A critical review on correlating active sites, oxidative species and degradation routes with persulfate-based antibiotics oxidation
•PS activation by heterogeneous catalysts are compared systematically.•The relationship between active sites and oxidative species is summarized.•The information of reactive species acting on antibiotics is discussed.•The generation and function of radical and non-radicals are compared. At present,...
Uložené v:
| Vydané v: | Water research (Oxford) Ročník 235; s. 119926 |
|---|---|
| Hlavní autori: | , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
Elsevier Ltd
15.05.2023
|
| Predmet: | |
| ISSN: | 0043-1354, 1879-2448, 1879-2448 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •PS activation by heterogeneous catalysts are compared systematically.•The relationship between active sites and oxidative species is summarized.•The information of reactive species acting on antibiotics is discussed.•The generation and function of radical and non-radicals are compared.
At present, numerous heterogeneous catalysts have been synthesized to activate persulfate (PS) and produce various reactive species for antibiotic degradation from water. However, the systematic summary of the correlation among catalyst active sites, PS activation pathway and pollutant degradation has not been reported. This review summarized the effect of metal-based, carbon-based and metal-carbon composite catalysts on the degradation of antibiotics by activating PS. Metal and non-metal sites are conducive to inducing different oxidation pathways (SO4•−, •OH radical oxidation and 1O2 oxidation, mediated electron transfer, surface-bound reactive complexes and high-valent metal oxidation). SO4•− and •OH are easy to attack CH, S-N, CN bonds, CC double bonds and amino groups in antibiotics. 1O2 is more selective to the structure of the aniline ring and amino group, and also to attacking CS, CN and CH bonds. Surface-bound active species can cleave CC, SN, CS and CN bonds. Other non-radical pathways may also induce different antibiotic degradation routes due to differences in oxidation potential and electronic properties. This critical review clarified the functions of active sites in producing different reactive species for selective oxidation of antibiotics via featured pathways. The outcomes will provide valuable guidance of oriented-regulation of active sites in heterogeneous catalysts to produce on-demand reactive species toward high-efficiency removing antibiotics from water.
[Display omitted] |
|---|---|
| AbstractList | At present, numerous heterogeneous catalysts have been synthesized to activate persulfate (PS) and produce various reactive species for antibiotic degradation from water. However, the systematic summary of the correlation among catalyst active sites, PS activation pathway and pollutant degradation has not been reported. This review summarized the effect of metal-based, carbon-based and metal-carbon composite catalysts on the degradation of antibiotics by activating PS. Metal and non-metal sites are conducive to inducing different oxidation pathways (SO4•-, •OH radical oxidation and 1O2 oxidation, mediated electron transfer, surface-bound reactive complexes and high-valent metal oxidation). SO4•- and •OH are easy to attack CH, S-N, CN bonds, CC double bonds and amino groups in antibiotics. 1O2 is more selective to the structure of the aniline ring and amino group, and also to attacking CS, CN and CH bonds. Surface-bound active species can cleave CC, SN, CS and CN bonds. Other non-radical pathways may also induce different antibiotic degradation routes due to differences in oxidation potential and electronic properties. This critical review clarified the functions of active sites in producing different reactive species for selective oxidation of antibiotics via featured pathways. The outcomes will provide valuable guidance of oriented-regulation of active sites in heterogeneous catalysts to produce on-demand reactive species toward high-efficiency removing antibiotics from water.At present, numerous heterogeneous catalysts have been synthesized to activate persulfate (PS) and produce various reactive species for antibiotic degradation from water. However, the systematic summary of the correlation among catalyst active sites, PS activation pathway and pollutant degradation has not been reported. This review summarized the effect of metal-based, carbon-based and metal-carbon composite catalysts on the degradation of antibiotics by activating PS. Metal and non-metal sites are conducive to inducing different oxidation pathways (SO4•-, •OH radical oxidation and 1O2 oxidation, mediated electron transfer, surface-bound reactive complexes and high-valent metal oxidation). SO4•- and •OH are easy to attack CH, S-N, CN bonds, CC double bonds and amino groups in antibiotics. 1O2 is more selective to the structure of the aniline ring and amino group, and also to attacking CS, CN and CH bonds. Surface-bound active species can cleave CC, SN, CS and CN bonds. Other non-radical pathways may also induce different antibiotic degradation routes due to differences in oxidation potential and electronic properties. This critical review clarified the functions of active sites in producing different reactive species for selective oxidation of antibiotics via featured pathways. The outcomes will provide valuable guidance of oriented-regulation of active sites in heterogeneous catalysts to produce on-demand reactive species toward high-efficiency removing antibiotics from water. At present, numerous heterogeneous catalysts have been synthesized to activate persulfate (PS) and produce various reactive species for antibiotic degradation from water. However, the systematic summary of the correlation among catalyst active sites, PS activation pathway and pollutant degradation has not been reported. This review summarized the effect of metal-based, carbon-based and metal-carbon composite catalysts on the degradation of antibiotics by activating PS. Metal and non-metal sites are conducive to inducing different oxidation pathways (SO , OH radical oxidation and O oxidation, mediated electron transfer, surface-bound reactive complexes and high-valent metal oxidation). SO and OH are easy to attack CH, S-N, CN bonds, CC double bonds and amino groups in antibiotics. O is more selective to the structure of the aniline ring and amino group, and also to attacking CS, CN and CH bonds. Surface-bound active species can cleave CC, SN, CS and CN bonds. Other non-radical pathways may also induce different antibiotic degradation routes due to differences in oxidation potential and electronic properties. This critical review clarified the functions of active sites in producing different reactive species for selective oxidation of antibiotics via featured pathways. The outcomes will provide valuable guidance of oriented-regulation of active sites in heterogeneous catalysts to produce on-demand reactive species toward high-efficiency removing antibiotics from water. •PS activation by heterogeneous catalysts are compared systematically.•The relationship between active sites and oxidative species is summarized.•The information of reactive species acting on antibiotics is discussed.•The generation and function of radical and non-radicals are compared. At present, numerous heterogeneous catalysts have been synthesized to activate persulfate (PS) and produce various reactive species for antibiotic degradation from water. However, the systematic summary of the correlation among catalyst active sites, PS activation pathway and pollutant degradation has not been reported. This review summarized the effect of metal-based, carbon-based and metal-carbon composite catalysts on the degradation of antibiotics by activating PS. Metal and non-metal sites are conducive to inducing different oxidation pathways (SO4•−, •OH radical oxidation and 1O2 oxidation, mediated electron transfer, surface-bound reactive complexes and high-valent metal oxidation). SO4•− and •OH are easy to attack CH, S-N, CN bonds, CC double bonds and amino groups in antibiotics. 1O2 is more selective to the structure of the aniline ring and amino group, and also to attacking CS, CN and CH bonds. Surface-bound active species can cleave CC, SN, CS and CN bonds. Other non-radical pathways may also induce different antibiotic degradation routes due to differences in oxidation potential and electronic properties. This critical review clarified the functions of active sites in producing different reactive species for selective oxidation of antibiotics via featured pathways. The outcomes will provide valuable guidance of oriented-regulation of active sites in heterogeneous catalysts to produce on-demand reactive species toward high-efficiency removing antibiotics from water. [Display omitted] At present, numerous heterogeneous catalysts have been synthesized to activate persulfate (PS) and produce various reactive species for antibiotic degradation from water. However, the systematic summary of the correlation among catalyst active sites, PS activation pathway and pollutant degradation has not been reported. This review summarized the effect of metal-based, carbon-based and metal-carbon composite catalysts on the degradation of antibiotics by activating PS. Metal and non-metal sites are conducive to inducing different oxidation pathways (SO₄•⁻, •OH radical oxidation and ¹O₂ oxidation, mediated electron transfer, surface-bound reactive complexes and high-valent metal oxidation). SO₄•⁻ and •OH are easy to attack CH, S-N, CN bonds, CC double bonds and amino groups in antibiotics. ¹O₂ is more selective to the structure of the aniline ring and amino group, and also to attacking CS, CN and CH bonds. Surface-bound active species can cleave CC, SN, CS and CN bonds. Other non-radical pathways may also induce different antibiotic degradation routes due to differences in oxidation potential and electronic properties. This critical review clarified the functions of active sites in producing different reactive species for selective oxidation of antibiotics via featured pathways. The outcomes will provide valuable guidance of oriented-regulation of active sites in heterogeneous catalysts to produce on-demand reactive species toward high-efficiency removing antibiotics from water. |
| ArticleNumber | 119926 |
| Author | Li, Ning Yan, Beibei Chen, Guanyi Ye, Jingya Liang, Lan Dai, Haoxi Kong, Lingchao Duan, Xiaoguang Shao, Penghui |
| Author_xml | – sequence: 1 givenname: Ning surname: Li fullname: Li, Ning organization: School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, 300072 Tianjin, China – sequence: 2 givenname: Jingya surname: Ye fullname: Ye, Jingya organization: School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, 300072 Tianjin, China – sequence: 3 givenname: Haoxi surname: Dai fullname: Dai, Haoxi organization: School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, 300072 Tianjin, China – sequence: 4 givenname: Penghui surname: Shao fullname: Shao, Penghui organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, 330063 Nanchang, China – sequence: 5 givenname: Lan surname: Liang fullname: Liang, Lan organization: School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, 300072 Tianjin, China – sequence: 6 givenname: Lingchao surname: Kong fullname: Kong, Lingchao organization: School of Environmental Science & Engineering, Southern University of Science and Technology, 518055 Shenzhen, China – sequence: 7 givenname: Beibei surname: Yan fullname: Yan, Beibei email: yanbeibei@tju.edu.cn organization: School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, 300072 Tianjin, China – sequence: 8 givenname: Guanyi surname: Chen fullname: Chen, Guanyi email: chen@tju.edu.cn organization: School of Mechanical Engineering, Tianjin University of Commerce, 300134 Tianjin, China – sequence: 9 givenname: Xiaoguang surname: Duan fullname: Duan, Xiaoguang organization: School of Chemical Engineering and Advanced Materials, The University of Adelaide, 5005 Adelaide, SA, Australia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37004307$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1v1DAQhi1URLeFf4CQjxzIYsfOJuaAVFXlQ6rEBc7WZDwpXmXjxXa6cOaP10taDhzoydL4eWek9zljJ1OYiLGXUqylkJu32_UBcqS0rkWt1lIaU2-esJXsWlPVWncnbCWEVpVUjT5lZylthRB1rcwzdqra45doV-z3Bcfos0cYeaRbTwceJo4hRhoh--mGA2Z_Szz5TOkNDz-9g2WwJ_SUOEyOO7qJcJyXbAxzIfnB5-98TzHN4wCZqh4SuQJn3_tQ7qWHVWF6zp4OMCZ6cf-es28frr5efqquv3z8fHlxXaEyTa6MaXRHAL2jRjauEa0wGyQllGlN13Wodd8TSnSAAw6Dgh5UL2QzuLaXBtU5e73s3cfwY6aU7c4npHGEicKcbN0pXQtR7jyOtkZvOmNaWdBX9-jc78jZffQ7iL_sQ8cF0AuAMaQUafiLSGGPKu3WLirtUaVdVJbYu39i6POfvnIEPz4Wfr-EqfRZrEabiqwJyflImK0L_v8L7gDTPb-0 |
| CitedBy_id | crossref_primary_10_1016_j_cej_2025_167972 crossref_primary_10_1016_j_jhazmat_2025_138182 crossref_primary_10_1016_j_clay_2024_107260 crossref_primary_10_1016_j_jwpe_2025_107706 crossref_primary_10_1016_j_seppur_2025_133341 crossref_primary_10_1007_s40843_023_2496_5 crossref_primary_10_1016_j_watres_2024_121256 crossref_primary_10_1002_adfm_202417441 crossref_primary_10_1016_j_cej_2023_145824 crossref_primary_10_1016_j_jallcom_2025_182551 crossref_primary_10_1016_j_cej_2024_150692 crossref_primary_10_1016_j_cej_2024_154388 crossref_primary_10_1016_j_apcatb_2024_124849 crossref_primary_10_1016_j_apcatb_2025_125654 crossref_primary_10_1016_j_apcatb_2024_124285 crossref_primary_10_1016_j_hazadv_2025_100824 crossref_primary_10_1016_j_jece_2025_118962 crossref_primary_10_1016_j_watres_2023_120697 crossref_primary_10_1016_j_cej_2024_154490 crossref_primary_10_1016_j_jece_2024_114744 crossref_primary_10_1016_j_jece_2025_116427 crossref_primary_10_1016_j_watres_2025_124130 crossref_primary_10_1016_j_marpolbul_2025_118025 crossref_primary_10_1016_j_seppur_2023_125042 crossref_primary_10_1021_acs_est_5c01975 crossref_primary_10_1002_adfm_202414036 crossref_primary_10_1016_j_psep_2025_107328 crossref_primary_10_1016_j_cej_2025_167740 crossref_primary_10_1007_s11356_024_34577_z crossref_primary_10_1007_s10562_023_04517_6 crossref_primary_10_1016_j_jwpe_2025_107845 crossref_primary_10_1016_j_jece_2024_112597 crossref_primary_10_1016_j_jece_2025_116319 crossref_primary_10_1016_j_apsusc_2025_163549 crossref_primary_10_1016_j_seppur_2025_133329 crossref_primary_10_1016_j_indcrop_2024_120317 crossref_primary_10_1016_j_apcatb_2024_124748 crossref_primary_10_1016_j_scitotenv_2024_173839 crossref_primary_10_1016_j_jhazmat_2023_132987 crossref_primary_10_1016_j_cej_2024_149562 crossref_primary_10_1038_s41598_023_41823_w crossref_primary_10_1016_j_inoche_2025_115532 crossref_primary_10_1016_j_seppur_2025_134764 crossref_primary_10_1016_j_watres_2024_122917 crossref_primary_10_1016_j_colsurfa_2025_136142 crossref_primary_10_1016_j_cej_2024_154238 crossref_primary_10_1021_acsestengg_5c00023 crossref_primary_10_1002_adfm_202405231 crossref_primary_10_1016_j_cej_2025_166079 crossref_primary_10_1016_j_seppur_2024_127704 crossref_primary_10_1016_j_chemosphere_2024_143124 crossref_primary_10_1016_j_jwpe_2025_107745 crossref_primary_10_1038_s41467_025_57841_3 crossref_primary_10_1002_adfm_202316542 crossref_primary_10_3390_molecules29051169 crossref_primary_10_1016_j_chemosphere_2024_143369 crossref_primary_10_1016_j_cej_2023_147526 crossref_primary_10_1016_j_envres_2025_122931 crossref_primary_10_1007_s10904_025_04017_7 crossref_primary_10_1016_j_cej_2024_157970 crossref_primary_10_1016_j_jclepro_2024_141177 crossref_primary_10_1016_j_jece_2023_110988 crossref_primary_10_1016_j_scitotenv_2025_180240 crossref_primary_10_1016_j_jcis_2025_01_188 crossref_primary_10_1016_j_cej_2024_156524 crossref_primary_10_1016_j_jhazmat_2024_133895 crossref_primary_10_1016_j_apcatb_2024_124243 crossref_primary_10_1016_j_apcatb_2024_124484 crossref_primary_10_1016_j_cej_2024_148697 crossref_primary_10_1016_j_seppur_2023_125511 crossref_primary_10_1002_aic_70035 crossref_primary_10_1016_j_cej_2023_146549 crossref_primary_10_1016_j_watres_2023_120378 crossref_primary_10_1016_j_watres_2024_122255 crossref_primary_10_1016_j_psep_2024_05_001 crossref_primary_10_1016_j_cej_2024_151076 crossref_primary_10_1002_wer_70054 crossref_primary_10_1016_j_apcatb_2024_123701 crossref_primary_10_1016_j_seppur_2024_128571 crossref_primary_10_1016_j_jhazmat_2023_132972 crossref_primary_10_1016_j_seppur_2024_127486 crossref_primary_10_1016_j_seppur_2023_126059 crossref_primary_10_1016_j_cej_2025_163588 crossref_primary_10_1016_j_jece_2025_117152 crossref_primary_10_1016_j_cej_2025_167386 crossref_primary_10_1021_acsestengg_5c00084 crossref_primary_10_1016_j_pnsc_2024_07_002 crossref_primary_10_1016_j_jece_2024_114174 crossref_primary_10_1039_D4SC02621G crossref_primary_10_1016_j_jwpe_2024_105943 crossref_primary_10_1016_j_desal_2024_118284 crossref_primary_10_1021_acs_est_5c01560 crossref_primary_10_1016_j_seppur_2024_130888 crossref_primary_10_1016_j_jallcom_2024_175447 crossref_primary_10_1039_D5EN00072F crossref_primary_10_1016_j_colsurfa_2024_135610 crossref_primary_10_1016_j_seppur_2024_130084 crossref_primary_10_1016_j_emcon_2025_100515 crossref_primary_10_1007_s11783_025_1944_4 crossref_primary_10_1016_j_jece_2025_116642 crossref_primary_10_1016_j_jece_2023_111035 crossref_primary_10_1016_j_apcatb_2024_124807 crossref_primary_10_1016_j_jwpe_2024_106362 crossref_primary_10_1016_j_seppur_2024_127341 crossref_primary_10_1016_j_jhazmat_2024_134515 crossref_primary_10_1016_j_cej_2025_159865 crossref_primary_10_1016_j_apcatb_2025_125407 crossref_primary_10_1016_j_seppur_2024_128432 crossref_primary_10_1016_j_electacta_2025_145821 crossref_primary_10_1039_D4EN00355A crossref_primary_10_1016_j_colsurfa_2023_133139 crossref_primary_10_1016_j_seppur_2025_135123 crossref_primary_10_1016_j_envres_2025_122218 crossref_primary_10_1016_j_cej_2024_151263 crossref_primary_10_1016_j_jwpe_2024_106057 crossref_primary_10_1016_j_rechem_2025_102379 crossref_primary_10_1016_j_cej_2024_157259 crossref_primary_10_1016_j_jcis_2024_09_104 crossref_primary_10_1016_j_apcatb_2024_124441 crossref_primary_10_1016_j_jcis_2024_06_019 crossref_primary_10_1016_j_seppur_2025_133190 crossref_primary_10_1016_j_jwpe_2025_107899 crossref_primary_10_1016_j_envpol_2024_125072 crossref_primary_10_1016_j_watres_2025_124655 crossref_primary_10_1016_j_jhazmat_2025_137146 crossref_primary_10_1016_j_cej_2024_151156 crossref_primary_10_1016_j_seppur_2024_130612 crossref_primary_10_1016_j_jhazmat_2023_133344 crossref_primary_10_1016_j_psep_2024_10_071 crossref_primary_10_1002_adfm_202516474 crossref_primary_10_1016_j_jcis_2024_06_029 crossref_primary_10_1016_j_jenvman_2024_122402 crossref_primary_10_1016_j_jece_2024_115100 crossref_primary_10_1016_j_jwpe_2024_106273 crossref_primary_10_1016_j_seppur_2025_131420 crossref_primary_10_1016_j_jece_2025_117927 crossref_primary_10_1002_adma_202505128 crossref_primary_10_1002_smll_202401970 crossref_primary_10_1002_smll_202408811 crossref_primary_10_1016_j_cej_2024_155973 crossref_primary_10_1016_j_seppur_2025_134817 crossref_primary_10_1016_j_watres_2025_124422 crossref_primary_10_1016_j_apcatb_2024_124584 crossref_primary_10_1016_j_colsurfa_2025_137759 crossref_primary_10_1016_j_scitotenv_2023_169580 crossref_primary_10_1016_j_cej_2023_146960 crossref_primary_10_1016_j_cej_2025_166116 crossref_primary_10_1016_j_cej_2023_147378 crossref_primary_10_1039_D4NR04430D crossref_primary_10_1016_j_jhazmat_2024_135002 crossref_primary_10_1016_j_seppur_2025_134129 crossref_primary_10_1021_acs_est_5c05273 crossref_primary_10_1002_adfm_202309223 crossref_primary_10_1016_j_seppur_2024_131007 crossref_primary_10_1002_aenm_202402287 crossref_primary_10_1016_j_ces_2024_120514 crossref_primary_10_1016_j_seppur_2025_131417 crossref_primary_10_1016_j_colsurfa_2025_138036 crossref_primary_10_1016_j_seppur_2024_131364 crossref_primary_10_1016_j_jhazmat_2025_137843 crossref_primary_10_1007_s11270_024_07470_1 crossref_primary_10_1016_j_cej_2024_157903 crossref_primary_10_1016_j_seppur_2024_129844 crossref_primary_10_1016_j_jclepro_2023_138688 crossref_primary_10_1016_j_seppur_2023_125900 crossref_primary_10_1016_j_apcatb_2025_125330 crossref_primary_10_1016_j_ccr_2024_215749 crossref_primary_10_1016_j_cej_2024_154185 crossref_primary_10_1016_j_jallcom_2023_173369 crossref_primary_10_1016_j_apcatb_2024_124409 crossref_primary_10_1016_j_seppur_2024_126321 crossref_primary_10_1016_j_cej_2024_156009 crossref_primary_10_1016_j_cej_2025_161675 crossref_primary_10_1016_j_jes_2024_04_044 crossref_primary_10_1016_j_envpol_2024_124581 crossref_primary_10_1016_j_jece_2025_116346 crossref_primary_10_1016_j_cej_2024_148629 crossref_primary_10_1016_j_cep_2025_110412 crossref_primary_10_1016_j_cej_2023_144765 crossref_primary_10_1016_j_cej_2025_164833 crossref_primary_10_1016_j_envpol_2024_125439 crossref_primary_10_1016_j_jhazmat_2025_138313 crossref_primary_10_1080_10643389_2024_2393511 crossref_primary_10_1016_j_jenvman_2025_125797 crossref_primary_10_1016_j_biortech_2024_131156 crossref_primary_10_1016_j_cej_2024_150239 crossref_primary_10_1016_j_jece_2025_116476 crossref_primary_10_1016_j_seppur_2025_134211 crossref_primary_10_1016_j_jece_2023_111422 crossref_primary_10_1016_j_cej_2024_148839 crossref_primary_10_1002_anie_202502408 crossref_primary_10_1016_j_jece_2024_111988 crossref_primary_10_1021_acsestwater_5c00402 crossref_primary_10_1016_j_jscs_2024_101940 crossref_primary_10_1016_j_desal_2025_118630 crossref_primary_10_1016_j_jenvman_2024_123768 crossref_primary_10_1016_j_biortech_2024_131967 crossref_primary_10_1016_j_cherd_2025_07_008 crossref_primary_10_1002_ange_202502408 crossref_primary_10_1016_j_cej_2023_145837 crossref_primary_10_1016_j_pnsc_2023_08_015 crossref_primary_10_1016_j_jece_2024_112028 crossref_primary_10_1016_j_memsci_2023_122316 crossref_primary_10_1016_j_cej_2025_160579 crossref_primary_10_1016_j_envres_2025_121596 crossref_primary_10_1016_j_seppur_2023_126231 crossref_primary_10_1016_j_seppur_2024_126655 crossref_primary_10_1016_j_efmat_2023_09_001 |
| Cites_doi | 10.1021/acs.est.1c05980 10.1021/es501218f 10.1016/j.cej.2022.137953 10.1016/j.cej.2020.125676 10.1016/j.jhazmat.2021.127247 10.1016/j.cej.2017.07.137 10.1021/acscatal.1c03099 10.1021/acs.est.1c05374 10.1016/j.jhazmat.2021.127640 10.1016/j.jhazmat.2019.121518 10.1016/j.jhazmat.2021.125552 10.1016/j.cej.2018.11.120 10.1016/j.jhazmat.2023.130971 10.1016/j.cej.2019.123056 10.1016/j.ecoenv.2019.109605 10.1021/acs.est.2c00706 10.1016/j.apcatb.2017.11.071 10.1016/j.scitotenv.2019.134715 10.1016/j.colsurfa.2022.130174 10.1021/acs.est.0c06808 10.1016/j.jhazmat.2019.121996 10.1016/j.jclepro.2021.127584 10.1021/acsami.2c12036 10.1016/j.watres.2022.119142 10.1016/j.apcatb.2020.118850 10.1016/j.cej.2018.11.184 10.1021/acscatal.1c02031 10.1016/j.jhazmat.2021.126794 10.1016/j.cclet.2022.01.029 10.1016/j.cej.2018.09.184 10.1002/ange.202014472 10.1016/j.jhazmat.2021.127207 10.1016/j.jhazmat.2020.124454 10.1016/j.envres.2022.113964 10.1016/j.cej.2021.131776 10.1021/acsestengg.2c00129 10.1016/j.envres.2021.112538 10.1016/j.cej.2019.01.053 10.1016/j.apcatb.2016.05.075 10.1016/j.jhazmat.2020.123428 10.1039/C9NJ04379A 10.1016/j.chemosphere.2020.126351 10.1016/j.cej.2021.128454 10.1021/acs.est.1c01618 10.1016/j.cej.2022.135277 10.1021/acs.est.1c04530 10.1021/acs.est.2c00464 10.1016/j.cclet.2021.11.096 10.1016/j.cej.2021.134385 10.1038/nchem.2226 10.1016/j.cej.2021.132611 10.1016/j.cej.2020.127957 10.1016/j.cej.2021.130165 10.1021/jacs.1c00889 10.1016/j.apcatb.2023.122368 10.1016/j.apcatb.2022.121342 10.1021/acs.est.1c04600 10.1016/j.apcatb.2018.09.056 10.1002/anie.202109488 10.1016/j.cej.2021.131655 10.1016/j.cej.2021.132387 10.1016/j.cej.2021.134238 10.1016/j.cej.2019.122041 10.1021/acsestengg.2c00087 10.1016/j.watres.2022.118626 10.1016/j.cej.2021.129818 10.1016/j.jhazmat.2021.125163 10.1016/j.watres.2022.118489 10.1021/acscatal.5b00774 10.1016/j.watres.2022.118765 10.1016/j.cej.2022.135897 10.1016/j.jhazmat.2020.123043 10.1016/j.watres.2021.117741 10.1016/j.apcatb.2022.121542 10.1016/j.cej.2020.124549 10.1021/acs.est.8b05246 10.1016/j.cej.2021.134180 10.1016/j.cej.2022.136439 10.1016/j.seppur.2018.11.051 10.1016/j.envpol.2019.113795 10.1016/j.cej.2018.08.055 10.1016/j.cej.2020.128312 10.1016/j.jhazmat.2020.123103 10.1021/acs.est.1c06244 10.1016/j.watres.2022.119392 10.1016/j.watres.2017.08.049 10.1016/j.cej.2020.128392 10.1021/acs.est.8b01817 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd Copyright © 2023 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.watres.2023.119926 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-2448 |
| ExternalDocumentID | 37004307 10_1016_j_watres_2023_119926 S0043135423003627 |
| Genre | Journal Article Review |
| GroupedDBID | --- --K --M -DZ -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABFYP ABJNI ABLST ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCU SDF SDG SDP SES SEW SPC SPCBC SSE SSJ SSZ T5K TAE TN5 TWZ WH7 XPP ZCA ZMT ~02 ~G- ~KM .55 186 29R 6TJ 9DU AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACKIV ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ H~9 MVM OHT R2- SEN SEP WUQ X7M XOL YHZ YV5 ZXP ZY4 ~A~ ~HD CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c395t-99548eaabde515d507096ce303979888c44bbec1cdacfcff3aba3b015fd7b19c3 |
| ISICitedReferencesCount | 241 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000973289500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0043-1354 1879-2448 |
| IngestDate | Sun Sep 28 07:44:31 EDT 2025 Sun Sep 28 01:41:10 EDT 2025 Wed Feb 19 02:25:05 EST 2025 Sat Nov 29 07:27:57 EST 2025 Tue Nov 18 21:46:57 EST 2025 Fri Feb 23 02:37:27 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Oxidative species Heterogeneous catalysts Active sites Degradation routes Persulfate |
| Language | English |
| License | Copyright © 2023 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c395t-99548eaabde515d507096ce303979888c44bbec1cdacfcff3aba3b015fd7b19c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| PMID | 37004307 |
| PQID | 2794689971 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2834200995 proquest_miscellaneous_2794689971 pubmed_primary_37004307 crossref_primary_10_1016_j_watres_2023_119926 crossref_citationtrail_10_1016_j_watres_2023_119926 elsevier_sciencedirect_doi_10_1016_j_watres_2023_119926 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-15 |
| PublicationDateYYYYMMDD | 2023-05-15 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Water research (Oxford) |
| PublicationTitleAlternate | Water Res |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zhong, Qiu, Shen, Wang, Yuan, Jia, Bi, Jiang (bib0092) 2021; 143 Liu, Lai, Li, Liu, Zhou, Zhang, Qin, Li, Zhang, Yi, Fu, Yan, Chen (bib0036) 2022; 427 Zhang, Zou, Peng, Liu, Zhang, He, Xiong, Liu, Lai (bib0086) 2022; 219 Ahn, Bae, Kim, Kim, Kim, Lee, Lee (bib0001) 2019; 241 Yin, Guo, Wang, Du, Wu, Chang, Ren (bib0077) 2019; 357 Song, Hou, Liu, Antonietti, Wang, Mu (bib0048) 2023; 325 Fan, Zhou, Feng, Zhou, Wen, Shih (bib0014) 2020; 383 Hua, Zheng, Adeboye, Li (bib0025) 2022; 443 Yi, Li, Li, Dai, Wang (bib0075) 2022; 2 Li, Zou, Li, Fu, Lu, Li, Zhu, Zhang (bib0030) 2022; 14 Wang, Tian, Chu, Li, Lu (bib0058) 2019; 212 Peng, Wu, Zhao, Wang, Dai, Li, Wei, Xu, Hu (bib0044) 2022; 205 Yu, Tang, Pang, Liang, Lu, Feng, Wang, Deng, Zou, Zhu, Tang (bib0078) 2022; 433 Zhou, Zhao, Wang, Chen, Chen (bib0093) 2021; 410 Miao, Zhu, Lang, Zhang, Cheng, Zhou, Zhang, Alvarez, Long (bib0041) 2021; 11 Wang, Peng, Wang, Chen, Li, Song, Cheng, Yan, Hou, Wang (bib0056) 2022; 310 Zong, Guan, Xu, Feng, Mao, Xu, Chu, Wu (bib0097) 2020; 54 Yang, Xia, Shao, Wang, Liu (bib0072) 2021; 410 Wang, Guo, Yin, Du, Wu, Luo, Liu, Sseguya, Ren (bib0050) 2019; 362 Xiao, Feng, Shi, Zhou, Wang, Ren (bib0065) 2022; 424 Chen, Zuo, Yang, Cai, Ding (bib0004) 2019; 359 Wang, Song, Li, Liu, Yan, Yu, Liang, Chen, Hou, Wang (bib0057) 2022; 421 Chen, Bi, Zhao, Chen, Hu (bib0008) 2020; 711 Gao, Han, Liu, Gou, Feng, Cheng (bib0020) 2022; 33 Zhang, Jiang, Zhong, Tian, Sun, Cui, Lu, Zou, Luo (bib0084) 2021; 60 Cui, Shao, Li, Zhang, Cui, Hu, Zhao (bib0009) 2022; 2 Liu, Pan, Xu, Wang, Zhao, Xu, Gao, Li (bib0038) 2022; 225 Chen, Li, Ji, Feng, Lan, Yao (bib0006) 2022; 95 Wu, Zhu, Huang, Wei, Ni (bib0064) 2021; 408 Weng, Cai, Xie, Dong, Zhang, Song, Shi, Jin, Wang, Wei (bib0061) 2022; 431 Fu, Zhang, Xu, Dai, Zhu (bib0015) 2022; 450 Gao, Junaid, Lin, Zhang, Xu (bib0016) 2020; 390 Duan, Ma, Xu, Wang, He, Li, Fu, Zhao (bib0012) 2022; 218 Duan, Sun, Kang, Wang, Indrawirawan, Wang (bib0013) 2015; 5 Wu, Yan, Xu, Yuan, Wang, Cui, Lin (bib0062) 2022; 428 Meng, Nie, Li, Duan, Lai, Ao, Wang, An (bib0039) 2020; 399 Zhu, Wang, Ye, Deng, Ma, Xu, Wang, Tang, Luo, Li (bib0096) 2022; 432 Guo, Nengzi, Chen, Li, Zhang, Cheng (bib0024) 2020; 398 Zeinali, Oluwoye, Altarawneh, Dlugogorski (bib0079) 2019; 184 Zhang, Chen, Wang, Le Roux, Yang, Croue (bib0087) 2014; 48 Mi, Wang, Xu, Su, Zhong, Wang, Li, Zhan (bib0040) 2021; 133 Zhang, Li, Akiyama, Bingham, Kubuki (bib0080) 2022; 56 Gao, Zhu, Lyu, Zeng, Xing, Hu (bib0022) 2018; 52 Shao, Tian, Yang, Duan, Gao, Shi, Luo, Cui, Luo, Wang (bib0047) 2018; 28 Yang, Li, Huang, Chen, Wang, Wang, Li, Hu, Yan (bib0071) 2021; 310 Yao, Wang, Yan, Zhang, Xiao, Qi, Zhu, Zhou, Sun, Duan, Li (bib0073) 2022; 56 Kohantorabi, Hosseinifard, Kazemzadeh (bib0026) 2020; 44 Gao, Wang, Ji, Li (bib0021) 2022; 429 Deng, Ge, Tan, Wang, Li, Zhou, Zhang (bib0010) 2017; 330 Wang, Qiu, Pang, Guo, Guan, Jiang (bib0059) 2022; 56 Liang, Fu, Gao, Duan (bib0034) 2022; 315 Zhang, Yang, Duan, Liu, Wang (bib0085) 2021; 11 Gao, Mao, Luo, Cao, Xie, Yang, Deng, Wei (bib0017) 2020; 259 Gao, Tian, Nie, Yang, Zhou, Wang (bib0019) 2019; 359 Thanh-Binh, Huang, Doong, Wang, Chen, Dong (bib0049) 2022; 436 Yin, Chen, He, Li, Zeng, Guo, Zhu (bib0076) 2020; 388 Yang, Ren, Hu, Zhang, Wang, Duan, Sun, Wang (bib0070) 2022; 2 Wang, Wang (bib0051) 2021; 411 Wei, Han, Bi, Gong (bib0060) 2021; 423 Yang, Wu, Cao, Li, Huo, Wang, Hu, Xu (bib0068) 2023; 451 Kovalakova, Cizmas, McDonald, Marsalek, Feng, Sharma (bib0028) 2020; 251 Ye, Zeng, Tan, Wu, Liang, Song, Tang, Zhang, Yang, Chen, Li (bib0074) 2020; 269 Zhu, Huang, Ma, Wang, Duan, Wang (bib0095) 2018; 52 Liu, Guo, Wang, Zheng, Si, Zhao, Luo, Ren (bib0035) 2021; 416 Liang, Duan, Xu, Chen, Zhang, Zhao, Qiu, Wang, Cao (bib0033) 2021; 55 Li, Lu, Yan, Li, Chen, Cheng, Hou, Wang, Duan (bib0032) 2022; 440 Cao, Wang, Ju, Jing, Duan, Ao, Jiang, Li, Ho (bib0003) 2021; 206 Gao, Tian, Fu, Wang, Nie, Yang, Deng (bib0018) 2021; 411 Li, Tian, Xiao, Huang, Gao, Cui, Wang, Duan (bib0029) 2020; 385 Liu, Nie, Li, Ao, Wang, An (bib0037) 2021; 414 Gu, Yin, Chen, Zhu, Wang (bib0023) 2022; 33 Zhang, Wu, Li, Chen, Hou (bib0088) 2023; 449 Chen, Lee, Kang, Cha, Lee, Lee (bib0005) 2022; 10 Oyekunle, Gendy, Ifthikar, Chen (bib0042) 2022; 437 Zhang, Xie, Chen, Duan, Li, Liu (bib0082) 2023; 229 Zhang, Ma, Luo, Ding, Zhou, Zeng (bib0091) 2023; 62 Kohantorabi, Moussavi, Giannakis (bib0027) 2021; 411 Chen, Oh, Hu, Sun, Webster, Li, Lim (bib0007) 2018; 225 Zhou, Jiang, Gao, Pang, Yang, Ma, Gu, Li, Wang, Wang, Yuan, Yang (bib0094) 2017; 125 Wang, Wang, Ma, Xing (bib0052) 2018; 354 Xie, He, Zhou, Li, Liu, Du, Liu, Mu, Lai (bib0066) 2022; 56 Zhang, Zhang, Teng, Zhao, Sun (bib0090) 2021; 401 Wu, Sun, Zhen, Zhu, Yang, Lu, Tian, Zhong, Ma (bib0063) 2021; 55 Shao, Dong, Zhou, Ma, Sharma, Guan (bib0046) 2022; 221 Zhang, Yan, Wan, Wang, Ye, Huang, Zeng, Yi (bib0083) 2022; 654 Zhang, Gang, Lei, Wang, Lian, Holmes, Fei, Zappi, Yao (bib0089) 2022; 214 Zhang, Yan, Liu, Chen, Zhang, Fan (bib0081) 2022; 32 Calle-Vallejo, Loffreda, Koper, Sautet (bib0002) 2015; 7 Xu, Zhou, Wu, Li, Xiong, Yao, Lai (bib0067) 2020; 399 Li, Li, Duan, Yan, Liu, Cheng, Chen, Hou, Wang (bib0031) 2021; 55 Wang, Xu, Wang (bib0054) 2019; 375 Oyekunle, Wu, Luo, Ali, Chen (bib0043) 2021; 421 Ren, Cheng, Shao, Luo, Zhang, Wang, Duan (bib0045) 2022; 56 Wang, Wang (bib0053) 2022; 423 Ding, Fu, Peng, Lei, Wang, Jiang (bib0011) 2022; 427 Yang, Ji, Li, Lin, Chen, Bi, Zheng, Xu, Zhang (bib0069) 2022; 424 Wang, Ao, Sun, Duan, Wang (bib0055) 2016; 198 Yang (10.1016/j.watres.2023.119926_bib0070) 2022; 2 Li (10.1016/j.watres.2023.119926_bib0032) 2022; 440 Duan (10.1016/j.watres.2023.119926_bib0012) 2022; 218 Liu (10.1016/j.watres.2023.119926_bib0036) 2022; 427 Zhang (10.1016/j.watres.2023.119926_bib0080) 2022; 56 Zhang (10.1016/j.watres.2023.119926_bib0087) 2014; 48 Guo (10.1016/j.watres.2023.119926_bib0024) 2020; 398 Wu (10.1016/j.watres.2023.119926_bib0063) 2021; 55 Wang (10.1016/j.watres.2023.119926_bib0051) 2021; 411 Yang (10.1016/j.watres.2023.119926_bib0069) 2022; 424 Kohantorabi (10.1016/j.watres.2023.119926_bib0027) 2021; 411 Cao (10.1016/j.watres.2023.119926_bib0003) 2021; 206 Zhang (10.1016/j.watres.2023.119926_bib0091) 2023; 62 Wang (10.1016/j.watres.2023.119926_bib0054) 2019; 375 Deng (10.1016/j.watres.2023.119926_bib0010) 2017; 330 Gao (10.1016/j.watres.2023.119926_bib0016) 2020; 390 Kohantorabi (10.1016/j.watres.2023.119926_bib0026) 2020; 44 Hua (10.1016/j.watres.2023.119926_bib0025) 2022; 443 Yin (10.1016/j.watres.2023.119926_bib0077) 2019; 357 Xiao (10.1016/j.watres.2023.119926_bib0065) 2022; 424 Zhang (10.1016/j.watres.2023.119926_bib0088) 2023; 449 Chen (10.1016/j.watres.2023.119926_bib0006) 2022; 95 Fan (10.1016/j.watres.2023.119926_bib0014) 2020; 383 Zong (10.1016/j.watres.2023.119926_bib0097) 2020; 54 Duan (10.1016/j.watres.2023.119926_bib0013) 2015; 5 Shao (10.1016/j.watres.2023.119926_bib0047) 2018; 28 Meng (10.1016/j.watres.2023.119926_bib0039) 2020; 399 Zhou (10.1016/j.watres.2023.119926_bib0094) 2017; 125 Gao (10.1016/j.watres.2023.119926_bib0017) 2020; 259 Yang (10.1016/j.watres.2023.119926_bib0071) 2021; 310 Chen (10.1016/j.watres.2023.119926_bib0008) 2020; 711 Ren (10.1016/j.watres.2023.119926_bib0045) 2022; 56 Wang (10.1016/j.watres.2023.119926_bib0056) 2022; 310 Chen (10.1016/j.watres.2023.119926_bib0007) 2018; 225 Yu (10.1016/j.watres.2023.119926_bib0078) 2022; 433 Kovalakova (10.1016/j.watres.2023.119926_bib0028) 2020; 251 Xie (10.1016/j.watres.2023.119926_bib0066) 2022; 56 Zhang (10.1016/j.watres.2023.119926_bib0090) 2021; 401 Xu (10.1016/j.watres.2023.119926_bib0067) 2020; 399 Wu (10.1016/j.watres.2023.119926_bib0062) 2022; 428 Mi (10.1016/j.watres.2023.119926_bib0040) 2021; 133 Li (10.1016/j.watres.2023.119926_bib0029) 2020; 385 Zhu (10.1016/j.watres.2023.119926_bib0095) 2018; 52 Oyekunle (10.1016/j.watres.2023.119926_bib0043) 2021; 421 Wang (10.1016/j.watres.2023.119926_bib0057) 2022; 421 Zhu (10.1016/j.watres.2023.119926_bib0096) 2022; 432 Shao (10.1016/j.watres.2023.119926_bib0046) 2022; 221 Liang (10.1016/j.watres.2023.119926_bib0033) 2021; 55 Zhou (10.1016/j.watres.2023.119926_bib0093) 2021; 410 Gao (10.1016/j.watres.2023.119926_bib0022) 2018; 52 Gao (10.1016/j.watres.2023.119926_bib0021) 2022; 429 Thanh-Binh (10.1016/j.watres.2023.119926_bib0049) 2022; 436 Wang (10.1016/j.watres.2023.119926_bib0052) 2018; 354 Fu (10.1016/j.watres.2023.119926_bib0015) 2022; 450 Zhang (10.1016/j.watres.2023.119926_bib0085) 2021; 11 Chen (10.1016/j.watres.2023.119926_bib0004) 2019; 359 Liu (10.1016/j.watres.2023.119926_bib0037) 2021; 414 Peng (10.1016/j.watres.2023.119926_bib0044) 2022; 205 Wei (10.1016/j.watres.2023.119926_bib0060) 2021; 423 Zhang (10.1016/j.watres.2023.119926_bib0081) 2022; 32 Gao (10.1016/j.watres.2023.119926_bib0019) 2019; 359 Cui (10.1016/j.watres.2023.119926_bib0009) 2022; 2 Yang (10.1016/j.watres.2023.119926_bib0068) 2023; 451 Li (10.1016/j.watres.2023.119926_bib0031) 2021; 55 Yin (10.1016/j.watres.2023.119926_bib0076) 2020; 388 Song (10.1016/j.watres.2023.119926_bib0048) 2023; 325 Wang (10.1016/j.watres.2023.119926_bib0053) 2022; 423 Gao (10.1016/j.watres.2023.119926_bib0018) 2021; 411 Gu (10.1016/j.watres.2023.119926_bib0023) 2022; 33 Liu (10.1016/j.watres.2023.119926_bib0035) 2021; 416 Zhang (10.1016/j.watres.2023.119926_bib0086) 2022; 219 Wang (10.1016/j.watres.2023.119926_bib0050) 2019; 362 Wang (10.1016/j.watres.2023.119926_bib0058) 2019; 212 Yang (10.1016/j.watres.2023.119926_bib0072) 2021; 410 Zhang (10.1016/j.watres.2023.119926_bib0089) 2022; 214 Wu (10.1016/j.watres.2023.119926_bib0064) 2021; 408 Zhang (10.1016/j.watres.2023.119926_bib0083) 2022; 654 Miao (10.1016/j.watres.2023.119926_bib0041) 2021; 11 Ahn (10.1016/j.watres.2023.119926_bib0001) 2019; 241 Liu (10.1016/j.watres.2023.119926_bib0038) 2022; 225 Weng (10.1016/j.watres.2023.119926_bib0061) 2022; 431 Li (10.1016/j.watres.2023.119926_bib0030) 2022; 14 Gao (10.1016/j.watres.2023.119926_bib0020) 2022; 33 Oyekunle (10.1016/j.watres.2023.119926_bib0042) 2022; 437 Wang (10.1016/j.watres.2023.119926_bib0055) 2016; 198 Ding (10.1016/j.watres.2023.119926_bib0011) 2022; 427 Wang (10.1016/j.watres.2023.119926_bib0059) 2022; 56 Zhang (10.1016/j.watres.2023.119926_bib0082) 2023; 229 Chen (10.1016/j.watres.2023.119926_bib0005) 2022; 10 Zhang (10.1016/j.watres.2023.119926_bib0084) 2021; 60 Zhong (10.1016/j.watres.2023.119926_bib0092) 2021; 143 Liang (10.1016/j.watres.2023.119926_bib0034) 2022; 315 Yao (10.1016/j.watres.2023.119926_bib0073) 2022; 56 Yi (10.1016/j.watres.2023.119926_bib0075) 2022; 2 Zeinali (10.1016/j.watres.2023.119926_bib0079) 2019; 184 Ye (10.1016/j.watres.2023.119926_bib0074) 2020; 269 Calle-Vallejo (10.1016/j.watres.2023.119926_bib0002) 2015; 7 |
| References_xml | – volume: 354 start-page: 473 year: 2018 end-page: 480 ident: bib0052 article-title: Enhanced superoxide radical production for ofloxacin removal via persulfate activation with Cu-Fe oxide publication-title: Chem. Eng. J. – volume: 437 year: 2022 ident: bib0042 article-title: Heterogeneous activation of persulfate by metal and non-metal catalyst for the degradation of sulfamethoxazole: a review publication-title: Chem. Eng. J. – volume: 711 year: 2020 ident: bib0008 article-title: Enhanced degradation of triclosan by cobalt manganese spinel-type oxide activated peroxymonosulfate oxidation process via sulfate radicals and singlet oxygen: mechanisms and intermediates identification publication-title: Sci. Total Environ. – volume: 408 year: 2021 ident: bib0064 article-title: Mechanisms of persulfate activation on biochar derived from two different sludges: dominance of their intrinsic compositions publication-title: J. Hazard. Mater. – volume: 184 year: 2019 ident: bib0079 article-title: Destruction of dioxin and furan pollutants via electrophilic attack of singlet oxygen publication-title: Ecotoxicol. Environ. Saf. – volume: 330 start-page: 1390 year: 2017 end-page: 1400 ident: bib0010 article-title: Degradation of ciprofloxacin using α-MnO publication-title: Chem. Eng. J. – volume: 424 year: 2022 ident: bib0065 article-title: Why the cooperation of radical and non-radical pathways in PMS system leads to a higher efficiency than a single pathway in tetracycline degradation publication-title: J. Hazard. Mater. – volume: 410 year: 2021 ident: bib0072 article-title: Efficient photocatalytic degradation of tetracycline under visible light by Z-scheme Ag publication-title: Chem. Eng. J. – volume: 241 start-page: 561 year: 2019 end-page: 569 ident: bib0001 article-title: Surface-loaded metal nanoparticles for peroxymonosulfate activation: efficiency and mechanism reconnaissance publication-title: Appl. Catal. B-Environ. – volume: 388 year: 2020 ident: bib0076 article-title: In situ photoreduction of structural Fe(III) in a metal-organic framework for peroxydisulfate activation and efficient removal of antibiotics in real wastewater publication-title: J. Hazard. Mater. – volume: 432 year: 2022 ident: bib0096 article-title: Magnetic Co/Fe nanocomposites derived from ferric sludge as an efficient peroxymonosulfate catalyst for ciprofloxacin degradation publication-title: Chem. Eng. J. – volume: 62 year: 2023 ident: bib0091 article-title: Regulating spin states in oxygen electrocatalysis publication-title: Angew. Chem. Int. Ed. – volume: 359 start-page: 373 year: 2019 end-page: 384 ident: bib0004 article-title: Rational design and synthesis of hollow Co publication-title: Chem. Eng. J. – volume: 269 year: 2020 ident: bib0074 article-title: Nitrogen-doped biochar fiber with graphitization from publication-title: Appl. Catal. B-Environ. – volume: 225 start-page: 243 year: 2018 end-page: 257 ident: bib0007 article-title: Enhancing sulfacetamide degradation by peroxymonosulfate activation with N-doped graphene produced through delicately-controlled nitrogen functionalization via tweaking thermal annealing processes publication-title: Appl. Catal. B-Environ. – volume: 143 start-page: 4405 year: 2021 end-page: 4413 ident: bib0092 article-title: Electronic spin moment as a catalytic descriptor for Fe single-atom catalysts supported on C publication-title: J. Am. Chem. Soc. – volume: 359 start-page: 828 year: 2019 end-page: 839 ident: bib0019 article-title: Promoted peroxymonosulfate activation into singlet oxygen over perovskite for ofloxacin degradation by controlling the oxygen defect concentration publication-title: Chem. Eng. J. – volume: 431 year: 2022 ident: bib0061 article-title: Hydrodynamic cavitation-enhanced heterogeneous activation of persulfate for tetracycline degradation: synergistic effects, degradation mechanism and pathways publication-title: Chem. Eng. J. – volume: 411 year: 2021 ident: bib0018 article-title: Copper in LaMnO publication-title: J. Hazard. Mater. – volume: 423 year: 2021 ident: bib0060 article-title: Fe-doped ilmenite CoTiO publication-title: Chem. Eng. J. – volume: 398 year: 2020 ident: bib0024 article-title: Efficient degradation of sulfamethoxazole by CuCo LDH and LDH@fibers composite membrane activating peroxymonosulfate publication-title: Chem. Eng. J. – volume: 55 start-page: 16163 year: 2021 end-page: 16174 ident: bib0031 article-title: Correlation of active sites to generated reactive species and degradation routes of organics in peroxymonosulfate activation by Co-loaded carbon publication-title: Environ. Sci. Technol. – volume: 427 year: 2022 ident: bib0011 article-title: Copper catalysts for radical and nonradical persulfate based advanced oxidation processes: certainties and uncertainties publication-title: Chem. Eng. J. – volume: 423 year: 2022 ident: bib0053 article-title: Magnetic 2D/2D oxygen doped g-C publication-title: J. Hazard. Mater. – volume: 390 year: 2020 ident: bib0016 article-title: Degradation of sulphachloropyridazine sodium in column reactor packed with CoFe publication-title: Chem. Eng. J. – volume: 214 year: 2022 ident: bib0089 article-title: Surface-bound hydroxyl radical-dominated degradation of sulfamethoxazole in the amorphous FeOOH/peroxymonosulfate system: the key role of amorphous structure enhancing electron transfer publication-title: Environ. Res. – volume: 401 year: 2021 ident: bib0090 article-title: Heterogeneous activation of persulfate by carbon nanofiber supported Fe publication-title: J. Hazard. Mater. – volume: 428 year: 2022 ident: bib0062 article-title: Synergistic effects for boosted persulfate activation in a designed Fe-Cu dual-atom site catalyst publication-title: Chem. Eng. J. – volume: 375 year: 2019 ident: bib0054 article-title: Nitrogen-doped graphene as peroxymonosulfate activator and electron transfer mediator for the enhanced degradation of sulfamethoxazole publication-title: Chem. Eng. J. – volume: 424 year: 2022 ident: bib0069 article-title: Insights into the mechanism of enhanced peroxymonosulfate degraded tetracycline using metal organic framework derived carbonyl modified carbon-coated Fe publication-title: J. Hazard. Mater. – volume: 28 year: 2018 ident: bib0047 article-title: Identification and regulation of active sites on nanodiamonds: establishing a highly efficient catalytic system for oxidation of organic contaminants publication-title: Adv. Funct. Mater. – volume: 2 start-page: 1858 year: 2022 end-page: 1869 ident: bib0070 article-title: Challenges in radical/nonradical-based advanced oxidation processes for carbon recycling publication-title: Chem. Catal. – volume: 362 start-page: 561 year: 2019 end-page: 569 ident: bib0050 article-title: Biochar-induced Fe(III) reduction for persulfate activation in sulfamethoxazole degradation: insight into the electron transfer, radical oxidation and degradation pathways publication-title: Chem. Eng. J. – volume: 421 year: 2022 ident: bib0057 article-title: Tunable active sites on biogas digestate derived biochar for sulfanilamide degradation by peroxymonosulfate activation publication-title: J. Hazard. Mater. – volume: 218 year: 2022 ident: bib0012 article-title: Soybean straw biochar activating peroxydisulfate to simultaneously eliminate tetracycline and tetracycline resistance bacteria: insights on the mechanism publication-title: Water Res. – volume: 56 start-page: 1492 year: 2022 end-page: 1509 ident: bib0059 article-title: Aqueous Iron(IV)-oxo complex: an emerging powerful reactive oxidant formed by Iron(II)-based advanced oxidation processes for oxidative water treatment publication-title: Environ. Sci. Technol. – volume: 206 year: 2021 ident: bib0003 article-title: Synchronous removal of emulsions and soluble organic contaminants via a microalgae-based membrane system: performance and mechanisms publication-title: Water Res. – volume: 11 start-page: 9569 year: 2021 end-page: 9577 ident: bib0041 article-title: Spin-state-dependent peroxymonosulfate activation of single-atom M-N moieties via a radical-free pathway publication-title: ACS Catal. – volume: 52 start-page: 8649 year: 2018 end-page: 8658 ident: bib0095 article-title: Catalytic removal of aqueous contaminants on N-doped graphitic biochars: inherent roles of adsorption and nonradical mechanisms publication-title: Environ. Sci. Technol. – volume: 421 year: 2021 ident: bib0043 article-title: Synergistic effects of Co and N doped on graphitic carbon as an publication-title: Chem. Eng. J. – volume: 451 year: 2023 ident: bib0068 article-title: Versatile pathways for oxidating organics via peroxymonosulfate activation by different single atom catalysts confining with Fe-N publication-title: Chem. Eng. J. – volume: 410 year: 2021 ident: bib0093 article-title: Nonradical oxidation processes in PMS-based heterogeneous catalytic system: generation, identification, oxidation characteristics, challenges response and application prospects publication-title: Chem. Eng. J. – volume: 54 start-page: 16231 year: 2020 end-page: 16239 ident: bib0097 article-title: Unraveling the overlooked involvement of high-valent cobalt-oxo species generated from the cobalt(II)-activated peroxymonosulfate process publication-title: Environ. Sci. Technol. – volume: 48 start-page: 5868 year: 2014 end-page: 5875 ident: bib0087 article-title: Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation publication-title: Environ. Sci. Technol. – volume: 33 start-page: 4792 year: 2022 end-page: 4797 ident: bib0023 article-title: A natural manganese ore as a heterogeneous catalyst to effectively activate peroxymonosulfate to oxidize organic pollutants publication-title: Chin. Chem. Lett. – volume: 310 year: 2022 ident: bib0056 article-title: Sulfamethoxazole degradation by regulating active sites on distilled spirits lees-derived biochar in a continuous flow fixed bed peroxymonosulfate reactor publication-title: Appl. Catal. B-Environ. – volume: 55 start-page: 10077 year: 2021 end-page: 10086 ident: bib0033 article-title: Persulfate oxidation of sulfamethoxazole by magnetic iron-char composites via nonradical pathways: Fe(IV) publication-title: Environ. Sci. Technol. – volume: 385 year: 2020 ident: bib0029 article-title: Structure-dependent catalysis of cuprous oxides in peroxymonosulfate activation via nonradical pathway with a high oxidation capacity publication-title: J. Hazard. Mater. – volume: 449 year: 2023 ident: bib0088 article-title: Applications of vacancy defect engineering in persulfate activation: performance and internal mechanism publication-title: J. Hazard. Mater. – volume: 95 start-page: 158 year: 2022 end-page: 166 ident: bib0006 article-title: Effect of the chloride ion on advanced oxidation processes catalyzed by Fe-based metallic glass for wastewater treatment publication-title: J. Mater. Sci. Technol. – volume: 325 year: 2023 ident: bib0048 article-title: Unsaturated single-atom CoN publication-title: Appl. Catal. B-Environ. – volume: 198 start-page: 295 year: 2016 end-page: 302 ident: bib0055 article-title: Activation of peroxymonosulfate by carbonaceous oxygen groups: experimental and density functional theory calculations publication-title: Appl. Catal. B-Environ. – volume: 225 year: 2022 ident: bib0038 article-title: Revealing the fundamental role of MoO publication-title: Water Res. – volume: 2 start-page: 1836 year: 2022 end-page: 1846 ident: bib0075 article-title: Unraveling the Co(IV)-mediated oxidation mechanism in a Co publication-title: ACS EST Eng. – volume: 14 start-page: 37865 year: 2022 end-page: 37877 ident: bib0030 article-title: Modulating the electronic coordination configuration and d‑band center in homo-diatomic Fe publication-title: ACS Appl. Mater. Interfaces – volume: 32 start-page: 1064 year: 2022 end-page: 3389 ident: bib0081 article-title: Nanoconfinement in advanced oxidation processes publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 2 start-page: 2014 year: 2022 end-page: 2022 ident: bib0009 article-title: Nanoconfinement-regulated peroxymonosulfate activation via an anomalously efficient mediated electrontransfer pathway on cobalt publication-title: ACS ES&T Eng. – volume: 440 year: 2022 ident: bib0032 article-title: Sludge-derived biochar toward sustainable peroxymonosulfate activation: regulation of active sites and synergistic production of reaction oxygen species publication-title: Chem. Eng. J. – volume: 52 start-page: 14371 year: 2018 end-page: 14380 ident: bib0022 article-title: Electronic structure modulation of graphitic carbon nitride by oxygen doping for enhanced catalytic degradation of organic pollutants through peroxymonosulfate activation publication-title: Environ. Sci. Technol. – volume: 436 year: 2022 ident: bib0049 article-title: Manipulating the morphology of 3D flower-like CoMn publication-title: Chem. Eng. J. – volume: 251 year: 2020 ident: bib0028 article-title: Occurrence and toxicity of antibiotics in the aquatic environment: a review publication-title: Chemosphere – volume: 11 start-page: 11129 year: 2021 end-page: 11159 ident: bib0085 article-title: Density functional theory calculations for insight into the heterocatalyst reactivity and mechanism in persulfate-based advanced oxidation reactions publication-title: ACS Catal. – volume: 56 start-page: 1321 year: 2022 end-page: 1330 ident: bib0080 article-title: Elucidating the mechanistic origin of a spin state-dependent FeNx-C catalyst toward organic contaminant oxidation via peroxymonosulfate activation publication-title: Environ. Sci. Technol. – volume: 56 start-page: 78 year: 2022 end-page: 97 ident: bib0045 article-title: Origins of electron-transfer regime in persulfate-based nonradical oxidation processes publication-title: Environ. Sci. Technol. – volume: 212 start-page: 536 year: 2019 end-page: 544 ident: bib0058 article-title: Nanoscaled magnetic CuFe publication-title: Sep. Puri. Technol. – volume: 219 year: 2022 ident: bib0086 article-title: Insight into metal-free carbon catalysis in enhanced permanganate oxidation: changeover from electron donor to electron mediator publication-title: Water Res. – volume: 7 start-page: 403 year: 2015 end-page: 410 ident: bib0002 article-title: Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers publication-title: Nat. Chem. – volume: 133 start-page: 4638 year: 2021 end-page: 4643 ident: bib0040 article-title: Almost 100 % peroxymonosulfate conversion to singlet oxygen on single-atom CoN publication-title: Angew. Chem. – volume: 315 year: 2022 ident: bib0034 article-title: Accelerating radical generation from peroxymonosulfate by confined variable Co species toward ciprofloxacin mineralization: ROS quantification and mechanisms elucidation publication-title: Appl. Catal. B-Environ. – volume: 205 year: 2022 ident: bib0044 article-title: High efficiency degradation of tetracycline by peroxymonosulfate activated with Fe/NC catalysts: performance, intermediates, stability and mechanism publication-title: Environ. Res. – volume: 10 year: 2022 ident: bib0005 article-title: Catalytic persulfate activation for oxidation of organic pollutants: a critical review on mechanisms and controversies publication-title: J. Environ. Chem. Eng. – volume: 259 year: 2020 ident: bib0017 article-title: Experimental and theoretical insights into kinetics and mechanisms of hydroxyl and sulfate radicals-mediated degradation of sulfamethoxazole: similarities and differences publication-title: Environ. Pollut. – volume: 399 year: 2020 ident: bib0067 article-title: Efficient degradation of sulfamethoxazole by NiCo publication-title: J. Hazard. Mater. – volume: 411 year: 2021 ident: bib0027 article-title: A review of the innovations in metal- and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical publication-title: Chem. Eng. J. – volume: 416 year: 2021 ident: bib0035 article-title: Peroxymonosulfate activation by cobalt(II) for degradation of organic contaminants via high-valent cobalt-oxo and radical species publication-title: J. Hazard. Mater. – volume: 411 year: 2021 ident: bib0051 article-title: Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants publication-title: Chem. Eng. J. – volume: 654 year: 2022 ident: bib0083 article-title: Synthesis of Fe-N publication-title: Colloids Surf. A – volume: 33 start-page: 3713 year: 2022 end-page: 3720 ident: bib0020 article-title: CoFe publication-title: Chin. Chem. Lett. – volume: 383 year: 2020 ident: bib0014 article-title: Degradation mechanisms of ofloxacin and cefazolin using peroxymonosulfate activated by reduced graphene oxide-CoFe publication-title: Chem. Eng. J. – volume: 429 year: 2022 ident: bib0021 article-title: Degradation of antibiotic pollutants by persulfate activated with various carbon materials publication-title: Chem. Eng. J. – volume: 56 start-page: 8784 year: 2022 end-page: 8795 ident: bib0066 article-title: Effects of molecular structure on organic contaminants' degradation efficiency and dominant ROS in the advanced oxidation process with multiple ROS publication-title: Environ. Sci. Technol. – volume: 310 year: 2021 ident: bib0071 article-title: Facile synthesis of cobalt-iron layered double hydroxides nanosheets for direct activation of peroxymonosulfate (PMS) during degradation of fluoroquinolones antibiotics publication-title: J. Clean. Prod. – volume: 60 start-page: 21751 year: 2021 end-page: 21755 ident: bib0084 article-title: Carbon nitride supported high-loading Fe single-atom catalyst for activation of peroxymonosulfate to generate publication-title: Angew. Chem. Int. Ed. – volume: 125 start-page: 209 year: 2017 end-page: 218 ident: bib0094 article-title: Activation of peroxymonosulfate by phenols: important role of quinone intermediates and involvement of singlet oxygen publication-title: Water Res. – volume: 55 start-page: 15400 year: 2021 end-page: 15411 ident: bib0063 article-title: Oxygen vacancy-induced nonradical degradation of organics: critical trigger of oxygen (O publication-title: Environ. Sci. Technol. – volume: 5 start-page: 4629 year: 2015 end-page: 4636 ident: bib0013 article-title: Insights into heterogeneous catalysis of persulfate activation on dimensional-structured nanocarbons publication-title: ACS Catal. – volume: 414 year: 2021 ident: bib0037 article-title: Oily sludge derived carbons as peroxymonosulfate activators for removing aqueous organic pollutants: performances and the key role of carbonyl groups in electron-transfer mechanism publication-title: J. Hazard. Mater. – volume: 450 year: 2022 ident: bib0015 article-title: Peroxymonosulfate activation by iron self-doped sludge-derived biochar for degradation of perfluorooctanoic acid: a singlet oxygen-dominated nonradical pathway publication-title: Chem. Eng. J. – volume: 443 year: 2022 ident: bib0025 article-title: Defect- and nitrogen-rich porous carbon embedded with Co NPs derived from self-assembled Co-ZIF-8 @ anionic polyacrylamide network as PMS activator for highly efficient removal of tetracycline hydrochloride from water publication-title: Chem. Eng. J. – volume: 357 start-page: 589 year: 2019 end-page: 599 ident: bib0077 article-title: Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway: performance and mechanism publication-title: Chem. Eng. J. – volume: 221 year: 2022 ident: bib0046 article-title: Degradation of organic contaminants by reactive iron/manganese species: progress and challenges publication-title: Water Res. – volume: 229 year: 2023 ident: bib0082 article-title: Different reaction mechanisms of SO publication-title: Water Res. – volume: 44 start-page: 4185 year: 2020 end-page: 4198 ident: bib0026 article-title: Catalytic activity of a magnetic Fe publication-title: New J. Chem. – volume: 399 year: 2020 ident: bib0039 article-title: Insight into the effect of lignocellulosic biomass source on the performance of biochar as persulfate activator for aqueous organic pollutants remediation: epicarp and mesocarp of citrus peels as examples publication-title: J. Hazard. Mater. – volume: 56 start-page: 8833 year: 2022 end-page: 8843 ident: bib0073 article-title: Rational regulation of Co-N-C coordination for high-efficiency generation of publication-title: Environ. Sci. Technol. – volume: 433 year: 2022 ident: bib0078 article-title: Non-radical oxidation in environmental catalysis: recognition, identification, and perspectives publication-title: Chem. Eng. J. – volume: 427 year: 2022 ident: bib0036 article-title: Heteroatom doping in metal-free carbonaceous materials for the enhancement of persulfate activation publication-title: Chem. Eng. J. – volume: 56 start-page: 1321 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0080 article-title: Elucidating the mechanistic origin of a spin state-dependent FeNx-C catalyst toward organic contaminant oxidation via peroxymonosulfate activation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c05980 – volume: 48 start-page: 5868 issue: 10 year: 2014 ident: 10.1016/j.watres.2023.119926_bib0087 article-title: Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation publication-title: Environ. Sci. Technol. doi: 10.1021/es501218f – volume: 450 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0015 article-title: Peroxymonosulfate activation by iron self-doped sludge-derived biochar for degradation of perfluorooctanoic acid: a singlet oxygen-dominated nonradical pathway publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.137953 – volume: 398 year: 2020 ident: 10.1016/j.watres.2023.119926_bib0024 article-title: Efficient degradation of sulfamethoxazole by CuCo LDH and LDH@fibers composite membrane activating peroxymonosulfate publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125676 – volume: 424 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0065 article-title: Why the cooperation of radical and non-radical pathways in PMS system leads to a higher efficiency than a single pathway in tetracycline degradation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.127247 – volume: 330 start-page: 1390 year: 2017 ident: 10.1016/j.watres.2023.119926_bib0010 article-title: Degradation of ciprofloxacin using α-MnO2 activated peroxymonosulfate process: effect of water constituents, degradation intermediates and toxicity evaluation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.07.137 – volume: 11 start-page: 11129 issue: 17 year: 2021 ident: 10.1016/j.watres.2023.119926_bib0085 article-title: Density functional theory calculations for insight into the heterocatalyst reactivity and mechanism in persulfate-based advanced oxidation reactions publication-title: ACS Catal. doi: 10.1021/acscatal.1c03099 – volume: 56 start-page: 78 issue: 1 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0045 article-title: Origins of electron-transfer regime in persulfate-based nonradical oxidation processes publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c05374 – volume: 424 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0069 article-title: Insights into the mechanism of enhanced peroxymonosulfate degraded tetracycline using metal organic framework derived carbonyl modified carbon-coated Fe0 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.127640 – volume: 385 year: 2020 ident: 10.1016/j.watres.2023.119926_bib0029 article-title: Structure-dependent catalysis of cuprous oxides in peroxymonosulfate activation via nonradical pathway with a high oxidation capacity publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121518 – volume: 414 year: 2021 ident: 10.1016/j.watres.2023.119926_bib0037 article-title: Oily sludge derived carbons as peroxymonosulfate activators for removing aqueous organic pollutants: performances and the key role of carbonyl groups in electron-transfer mechanism publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.125552 – volume: 359 start-page: 373 year: 2019 ident: 10.1016/j.watres.2023.119926_bib0004 article-title: Rational design and synthesis of hollow Co3O4@Fe2O3 core-shell nanostructure for the catalytic degradation of norfloxacin by coupling with peroxymonosulfate publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.11.120 – volume: 449 year: 2023 ident: 10.1016/j.watres.2023.119926_bib0088 article-title: Applications of vacancy defect engineering in persulfate activation: performance and internal mechanism publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2023.130971 – volume: 383 year: 2020 ident: 10.1016/j.watres.2023.119926_bib0014 article-title: Degradation mechanisms of ofloxacin and cefazolin using peroxymonosulfate activated by reduced graphene oxide-CoFe2O4 composites publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123056 – volume: 184 year: 2019 ident: 10.1016/j.watres.2023.119926_bib0079 article-title: Destruction of dioxin and furan pollutants via electrophilic attack of singlet oxygen publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2019.109605 – volume: 56 start-page: 8833 issue: 12 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0073 article-title: Rational regulation of Co-N-C coordination for high-efficiency generation of 1O2 toward nearly 100% selective degradation of organic pollutants publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c00706 – volume: 225 start-page: 243 year: 2018 ident: 10.1016/j.watres.2023.119926_bib0007 article-title: Enhancing sulfacetamide degradation by peroxymonosulfate activation with N-doped graphene produced through delicately-controlled nitrogen functionalization via tweaking thermal annealing processes publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2017.11.071 – volume: 711 year: 2020 ident: 10.1016/j.watres.2023.119926_bib0008 article-title: Enhanced degradation of triclosan by cobalt manganese spinel-type oxide activated peroxymonosulfate oxidation process via sulfate radicals and singlet oxygen: mechanisms and intermediates identification publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.134715 – volume: 654 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0083 article-title: Synthesis of Fe-Nx site-based iron-nitrogen co-doped biochar catalysts for efficient removal of sulfamethoxazole from water by activation of persulfate: electron transfer mechanism of non-free radical degradation publication-title: Colloids Surf. A doi: 10.1016/j.colsurfa.2022.130174 – volume: 436 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0049 article-title: Manipulating the morphology of 3D flower-like CoMn2O4 bimetallic catalyst for enhancing the activation of peroxymonosulfate toward the degradation of selected persistent pharmaceuticals in water publication-title: Chem. Eng. J. – volume: 54 start-page: 16231 issue: 24 year: 2020 ident: 10.1016/j.watres.2023.119926_bib0097 article-title: Unraveling the overlooked involvement of high-valent cobalt-oxo species generated from the cobalt(II)-activated peroxymonosulfate process publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c06808 – volume: 388 year: 2020 ident: 10.1016/j.watres.2023.119926_bib0076 article-title: In situ photoreduction of structural Fe(III) in a metal-organic framework for peroxydisulfate activation and efficient removal of antibiotics in real wastewater publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121996 – volume: 310 year: 2021 ident: 10.1016/j.watres.2023.119926_bib0071 article-title: Facile synthesis of cobalt-iron layered double hydroxides nanosheets for direct activation of peroxymonosulfate (PMS) during degradation of fluoroquinolones antibiotics publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.127584 – volume: 14 start-page: 37865 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0030 article-title: Modulating the electronic coordination configuration and d‑band center in homo-diatomic Fe2N6 catalysts for enhanced peroxymonosulfate activation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c12036 – volume: 225 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0038 article-title: Revealing the fundamental role of MoO2 in promoting efficient and stable activation of persulfate by iron carbon based catalysts: efficient Fe2+/Fe3+ cycling to generate reactive species publication-title: Water Res. doi: 10.1016/j.watres.2022.119142 – volume: 269 year: 2020 ident: 10.1016/j.watres.2023.119926_bib0074 article-title: Nitrogen-doped biochar fiber with graphitization from Boehmeria nivea for promoted peroxymonosulfate activation and non-radical degradation pathways with enhancing electron transfer publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2020.118850 – volume: 359 start-page: 828 year: 2019 ident: 10.1016/j.watres.2023.119926_bib0019 article-title: Promoted peroxymonosulfate activation into singlet oxygen over perovskite for ofloxacin degradation by controlling the oxygen defect concentration publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.11.184 – volume: 2 start-page: 1858 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0070 article-title: Challenges in radical/nonradical-based advanced oxidation processes for carbon recycling publication-title: Chem. Catal. – volume: 11 start-page: 9569 year: 2021 ident: 10.1016/j.watres.2023.119926_bib0041 article-title: Spin-state-dependent peroxymonosulfate activation of single-atom M-N moieties via a radical-free pathway publication-title: ACS Catal. doi: 10.1021/acscatal.1c02031 – volume: 421 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0057 article-title: Tunable active sites on biogas digestate derived biochar for sulfanilamide degradation by peroxymonosulfate activation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.126794 – volume: 33 start-page: 4792 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0023 article-title: A natural manganese ore as a heterogeneous catalyst to effectively activate peroxymonosulfate to oxidize organic pollutants publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2022.01.029 – volume: 357 start-page: 589 year: 2019 ident: 10.1016/j.watres.2023.119926_bib0077 article-title: Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway: performance and mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.09.184 – volume: 133 start-page: 4638 year: 2021 ident: 10.1016/j.watres.2023.119926_bib0040 article-title: Almost 100 % peroxymonosulfate conversion to singlet oxygen on single-atom CoN2+2 sites publication-title: Angew. Chem. doi: 10.1002/ange.202014472 – volume: 10 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0005 article-title: Catalytic persulfate activation for oxidation of organic pollutants: a critical review on mechanisms and controversies publication-title: J. Environ. Chem. Eng. – volume: 423 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0053 article-title: Magnetic 2D/2D oxygen doped g-C3N4/biochar composite to activate peroxymonosulfate for degradation of emerging organic pollutants publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.127207 – volume: 408 year: 2021 ident: 10.1016/j.watres.2023.119926_bib0064 article-title: Mechanisms of persulfate activation on biochar derived from two different sludges: dominance of their intrinsic compositions publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.124454 – volume: 62 year: 2023 ident: 10.1016/j.watres.2023.119926_bib0091 article-title: Regulating spin states in oxygen electrocatalysis publication-title: Angew. Chem. Int. Ed. – volume: 451 year: 2023 ident: 10.1016/j.watres.2023.119926_bib0068 article-title: Versatile pathways for oxidating organics via peroxymonosulfate activation by different single atom catalysts confining with Fe-N4 or Cu-N4 sites publication-title: Chem. Eng. J. – volume: 214 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0089 article-title: Surface-bound hydroxyl radical-dominated degradation of sulfamethoxazole in the amorphous FeOOH/peroxymonosulfate system: the key role of amorphous structure enhancing electron transfer publication-title: Environ. Res. doi: 10.1016/j.envres.2022.113964 – volume: 427 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0011 article-title: Copper catalysts for radical and nonradical persulfate based advanced oxidation processes: certainties and uncertainties publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131776 – volume: 2 start-page: 2014 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0009 article-title: Nanoconfinement-regulated peroxymonosulfate activation via an anomalously efficient mediated electrontransfer pathway on cobalt publication-title: ACS ES&T Eng. doi: 10.1021/acsestengg.2c00129 – volume: 205 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0044 article-title: High efficiency degradation of tetracycline by peroxymonosulfate activated with Fe/NC catalysts: performance, intermediates, stability and mechanism publication-title: Environ. Res. doi: 10.1016/j.envres.2021.112538 – volume: 362 start-page: 561 year: 2019 ident: 10.1016/j.watres.2023.119926_bib0050 article-title: Biochar-induced Fe(III) reduction for persulfate activation in sulfamethoxazole degradation: insight into the electron transfer, radical oxidation and degradation pathways publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.01.053 – volume: 198 start-page: 295 year: 2016 ident: 10.1016/j.watres.2023.119926_bib0055 article-title: Activation of peroxymonosulfate by carbonaceous oxygen groups: experimental and density functional theory calculations publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2016.05.075 – volume: 401 year: 2021 ident: 10.1016/j.watres.2023.119926_bib0090 article-title: Heterogeneous activation of persulfate by carbon nanofiber supported Fe3O4@carbon composites for efficient ibuprofen degradation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.123428 – volume: 44 start-page: 4185 issue: 10 year: 2020 ident: 10.1016/j.watres.2023.119926_bib0026 article-title: Catalytic activity of a magnetic Fe2O3@CoFe2O4 nanocomposite in peroxymonosulfate activation for norfloxacin removal publication-title: New J. Chem. doi: 10.1039/C9NJ04379A – volume: 251 year: 2020 ident: 10.1016/j.watres.2023.119926_bib0028 article-title: Occurrence and toxicity of antibiotics in the aquatic environment: a review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126351 – volume: 410 year: 2021 ident: 10.1016/j.watres.2023.119926_bib0072 article-title: Efficient photocatalytic degradation of tetracycline under visible light by Z-scheme Ag3PO4/mixed-valence MIL-88A(Fe) heterojunctions: mechanism insight, degradation pathways and DFT calculation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128454 – volume: 55 start-page: 10077 issue: 14 year: 2021 ident: 10.1016/j.watres.2023.119926_bib0033 article-title: Persulfate oxidation of sulfamethoxazole by magnetic iron-char composites via nonradical pathways: Fe(IV) versus surface-mediated electron transfer publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c01618 – volume: 437 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0042 article-title: Heterogeneous activation of persulfate by metal and non-metal catalyst for the degradation of sulfamethoxazole: a review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.135277 – volume: 56 start-page: 1492 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0059 article-title: Aqueous Iron(IV)-oxo complex: an emerging powerful reactive oxidant formed by Iron(II)-based advanced oxidation processes for oxidative water treatment publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c04530 – volume: 56 start-page: 8784 issue: 12 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0066 article-title: Effects of molecular structure on organic contaminants' degradation efficiency and dominant ROS in the advanced oxidation process with multiple ROS publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c00464 – volume: 33 start-page: 3713 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0020 article-title: CoFe2O4 nanoparticles anchored on waste eggshell for catalytic oxidation of florfenicol via activating peroxymonosulfate publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2021.11.096 – volume: 433 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0078 article-title: Non-radical oxidation in environmental catalysis: recognition, identification, and perspectives publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.134385 – volume: 7 start-page: 403 year: 2015 ident: 10.1016/j.watres.2023.119926_bib0002 article-title: Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers publication-title: Nat. Chem. doi: 10.1038/nchem.2226 – volume: 32 start-page: 1064 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0081 article-title: Nanoconfinement in advanced oxidation processes publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 428 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0062 article-title: Synergistic effects for boosted persulfate activation in a designed Fe-Cu dual-atom site catalyst publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132611 – volume: 411 year: 2021 ident: 10.1016/j.watres.2023.119926_bib0027 article-title: A review of the innovations in metal- and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical vs. non-radical degradation pathways of organic contaminants publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127957 – volume: 423 year: 2021 ident: 10.1016/j.watres.2023.119926_bib0060 article-title: Fe-doped ilmenite CoTiO3 for antibiotic removal: electronic modulation and enhanced activation of peroxymonosulfate publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.130165 – volume: 143 start-page: 4405 year: 2021 ident: 10.1016/j.watres.2023.119926_bib0092 article-title: Electronic spin moment as a catalytic descriptor for Fe single-atom catalysts supported on C2N publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c00889 – volume: 325 year: 2023 ident: 10.1016/j.watres.2023.119926_bib0048 article-title: Unsaturated single-atom CoN3 sites for improved fenton-like reaction towards high-valent metal species publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2023.122368 – volume: 310 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0056 article-title: Sulfamethoxazole degradation by regulating active sites on distilled spirits lees-derived biochar in a continuous flow fixed bed peroxymonosulfate reactor publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2022.121342 – volume: 55 start-page: 15400 issue: 22 year: 2021 ident: 10.1016/j.watres.2023.119926_bib0063 article-title: Oxygen vacancy-induced nonradical degradation of organics: critical trigger of oxygen (O2) in the Fe-Co LDH/peroxymonosulfate system publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c04600 – volume: 241 start-page: 561 year: 2019 ident: 10.1016/j.watres.2023.119926_bib0001 article-title: Surface-loaded metal nanoparticles for peroxymonosulfate activation: efficiency and mechanism reconnaissance publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2018.09.056 – volume: 60 start-page: 21751 year: 2021 ident: 10.1016/j.watres.2023.119926_bib0084 article-title: Carbon nitride supported high-loading Fe single-atom catalyst for activation of peroxymonosulfate to generate 1O2 with 100 % selectivity publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202109488 – volume: 427 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0036 article-title: Heteroatom doping in metal-free carbonaceous materials for the enhancement of persulfate activation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131655 – volume: 429 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0021 article-title: Degradation of antibiotic pollutants by persulfate activated with various carbon materials publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.132387 – volume: 431 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0061 article-title: Hydrodynamic cavitation-enhanced heterogeneous activation of persulfate for tetracycline degradation: synergistic effects, degradation mechanism and pathways publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.134238 – volume: 375 year: 2019 ident: 10.1016/j.watres.2023.119926_bib0054 article-title: Nitrogen-doped graphene as peroxymonosulfate activator and electron transfer mediator for the enhanced degradation of sulfamethoxazole publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122041 – volume: 2 start-page: 1836 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0075 article-title: Unraveling the Co(IV)-mediated oxidation mechanism in a Co3O4/PMS-based hierarchical reactor: toward efficient catalytic degradation of aromatic pollutants publication-title: ACS EST Eng. doi: 10.1021/acsestengg.2c00087 – volume: 219 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0086 article-title: Insight into metal-free carbon catalysis in enhanced permanganate oxidation: changeover from electron donor to electron mediator publication-title: Water Res. doi: 10.1016/j.watres.2022.118626 – volume: 421 year: 2021 ident: 10.1016/j.watres.2023.119926_bib0043 article-title: Synergistic effects of Co and N doped on graphitic carbon as an in situ surface-bound radical generation for the rapid degradation of emerging contaminants publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.129818 – volume: 411 year: 2021 ident: 10.1016/j.watres.2023.119926_bib0018 article-title: Copper in LaMnO3 to promote peroxymonosulfate activation by regulating the reactive oxygen species in sulfamethoxazole degradation publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2021.125163 – volume: 218 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0012 article-title: Soybean straw biochar activating peroxydisulfate to simultaneously eliminate tetracycline and tetracycline resistance bacteria: insights on the mechanism publication-title: Water Res. doi: 10.1016/j.watres.2022.118489 – volume: 5 start-page: 4629 issue: 8 year: 2015 ident: 10.1016/j.watres.2023.119926_bib0013 article-title: Insights into heterogeneous catalysis of persulfate activation on dimensional-structured nanocarbons publication-title: ACS Catal. doi: 10.1021/acscatal.5b00774 – volume: 221 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0046 article-title: Degradation of organic contaminants by reactive iron/manganese species: progress and challenges publication-title: Water Res. doi: 10.1016/j.watres.2022.118765 – volume: 28 issue: 13 year: 2018 ident: 10.1016/j.watres.2023.119926_bib0047 article-title: Identification and regulation of active sites on nanodiamonds: establishing a highly efficient catalytic system for oxidation of organic contaminants publication-title: Adv. Funct. Mater. – volume: 440 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0032 article-title: Sludge-derived biochar toward sustainable peroxymonosulfate activation: regulation of active sites and synergistic production of reaction oxygen species publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.135897 – volume: 399 year: 2020 ident: 10.1016/j.watres.2023.119926_bib0039 article-title: Insight into the effect of lignocellulosic biomass source on the performance of biochar as persulfate activator for aqueous organic pollutants remediation: epicarp and mesocarp of citrus peels as examples publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.123043 – volume: 206 year: 2021 ident: 10.1016/j.watres.2023.119926_bib0003 article-title: Synchronous removal of emulsions and soluble organic contaminants via a microalgae-based membrane system: performance and mechanisms publication-title: Water Res. doi: 10.1016/j.watres.2021.117741 – volume: 315 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0034 article-title: Accelerating radical generation from peroxymonosulfate by confined variable Co species toward ciprofloxacin mineralization: ROS quantification and mechanisms elucidation publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2022.121542 – volume: 390 year: 2020 ident: 10.1016/j.watres.2023.119926_bib0016 article-title: Degradation of sulphachloropyridazine sodium in column reactor packed with CoFe2O4-loaded quartz sand via peroxymonosulfate activation: insights into the amorphous phase, efficiency, and mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124549 – volume: 52 start-page: 14371 issue: 24 year: 2018 ident: 10.1016/j.watres.2023.119926_bib0022 article-title: Electronic structure modulation of graphitic carbon nitride by oxygen doping for enhanced catalytic degradation of organic pollutants through peroxymonosulfate activation publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b05246 – volume: 432 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0096 article-title: Magnetic Co/Fe nanocomposites derived from ferric sludge as an efficient peroxymonosulfate catalyst for ciprofloxacin degradation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.134180 – volume: 443 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0025 article-title: Defect- and nitrogen-rich porous carbon embedded with Co NPs derived from self-assembled Co-ZIF-8 @ anionic polyacrylamide network as PMS activator for highly efficient removal of tetracycline hydrochloride from water publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136439 – volume: 212 start-page: 536 year: 2019 ident: 10.1016/j.watres.2023.119926_bib0058 article-title: Nanoscaled magnetic CuFe2O4 as an activator of peroxymonosulfate for the degradation of antibiotics norfloxacin publication-title: Sep. Puri. Technol. doi: 10.1016/j.seppur.2018.11.051 – volume: 259 year: 2020 ident: 10.1016/j.watres.2023.119926_bib0017 article-title: Experimental and theoretical insights into kinetics and mechanisms of hydroxyl and sulfate radicals-mediated degradation of sulfamethoxazole: similarities and differences publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.113795 – volume: 354 start-page: 473 year: 2018 ident: 10.1016/j.watres.2023.119926_bib0052 article-title: Enhanced superoxide radical production for ofloxacin removal via persulfate activation with Cu-Fe oxide publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.08.055 – volume: 410 year: 2021 ident: 10.1016/j.watres.2023.119926_bib0093 article-title: Nonradical oxidation processes in PMS-based heterogeneous catalytic system: generation, identification, oxidation characteristics, challenges response and application prospects publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.128312 – volume: 399 year: 2020 ident: 10.1016/j.watres.2023.119926_bib0067 article-title: Efficient degradation of sulfamethoxazole by NiCo2O4 modified expanded graphite activated peroxymonosulfate: characterization, mechanism and degradation intermediates publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.123103 – volume: 55 start-page: 16163 issue: 23 year: 2021 ident: 10.1016/j.watres.2023.119926_bib0031 article-title: Correlation of active sites to generated reactive species and degradation routes of organics in peroxymonosulfate activation by Co-loaded carbon publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c06244 – volume: 416 year: 2021 ident: 10.1016/j.watres.2023.119926_bib0035 article-title: Peroxymonosulfate activation by cobalt(II) for degradation of organic contaminants via high-valent cobalt-oxo and radical species publication-title: J. Hazard. Mater. – volume: 229 year: 2023 ident: 10.1016/j.watres.2023.119926_bib0082 article-title: Different reaction mechanisms of SO4•− and •OH with organic compound interpreted at molecular orbital level in Co(II)/peroxymonosulfate catalytic activation system publication-title: Water Res. doi: 10.1016/j.watres.2022.119392 – volume: 125 start-page: 209 year: 2017 ident: 10.1016/j.watres.2023.119926_bib0094 article-title: Activation of peroxymonosulfate by phenols: important role of quinone intermediates and involvement of singlet oxygen publication-title: Water Res. doi: 10.1016/j.watres.2017.08.049 – volume: 95 start-page: 158 year: 2022 ident: 10.1016/j.watres.2023.119926_bib0006 article-title: Effect of the chloride ion on advanced oxidation processes catalyzed by Fe-based metallic glass for wastewater treatment publication-title: J. Mater. Sci. Technol. – volume: 411 year: 2021 ident: 10.1016/j.watres.2023.119926_bib0051 article-title: Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.128392 – volume: 52 start-page: 8649 issue: 15 year: 2018 ident: 10.1016/j.watres.2023.119926_bib0095 article-title: Catalytic removal of aqueous contaminants on N-doped graphitic biochars: inherent roles of adsorption and nonradical mechanisms publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b01817 |
| SSID | ssj0002239 |
| Score | 2.7184954 |
| SecondaryResourceType | review_article |
| Snippet | •PS activation by heterogeneous catalysts are compared systematically.•The relationship between active sites and oxidative species is summarized.•The... At present, numerous heterogeneous catalysts have been synthesized to activate persulfate (PS) and produce various reactive species for antibiotic degradation... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 119926 |
| SubjectTerms | Active sites aniline Anti-Bacterial Agents antibiotics Carbon catalysts Catalytic Domain Degradation routes electron transfer Heterogeneous catalysts Iron - chemistry oxidation Oxidation-Reduction Oxidative species Oxidative Stress Persulfate pollutants water Water Pollutants, Chemical - chemistry |
| Title | A critical review on correlating active sites, oxidative species and degradation routes with persulfate-based antibiotics oxidation |
| URI | https://dx.doi.org/10.1016/j.watres.2023.119926 https://www.ncbi.nlm.nih.gov/pubmed/37004307 https://www.proquest.com/docview/2794689971 https://www.proquest.com/docview/2834200995 |
| Volume | 235 |
| WOSCitedRecordID | wos000973289500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1879-2448 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002239 issn: 0043-1354 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nj9MwELW6uwgtB8Q35WNlJG4llZLUtX2sYNGCVisOi9Rb5NgObVWSqjRLOfML-MfM2HE2YikLBy5RlThJ1fc6Ho9n3hDyUiWFTNRYRanJk2hkmIpEoVTE7JhZ8OdloVzXklN-diamU_mh1_sRamEulrwsxXYrV_8VajgHYGPp7D_A3T4UTsBnAB2OADsc_wr4yUCH9gWhLgVTzde-agVLEp2JG-C2sQOx2s6Nl__GsktYObsNBYMqEr7h0mBd1RiedTHbFfiL9bIAFzXCGRCVXrHspHJyz82jGqgXocMMCjE2qkIzp2-69Sn1bRDidO5Z2UyjLobr-AVnvrUTxxvfOvtEwWvayNBMVT7PuPw0q-fdIEbiUgZ9GefQesMrOO70eNXNYJmTlHVsa4yZsuPfmn0fgVgMvyossBniG4ZXhwNOq88O9ZQ7rTN-OQm2qYnh0h45SDiTYCgPJu-Op-_b6R38KRlqMF2i4NWXHpKb4TG73J1dyxnn1pzfIbeb9QideB7dJT1b3iO3OiqV98n3CQ2Mop5RtCpph1HUM4o6Rr2iLZ9owycKfKIdPlHPJ4p8or_yiXb4RFs-PSAf3x6fvz6Jmt4dkU4l20QoMyisUrmx4DEbWHXAWllbcJgkKuQJPRrlYD5ibZQudFGkKldpDr5pYXgeS50-JPtlVdrHhCZCsjQ3iZaJGWmmFNfYXppJxq0Rse2TNPzEmW6E7bG_yjILGYyLzGOUIUaZx6hPovaulRd2uWY8D-hljXPqnc4MSHjNnS8C2BnYbtyQU6WtahiE3R2ElDz-wxiRjnAHU7I-eeSZ0n7fQLInO688JYeXf7dnZH-zru1zckNfbOZf1kdkj0_FUUPwn7B10dg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+critical+review+on+correlating+active+sites%2C+oxidative+species+and+degradation+routes+with+persulfate-based+antibiotics+oxidation&rft.jtitle=Water+research+%28Oxford%29&rft.au=Li%2C+Ning&rft.au=Ye%2C+Jingya&rft.au=Dai%2C+Haoxi&rft.au=Shao%2C+Penghui&rft.date=2023-05-15&rft.eissn=1879-2448&rft.volume=235&rft.spage=119926&rft_id=info:doi/10.1016%2Fj.watres.2023.119926&rft_id=info%3Apmid%2F37004307&rft.externalDocID=37004307 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1354&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1354&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1354&client=summon |