulfamethoxazole degradation: insight into the electron transfer, radical oxidation and degradation pathways
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.01.053
– volume: 198
  start-page: 295
  year: 2016
  ident: 10.1016/j.watres.2023.119926_bib0055
  article-title: Activation of peroxymonosulfate by carbonaceous oxygen groups: experimental and density functional theory calculations
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2016.05.075
– volume: 401
  year: 2021
  ident: 10.1016/j.watres.2023.119926_bib0090
  article-title: Heterogeneous activation of persulfate by carbon nanofiber supported Fe3O4@carbon composites for efficient ibuprofen degradation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.123428
– volume: 44
  start-page: 4185
  issue: 10
  year: 2020
  ident: 10.1016/j.watres.2023.119926_bib0026
  article-title: Catalytic activity of a magnetic Fe2O3@CoFe2O4 nanocomposite in peroxymonosulfate activation for norfloxacin removal
  publication-title: New J. Chem.
  doi: 10.1039/C9NJ04379A
– volume: 251
  year: 2020
  ident: 10.1016/j.watres.2023.119926_bib0028
  article-title: Occurrence and toxicity of antibiotics in the aquatic environment: a review
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126351
– volume: 410
  year: 2021
  ident: 10.1016/j.watres.2023.119926_bib0072
  article-title: Efficient photocatalytic degradation of tetracycline under visible light by Z-scheme Ag3PO4/mixed-valence MIL-88A(Fe) heterojunctions: mechanism insight, degradation pathways and DFT calculation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.128454
– volume: 55
  start-page: 10077
  issue: 14
  year: 2021
  ident: 10.1016/j.watres.2023.119926_bib0033
  article-title: Persulfate oxidation of sulfamethoxazole by magnetic iron-char composites via nonradical pathways: Fe(IV) versus surface-mediated electron transfer
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c01618
– volume: 437
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0042
  article-title: Heterogeneous activation of persulfate by metal and non-metal catalyst for the degradation of sulfamethoxazole: a review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.135277
– volume: 56
  start-page: 1492
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0059
  article-title: Aqueous Iron(IV)-oxo complex: an emerging powerful reactive oxidant formed by Iron(II)-based advanced oxidation processes for oxidative water treatment
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c04530
– volume: 56
  start-page: 8784
  issue: 12
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0066
  article-title: Effects of molecular structure on organic contaminants' degradation efficiency and dominant ROS in the advanced oxidation process with multiple ROS
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.2c00464
– volume: 33
  start-page: 3713
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0020
  article-title: CoFe2O4 nanoparticles anchored on waste eggshell for catalytic oxidation of florfenicol via activating peroxymonosulfate
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2021.11.096
– volume: 433
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0078
  article-title: Non-radical oxidation in environmental catalysis: recognition, identification, and perspectives
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.134385
– volume: 7
  start-page: 403
  year: 2015
  ident: 10.1016/j.watres.2023.119926_bib0002
  article-title: Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2226
– volume: 32
  start-page: 1064
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0081
  article-title: Nanoconfinement in advanced oxidation processes
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 428
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0062
  article-title: Synergistic effects for boosted persulfate activation in a designed Fe-Cu dual-atom site catalyst
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132611
– volume: 411
  year: 2021
  ident: 10.1016/j.watres.2023.119926_bib0027
  article-title: A review of the innovations in metal- and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical vs. non-radical degradation pathways of organic contaminants
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127957
– volume: 423
  year: 2021
  ident: 10.1016/j.watres.2023.119926_bib0060
  article-title: Fe-doped ilmenite CoTiO3 for antibiotic removal: electronic modulation and enhanced activation of peroxymonosulfate
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.130165
– volume: 143
  start-page: 4405
  year: 2021
  ident: 10.1016/j.watres.2023.119926_bib0092
  article-title: Electronic spin moment as a catalytic descriptor for Fe single-atom catalysts supported on C2N
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c00889
– volume: 325
  year: 2023
  ident: 10.1016/j.watres.2023.119926_bib0048
  article-title: Unsaturated single-atom CoN3 sites for improved fenton-like reaction towards high-valent metal species
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2023.122368
– volume: 310
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0056
  article-title: Sulfamethoxazole degradation by regulating active sites on distilled spirits lees-derived biochar in a continuous flow fixed bed peroxymonosulfate reactor
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2022.121342
– volume: 55
  start-page: 15400
  issue: 22
  year: 2021
  ident: 10.1016/j.watres.2023.119926_bib0063
  article-title: Oxygen vacancy-induced nonradical degradation of organics: critical trigger of oxygen (O2) in the Fe-Co LDH/peroxymonosulfate system
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c04600
– volume: 241
  start-page: 561
  year: 2019
  ident: 10.1016/j.watres.2023.119926_bib0001
  article-title: Surface-loaded metal nanoparticles for peroxymonosulfate activation: efficiency and mechanism reconnaissance
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2018.09.056
– volume: 60
  start-page: 21751
  year: 2021
  ident: 10.1016/j.watres.2023.119926_bib0084
  article-title: Carbon nitride supported high-loading Fe single-atom catalyst for activation of peroxymonosulfate to generate 1O2 with 100 % selectivity
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202109488
– volume: 427
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0036
  article-title: Heteroatom doping in metal-free carbonaceous materials for the enhancement of persulfate activation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131655
– volume: 429
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0021
  article-title: Degradation of antibiotic pollutants by persulfate activated with various carbon materials
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.132387
– volume: 431
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0061
  article-title: Hydrodynamic cavitation-enhanced heterogeneous activation of persulfate for tetracycline degradation: synergistic effects, degradation mechanism and pathways
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.134238
– volume: 375
  year: 2019
  ident: 10.1016/j.watres.2023.119926_bib0054
  article-title: Nitrogen-doped graphene as peroxymonosulfate activator and electron transfer mediator for the enhanced degradation of sulfamethoxazole
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122041
– volume: 2
  start-page: 1836
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0075
  article-title: Unraveling the Co(IV)-mediated oxidation mechanism in a Co3O4/PMS-based hierarchical reactor: toward efficient catalytic degradation of aromatic pollutants
  publication-title: ACS EST Eng.
  doi: 10.1021/acsestengg.2c00087
– volume: 219
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0086
  article-title: Insight into metal-free carbon catalysis in enhanced permanganate oxidation: changeover from electron donor to electron mediator
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.118626
– volume: 421
  year: 2021
  ident: 10.1016/j.watres.2023.119926_bib0043
  article-title: Synergistic effects of Co and N doped on graphitic carbon as an in situ surface-bound radical generation for the rapid degradation of emerging contaminants
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.129818
– volume: 411
  year: 2021
  ident: 10.1016/j.watres.2023.119926_bib0018
  article-title: Copper in LaMnO3 to promote peroxymonosulfate activation by regulating the reactive oxygen species in sulfamethoxazole degradation
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2021.125163
– volume: 218
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0012
  article-title: Soybean straw biochar activating peroxydisulfate to simultaneously eliminate tetracycline and tetracycline resistance bacteria: insights on the mechanism
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.118489
– volume: 5
  start-page: 4629
  issue: 8
  year: 2015
  ident: 10.1016/j.watres.2023.119926_bib0013
  article-title: Insights into heterogeneous catalysis of persulfate activation on dimensional-structured nanocarbons
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b00774
– volume: 221
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0046
  article-title: Degradation of organic contaminants by reactive iron/manganese species: progress and challenges
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.118765
– volume: 28
  issue: 13
  year: 2018
  ident: 10.1016/j.watres.2023.119926_bib0047
  article-title: Identification and regulation of active sites on nanodiamonds: establishing a highly efficient catalytic system for oxidation of organic contaminants
  publication-title: Adv. Funct. Mater.
– volume: 440
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0032
  article-title: Sludge-derived biochar toward sustainable peroxymonosulfate activation: regulation of active sites and synergistic production of reaction oxygen species
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.135897
– volume: 399
  year: 2020
  ident: 10.1016/j.watres.2023.119926_bib0039
  article-title: Insight into the effect of lignocellulosic biomass source on the performance of biochar as persulfate activator for aqueous organic pollutants remediation: epicarp and mesocarp of citrus peels as examples
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.123043
– volume: 206
  year: 2021
  ident: 10.1016/j.watres.2023.119926_bib0003
  article-title: Synchronous removal of emulsions and soluble organic contaminants via a microalgae-based membrane system: performance and mechanisms
  publication-title: Water Res.
  doi: 10.1016/j.watres.2021.117741
– volume: 315
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0034
  article-title: Accelerating radical generation from peroxymonosulfate by confined variable Co species toward ciprofloxacin mineralization: ROS quantification and mechanisms elucidation
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2022.121542
– volume: 390
  year: 2020
  ident: 10.1016/j.watres.2023.119926_bib0016
  article-title: Degradation of sulphachloropyridazine sodium in column reactor packed with CoFe2O4-loaded quartz sand via peroxymonosulfate activation: insights into the amorphous phase, efficiency, and mechanism
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124549
– volume: 52
  start-page: 14371
  issue: 24
  year: 2018
  ident: 10.1016/j.watres.2023.119926_bib0022
  article-title: Electronic structure modulation of graphitic carbon nitride by oxygen doping for enhanced catalytic degradation of organic pollutants through peroxymonosulfate activation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b05246
– volume: 432
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0096
  article-title: Magnetic Co/Fe nanocomposites derived from ferric sludge as an efficient peroxymonosulfate catalyst for ciprofloxacin degradation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.134180
– volume: 443
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0025
  article-title: Defect- and nitrogen-rich porous carbon embedded with Co NPs derived from self-assembled Co-ZIF-8 @ anionic polyacrylamide network as PMS activator for highly efficient removal of tetracycline hydrochloride from water
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136439
– volume: 212
  start-page: 536
  year: 2019
  ident: 10.1016/j.watres.2023.119926_bib0058
  article-title: Nanoscaled magnetic CuFe2O4 as an activator of peroxymonosulfate for the degradation of antibiotics norfloxacin
  publication-title: Sep. Puri. Technol.
  doi: 10.1016/j.seppur.2018.11.051
– volume: 259
  year: 2020
  ident: 10.1016/j.watres.2023.119926_bib0017
  article-title: Experimental and theoretical insights into kinetics and mechanisms of hydroxyl and sulfate radicals-mediated degradation of sulfamethoxazole: similarities and differences
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.113795
– volume: 354
  start-page: 473
  year: 2018
  ident: 10.1016/j.watres.2023.119926_bib0052
  article-title: Enhanced superoxide radical production for ofloxacin removal via persulfate activation with Cu-Fe oxide
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.08.055
– volume: 410
  year: 2021
  ident: 10.1016/j.watres.2023.119926_bib0093
  article-title: Nonradical oxidation processes in PMS-based heterogeneous catalytic system: generation, identification, oxidation characteristics, challenges response and application prospects
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.128312
– volume: 399
  year: 2020
  ident: 10.1016/j.watres.2023.119926_bib0067
  article-title: Efficient degradation of sulfamethoxazole by NiCo2O4 modified expanded graphite activated peroxymonosulfate: characterization, mechanism and degradation intermediates
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.123103
– volume: 55
  start-page: 16163
  issue: 23
  year: 2021
  ident: 10.1016/j.watres.2023.119926_bib0031
  article-title: Correlation of active sites to generated reactive species and degradation routes of organics in peroxymonosulfate activation by Co-loaded carbon
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c06244
– volume: 416
  year: 2021
  ident: 10.1016/j.watres.2023.119926_bib0035
  article-title: Peroxymonosulfate activation by cobalt(II) for degradation of organic contaminants via high-valent cobalt-oxo and radical species
  publication-title: J. Hazard. Mater.
– volume: 229
  year: 2023
  ident: 10.1016/j.watres.2023.119926_bib0082
  article-title: Different reaction mechanisms of SO4•− and •OH with organic compound interpreted at molecular orbital level in Co(II)/peroxymonosulfate catalytic activation system
  publication-title: Water Res.
  doi: 10.1016/j.watres.2022.119392
– volume: 125
  start-page: 209
  year: 2017
  ident: 10.1016/j.watres.2023.119926_bib0094
  article-title: Activation of peroxymonosulfate by phenols: important role of quinone intermediates and involvement of singlet oxygen
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.08.049
– volume: 95
  start-page: 158
  year: 2022
  ident: 10.1016/j.watres.2023.119926_bib0006
  article-title: Effect of the chloride ion on advanced oxidation processes catalyzed by Fe-based metallic glass for wastewater treatment
  publication-title: J. Mater. Sci. Technol.
– volume: 411
  year: 2021
  ident: 10.1016/j.watres.2023.119926_bib0051
  article-title: Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.128392
– volume: 52
  start-page: 8649
  issue: 15
  year: 2018
  ident: 10.1016/j.watres.2023.119926_bib0095
  article-title: Catalytic removal of aqueous contaminants on N-doped graphitic biochars: inherent roles of adsorption and nonradical mechanisms
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b01817
SSID ssj0002239
Score 2.7184954
SecondaryResourceType review_article
Snippet •PS activation by heterogeneous catalysts are compared systematically.•The relationship between active sites and oxidative species is summarized.•The...
At present, numerous heterogeneous catalysts have been synthesized to activate persulfate (PS) and produce various reactive species for antibiotic degradation...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 119926
SubjectTerms Active sites
aniline
Anti-Bacterial Agents
antibiotics
Carbon
catalysts
Catalytic Domain
Degradation routes
electron transfer
Heterogeneous catalysts
Iron - chemistry
oxidation
Oxidation-Reduction
Oxidative species
Oxidative Stress
Persulfate
pollutants
water
Water Pollutants, Chemical - chemistry
Title A critical review on correlating active sites, oxidative species and degradation routes with persulfate-based antibiotics oxidation
URI https://dx.doi.org/10.1016/j.watres.2023.119926
https://www.ncbi.nlm.nih.gov/pubmed/37004307
https://www.proquest.com/docview/2794689971
https://www.proquest.com/docview/2834200995
Volume 235
WOSCitedRecordID wos000973289500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1879-2448
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002239
  issn: 0043-1354
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELW6uwgtB8Q35WNlJG4llZLUtX2sYNGCVisOi9Rb5NgObVWSqjRLOfML-MfM2HE2YikLBy5RlThJ1fc6Ho9n3hDyUiWFTNRYRanJk2hkmIpEoVTE7JhZ8OdloVzXklN-diamU_mh1_sRamEulrwsxXYrV_8VajgHYGPp7D_A3T4UTsBnAB2OADsc_wr4yUCH9gWhLgVTzde-agVLEp2JG-C2sQOx2s6Nl__GsktYObsNBYMqEr7h0mBd1RiedTHbFfiL9bIAFzXCGRCVXrHspHJyz82jGqgXocMMCjE2qkIzp2-69Sn1bRDidO5Z2UyjLobr-AVnvrUTxxvfOvtEwWvayNBMVT7PuPw0q-fdIEbiUgZ9GefQesMrOO70eNXNYJmTlHVsa4yZsuPfmn0fgVgMvyossBniG4ZXhwNOq88O9ZQ7rTN-OQm2qYnh0h45SDiTYCgPJu-Op-_b6R38KRlqMF2i4NWXHpKb4TG73J1dyxnn1pzfIbeb9QideB7dJT1b3iO3OiqV98n3CQ2Mop5RtCpph1HUM4o6Rr2iLZ9owycKfKIdPlHPJ4p8or_yiXb4RFs-PSAf3x6fvz6Jmt4dkU4l20QoMyisUrmx4DEbWHXAWllbcJgkKuQJPRrlYD5ibZQudFGkKldpDr5pYXgeS50-JPtlVdrHhCZCsjQ3iZaJGWmmFNfYXppJxq0Rse2TNPzEmW6E7bG_yjILGYyLzGOUIUaZx6hPovaulRd2uWY8D-hljXPqnc4MSHjNnS8C2BnYbtyQU6WtahiE3R2ElDz-wxiRjnAHU7I-eeSZ0n7fQLInO688JYeXf7dnZH-zru1zckNfbOZf1kdkj0_FUUPwn7B10dg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+critical+review+on+correlating+active+sites%2C+oxidative+species+and+degradation+routes+with+persulfate-based+antibiotics+oxidation&rft.jtitle=Water+research+%28Oxford%29&rft.au=Li%2C+Ning&rft.au=Ye%2C+Jingya&rft.au=Dai%2C+Haoxi&rft.au=Shao%2C+Penghui&rft.date=2023-05-15&rft.eissn=1879-2448&rft.volume=235&rft.spage=119926&rft_id=info:doi/10.1016%2Fj.watres.2023.119926&rft_id=info%3Apmid%2F37004307&rft.externalDocID=37004307
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon