Developing window behavior models for residential buildings using XGBoost algorithm

•Longitudinal behavioral data were collected from six apartments, lasting for 136 days.•Window behavior models were developed for residential buildings in China.•XGBoost algorithm showed better prediction performance than logistic regression. Buildings account for over 32% of total society energy co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy and buildings Jg. 205; S. 109564
Hauptverfasser: Mo, Hao, Sun, Hejiang, Liu, Junjie, Wei, Shen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Lausanne Elsevier B.V 15.12.2019
Elsevier BV
Schlagworte:
ISSN:0378-7788, 1872-6178
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Longitudinal behavioral data were collected from six apartments, lasting for 136 days.•Window behavior models were developed for residential buildings in China.•XGBoost algorithm showed better prediction performance than logistic regression. Buildings account for over 32% of total society energy consumption, and to make buildings more energy efficient dynamic building performance simulation has been widely adopted during the buildings’ design to help select most appropriate HVAC (Heating Ventilation and Air Conditioning) systems. Due to the lack of good behavioral models in current simulation packages, many researchers have tried to develop useful behavioral models to improve simulation accuracy, including window behavior models, using field data collected from real buildings. During this work, many mathematical and machine learning methods have been used, and some level of prediction accuracy has been achieved. XGBoost is a recently introduced machine learning algorithm, which has been proven as very powerful in modeling complicated processes in other research fields. In this study, this algorithm has been adopted to model and predict occupant window behavior, aiming to further improve the modeling accuracy from a globally accepted modeling approach, namely, Logistic Regression Analysis. Field data in terms of both occupant window behavior and relevant influential factors were collected from real residential buildings during transitional seasons. Both XGBoost and Logistic Regression Analysis were used to build window behavior models, after a feature selection work, and their prediction performances on an independent dataset were compared. The comparison revealed that XGBoost has solid advantages in modeling occupant window behavior, over Logistic Regression Analysis, and it is expecting that the same finding would be obtained for other behavioral types, such as blind control and air-conditioner operation.
AbstractList Buildings account for over 32% of total society energy consumption, and to make buildings more energy efficient dynamic building performance simulation has been widely adopted during the buildings' design to help select most appropriate HVAC (Heating Ventilation and Air Conditioning) systems. Due to the lack of good behavioral models in current simulation packages, many researchers have tried to develop useful behavioral models to improve simulation accuracy, including window behavior models, using field data collected from real buildings. During this work, many mathematical and machine learning methods have been used, and some level of prediction accuracy has been achieved. XGBoost is a recently introduced machine learning algorithm, which has been proven as very powerful in modeling complicated processes in other research fields. In this study, this algorithm has been adopted to model and predict occupant window behavior, aiming to further improve the modeling accuracy from a globally accepted modeling approach, namely, Logistic Regression Analysis. Field data in terms of both occupant window behavior and relevant influential factors were collected from real residential buildings during transitional seasons. Both XGBoost and Logistic Regression Analysis were used to build window behavior models, after a feature selection work, and their prediction performances on an independent dataset were compared. The comparison revealed that XGBoost has solid advantages in modeling occupant window behavior, over Logistic Regression Analysis, and it is expecting that the same finding would be obtained for other behavioral types, such as blind control and air-conditioner operation.
•Longitudinal behavioral data were collected from six apartments, lasting for 136 days.•Window behavior models were developed for residential buildings in China.•XGBoost algorithm showed better prediction performance than logistic regression. Buildings account for over 32% of total society energy consumption, and to make buildings more energy efficient dynamic building performance simulation has been widely adopted during the buildings’ design to help select most appropriate HVAC (Heating Ventilation and Air Conditioning) systems. Due to the lack of good behavioral models in current simulation packages, many researchers have tried to develop useful behavioral models to improve simulation accuracy, including window behavior models, using field data collected from real buildings. During this work, many mathematical and machine learning methods have been used, and some level of prediction accuracy has been achieved. XGBoost is a recently introduced machine learning algorithm, which has been proven as very powerful in modeling complicated processes in other research fields. In this study, this algorithm has been adopted to model and predict occupant window behavior, aiming to further improve the modeling accuracy from a globally accepted modeling approach, namely, Logistic Regression Analysis. Field data in terms of both occupant window behavior and relevant influential factors were collected from real residential buildings during transitional seasons. Both XGBoost and Logistic Regression Analysis were used to build window behavior models, after a feature selection work, and their prediction performances on an independent dataset were compared. The comparison revealed that XGBoost has solid advantages in modeling occupant window behavior, over Logistic Regression Analysis, and it is expecting that the same finding would be obtained for other behavioral types, such as blind control and air-conditioner operation.
ArticleNumber 109564
Author Sun, Hejiang
Wei, Shen
Mo, Hao
Liu, Junjie
Author_xml – sequence: 1
  givenname: Hao
  surname: Mo
  fullname: Mo, Hao
  organization: Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
– sequence: 2
  givenname: Hejiang
  surname: Sun
  fullname: Sun, Hejiang
  email: sunhe@tju.edu.cn
  organization: Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
– sequence: 3
  givenname: Junjie
  surname: Liu
  fullname: Liu, Junjie
  organization: Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
– sequence: 4
  givenname: Shen
  surname: Wei
  fullname: Wei, Shen
  email: shen.wei@ucl.ac.uk
  organization: The Bartlett School of Construction and Project Management, University College London (UCL), 1-19 Torrington Place, London WC1E 7HB, UK
BookMark eNqFkE1LAzEQhoNUsH78BGHB89Yk22yyeBCtn1DwoAdvIZtMbMo2qUna4r93a3vy0tMMw_u8A88pGvjgAaFLgkcEk_p6PgLfrlxnRhSTpr81rB4foSERnJY14WKAhrjiouRciBN0mtIcY1wzTobo_QHW0IWl81_FxnkTNkULM7V2IRaLYKBLhe3XCMkZ8Nmprvh71edTsUpb7PP5PoSUC9V9hejybHGOjq3qElzs5xn6eHr8mLyU07fn18ndtNRVw3LZ4JpQiwlwxYAzqrWtoRXGkspaXY_bljBuqRkb2mihRKPailFTAcdjItrqDF3tapcxfK8gZTkPq-j7j5JWlNGmEkz0qZtdSseQUgQrtcsqu-BzVK6TBMutRDmXe4lyK1HuJPY0-0cvo1uo-HOQu91xvUBYO4gyaQdeg3ERdJYmuAMNv35xkoo
CitedBy_id crossref_primary_10_1016_j_jobe_2024_110015
crossref_primary_10_1109_TCE_2024_3470241
crossref_primary_10_1016_j_ijhydene_2025_05_156
crossref_primary_10_1016_j_rser_2024_114284
crossref_primary_10_1016_j_buildenv_2022_109081
crossref_primary_10_1111_exsy_13379
crossref_primary_10_3390_su17052048
crossref_primary_10_1016_j_energy_2023_128255
crossref_primary_10_1155_2022_2288321
crossref_primary_10_3390_en18082050
crossref_primary_10_1109_ACCESS_2024_3470869
crossref_primary_10_1016_j_enbuild_2021_111297
crossref_primary_10_5194_nhess_25_3505_2025
crossref_primary_10_1007_s10479_021_04187_w
crossref_primary_10_1088_2631_8695_ad5d51
crossref_primary_10_1016_j_enbuild_2025_115409
crossref_primary_10_1016_j_enbuild_2023_113349
crossref_primary_10_1111_exsy_13300
crossref_primary_10_1109_JSEN_2024_3408678
crossref_primary_10_1016_j_buildenv_2023_110741
crossref_primary_10_3390_en14238161
crossref_primary_10_1016_j_renene_2024_120369
crossref_primary_10_1007_s11356_024_35005_y
crossref_primary_10_3390_buildings14092796
crossref_primary_10_1016_j_ringps_2021_100034
crossref_primary_10_1109_TIA_2022_3206731
crossref_primary_10_1016_j_enbuild_2022_112552
crossref_primary_10_1016_j_applthermaleng_2023_121013
crossref_primary_10_1080_10255842_2023_2263125
crossref_primary_10_1016_j_chroma_2024_464996
crossref_primary_10_1177_0958305X231174000
crossref_primary_10_1007_s10479_024_06008_2
crossref_primary_10_3390_buildings14061638
crossref_primary_10_1016_j_scs_2022_103999
crossref_primary_10_1007_s11227_022_04573_6
crossref_primary_10_3390_su16219324
crossref_primary_10_1016_j_jobe_2023_108158
crossref_primary_10_1016_j_ijrefrig_2024_01_025
crossref_primary_10_1038_s41598_023_42469_4
crossref_primary_10_1016_j_jwpe_2025_107683
crossref_primary_10_22430_22565337_2650
crossref_primary_10_1080_02533839_2025_2517355
crossref_primary_10_1016_j_ijthermalsci_2024_109519
crossref_primary_10_1016_j_ijpvp_2022_104655
crossref_primary_10_3390_app12105143
crossref_primary_10_1016_j_enbuild_2024_114386
crossref_primary_10_1016_j_compchemeng_2025_109400
crossref_primary_10_1016_j_enbuild_2022_111870
crossref_primary_10_1111_tgis_12992
crossref_primary_10_3390_rs14092224
crossref_primary_10_1016_j_enbuild_2023_113171
crossref_primary_10_1016_j_microc_2025_114150
crossref_primary_10_3390_su15118606
crossref_primary_10_1016_j_enbuild_2021_111347
crossref_primary_10_1080_17512549_2025_2513327
crossref_primary_10_1016_j_enbuild_2021_111588
crossref_primary_10_3389_fenvs_2022_1005806
crossref_primary_10_1080_24705314_2025_2471682
crossref_primary_10_1007_s11831_025_10380_y
crossref_primary_10_1016_j_enbuild_2021_111505
crossref_primary_10_1016_j_asoc_2023_110066
crossref_primary_10_18559_ebr_2024_2_1149
crossref_primary_10_1016_j_ecolind_2025_113593
crossref_primary_10_1016_j_buildenv_2024_111197
crossref_primary_10_3390_electronics13081420
crossref_primary_10_1016_j_heliyon_2024_e34437
crossref_primary_10_1016_j_jobe_2021_102514
crossref_primary_10_1016_j_apgeog_2025_103662
crossref_primary_10_3390_s21030930
crossref_primary_10_1016_j_jobe_2024_110330
crossref_primary_10_1016_j_jobe_2025_113962
crossref_primary_10_1007_s11069_024_06596_z
crossref_primary_10_1016_j_buildenv_2024_111912
crossref_primary_10_1016_j_buildenv_2024_111525
crossref_primary_10_3390_rs13010155
crossref_primary_10_1016_j_applthermaleng_2025_127664
crossref_primary_10_1088_1755_1315_1372_1_012094
crossref_primary_10_1016_j_buildenv_2022_108998
crossref_primary_10_1016_j_enbuild_2025_115452
crossref_primary_10_1016_j_fuel_2020_118783
crossref_primary_10_1007_s10479_024_06018_0
crossref_primary_10_3390_rs14010120
crossref_primary_10_1016_j_energy_2020_119505
crossref_primary_10_3390_su16135779
crossref_primary_10_1016_j_matpr_2023_09_044
crossref_primary_10_3390_buildings13112694
crossref_primary_10_1016_j_enbuild_2023_113546
crossref_primary_10_1016_j_epsr_2024_111065
crossref_primary_10_1007_s10666_021_09807_0
crossref_primary_10_1016_j_jece_2025_116749
crossref_primary_10_3390_app10248968
crossref_primary_10_3390_buildings12060734
crossref_primary_10_3390_make6030086
crossref_primary_10_1038_s41598_023_28770_2
crossref_primary_10_1186_s44147_023_00226_4
crossref_primary_10_1007_s00449_025_03187_5
crossref_primary_10_1080_17457300_2025_2541666
crossref_primary_10_1186_s43093_025_00560_4
crossref_primary_10_1016_j_irfa_2024_103147
crossref_primary_10_3390_app142411705
crossref_primary_10_1016_j_jobe_2024_110279
crossref_primary_10_1002_cpe_6116
crossref_primary_10_1016_j_enbuild_2022_111831
crossref_primary_10_1038_s41529_025_00573_y
crossref_primary_10_1016_j_enbuild_2024_114109
crossref_primary_10_1080_09544828_2025_2546838
crossref_primary_10_1155_2020_8887364
crossref_primary_10_1007_s00521_022_07216_2
crossref_primary_10_1007_s10462_022_10286_2
crossref_primary_10_1016_j_scitotenv_2022_159701
crossref_primary_10_1016_j_jobe_2024_108906
crossref_primary_10_1016_j_energy_2022_126209
crossref_primary_10_1016_j_scs_2022_103775
crossref_primary_10_1007_s11831_025_10309_5
crossref_primary_10_1016_j_autcon_2023_104938
crossref_primary_10_1007_s12273_022_0907_y
crossref_primary_10_1016_j_ijheatmasstransfer_2025_127577
crossref_primary_10_1177_1420326X221148730
crossref_primary_10_1080_19401493_2024_2422919
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Dec 15, 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Dec 15, 2019
DBID AAYXX
CITATION
7ST
8FD
C1K
F28
FR3
KR7
SOI
DOI 10.1016/j.enbuild.2019.109564
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-6178
ExternalDocumentID 10_1016_j_enbuild_2019_109564
S0378778819324971
GroupedDBID --M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
SDF
SDG
SES
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~02
~G-
--K
29G
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RPZ
SAC
SET
SEW
WUQ
ZMT
ZY4
~HD
7ST
8FD
AGCQF
C1K
F28
FR3
KR7
SOI
ID FETCH-LOGICAL-c395t-90612f01e7a5e752ccf6eb8df13ffc64bb157f2d4d29c8a89ab352d3e70418b3
ISICitedReferencesCount 134
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000499767900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-7788
IngestDate Wed Aug 13 10:36:45 EDT 2025
Sat Nov 29 07:15:25 EST 2025
Tue Nov 18 22:18:47 EST 2025
Fri Feb 23 02:49:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Window behavior
XGBoost algorithm
Behavior modeling
Logistics regression
Residential buildings
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c395t-90612f01e7a5e752ccf6eb8df13ffc64bb157f2d4d29c8a89ab352d3e70418b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2325293858
PQPubID 2045483
ParticipantIDs proquest_journals_2325293858
crossref_citationtrail_10_1016_j_enbuild_2019_109564
crossref_primary_10_1016_j_enbuild_2019_109564
elsevier_sciencedirect_doi_10_1016_j_enbuild_2019_109564
PublicationCentury 2000
PublicationDate 2019-12-15
PublicationDateYYYYMMDD 2019-12-15
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-15
  day: 15
PublicationDecade 2010
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Energy and buildings
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Gortmaker, Hosmer, Lemeshow (bib0024) 1994; 23
Fan, Xiao, Zhao (bib0039) 2017; 195
Dobbin, Simon (bib0061) 2011; 4
Mortazavi, Bucholz, Desai, Huang, Curtis, Masoudi, Shaw, Negahban, Krumholz (bib0046) 2019; 2
Zhang, Nie, Li, Wei (bib0055) 2019; 50
Torlay, Perrone-Bertolotti, Thomas, Baciu (bib0049) 2017; 4
Jeong, Jeong, Park (bib0021) 2016; 127
Luo, Cao, Zhou, Li, Zhang, Ouyang, Zhu (bib0009) 2014; 72
Fan, Wang, Wu, Zhou, Zhang, Yu, Lu, Xiang (bib0041) 2018; 164
Rijal, Humphreys, Nicol (bib0027) 2018; 1
Li, Li, Fan, Jia (bib0063) 2015; 73
Markovic, Grintal, Woelki, Frisch, van Treeck (bib0035) 2018; 145
Stazi, Naspi, D'Orazio (bib0025) 2017; 111
Nishio, Nishizawa, Sugiyama, Kojima, Yakami, Kuroda, Togashi (bib0042) 2018; 13
Lopes, Antunes, Martins (bib0003) 2012; 16
O'Brien, Kapsis, Athienitis (bib0016) 2013; 60
Chen, Chen (bib0050) 2019; E102D
Lai, Jia, Qi, Liu (bib0053) 2018; 142
Goutte, Gaussier (bib0059) 2005; 3408
Barthelmes, Heo, Fabi, Corgnati (bib0034) 2017; 126
Gunay, O'Brien, Beausoleil-Morrison (bib0002) 2013; 70
Taninaga, Nishiyama, Fujibayashi, Gunji, Sasabe, Iijima, Naito (bib0045) 2019; 9
Wei, Jones, de Wilde (bib0058) 2014; 70
Pan, Han, Wei, Wei, Xia, Xie, Kong, Yu (bib0030) 2019; 149
Steemers, Yun (bib0010) 2009; 37
Darby, Elmualim, Clements-Croome, Yearley, Box (bib0011) 2016; 8
Wei, Buswell, Loveday (bib0022) 2013; 62
Shi, Qian, Zheng, Lv, Li, Liu, Nielsen (bib0029) 2018; 130
Haldi, Robinson (bib0026) 2009; 44
Peffer, Pritoni, Meier, Aragon, Perry (bib0006) 2011; 46
Brown, Dowlatabadi, Cole (bib0007) 2009; 1
de Dear, Brager (bib0008) 2002; 34
Yao, Cai, Chen, Shen, Shi, Guo (bib0051) 2019; 96
Kim, Hong, Kim (bib0018) 2019; 153
Yun, Steemers (bib0057) 2008; 43
J.S. Weihl, P.M. Gladhart, Occupant behavior and successful energy conservation: finding and implications of behavioral monitoring, (1990).
Hernesniemi, Mahdiani, Tynkkynen, Lyytikainen, Mishra, Lehtimaki, Eskola, Nikus, Antila, Oksala (bib0043) 2019; 51
Zeng, An, Lin, Dong, Zheng, Li, Duan, Shu, Li (bib0044) 2019
Chakraborty, Elzarka (bib0040) 2019; 185
Pei, Dong, Liu (bib0052) 2019; 147
Chen, Chen, Liu, Chen (bib0038) 2019; 101
Ji, Tong, Liu, Shi (bib0047) 2019
Spiegel, Stephens (bib0056) 2018
Uerge-Vorsatz, Cabeza, Serrano, Barreneche, Petrichenko (bib0001) 2015; 41
Lai, Qi, Liu, Dai, Zhao, Wei (bib0054) 2018; 143
Haldi, Cali, Andersen, Wesseling, Mueller (bib0014) 2017; 10
H. Huang, J. Wang, H. Abudureyimu, A. International speech communications, Maximum F1-Score Discriminative Training for Automatic Mispronunciation Detection in Computer-Assisted Language Learning, 2012.
Wei, Hassan, Firth, Fouchal (bib0005) 2017; 9
Schweiker, Haldi, Shukuya, Robinson (bib0064) 2012; 5
Wei, Yu, Pan, Xia, Xie, Wang, Wu, Zhang, Li (bib0031) 2019; 157
Porritt, Cropper, Shao, Goodier (bib0013) 2012; 55
Jones, Fuertes, Gregori, Giretti (bib0020) 2017; 118
Roetzel, Tsangrassoulis, Dietrich, Busching (bib0017) 2010; 14
Fabi, Andersen, Corgnati, Olesen (bib0015) 2012; 58
Qiao, Sun, Li, Xia, Zhao, Qin (bib0048) 2018; 247
Cali, Andersen, Mueller, Olesen (bib0032) 2016; 103
Andersen, Fabi, Toftum, Corgnati, Olesen (bib0019) 2013; 69
Agha-Hossein, Tetlow, Hadi, El-Jouzi, Elmualim, Ellis, Williams (bib0004) 2015; 7
Yun, Steemers (bib0028) 2010; 84
Yan, Hong (bib0023) 2018; 66
Fabi, Andersen, Corgnati (bib0033) 2015; 94
T. Chen, C. Guestrin, M. Assoc Comp, XGBoost: a scalable tree boosting system, 2016.
Wang, Greenberg (bib0012) 2015; 92
Langevin, Wen, Gurian (bib0036) 2015; 88
Taninaga (10.1016/j.enbuild.2019.109564_bib0045) 2019; 9
Wang (10.1016/j.enbuild.2019.109564_bib0012) 2015; 92
Schweiker (10.1016/j.enbuild.2019.109564_bib0064) 2012; 5
Lopes (10.1016/j.enbuild.2019.109564_bib0003) 2012; 16
Fabi (10.1016/j.enbuild.2019.109564_bib0015) 2012; 58
Yao (10.1016/j.enbuild.2019.109564_bib0051) 2019; 96
Wei (10.1016/j.enbuild.2019.109564_bib0031) 2019; 157
Stazi (10.1016/j.enbuild.2019.109564_bib0025) 2017; 111
Ji (10.1016/j.enbuild.2019.109564_bib0047) 2019
Brown (10.1016/j.enbuild.2019.109564_bib0007) 2009; 1
Fabi (10.1016/j.enbuild.2019.109564_bib0033) 2015; 94
Yun (10.1016/j.enbuild.2019.109564_bib0028) 2010; 84
Li (10.1016/j.enbuild.2019.109564_bib0063) 2015; 73
Chen (10.1016/j.enbuild.2019.109564_bib0050) 2019; E102D
Wei (10.1016/j.enbuild.2019.109564_bib0005) 2017; 9
Hernesniemi (10.1016/j.enbuild.2019.109564_bib0043) 2019; 51
Yan (10.1016/j.enbuild.2019.109564_bib0023) 2018; 66
Pei (10.1016/j.enbuild.2019.109564_bib0052) 2019; 147
de Dear (10.1016/j.enbuild.2019.109564_bib0008) 2002; 34
Jeong (10.1016/j.enbuild.2019.109564_bib0021) 2016; 127
Chakraborty (10.1016/j.enbuild.2019.109564_bib0040) 2019; 185
O'Brien (10.1016/j.enbuild.2019.109564_bib0016) 2013; 60
Markovic (10.1016/j.enbuild.2019.109564_bib0035) 2018; 145
Qiao (10.1016/j.enbuild.2019.109564_bib0048) 2018; 247
Yun (10.1016/j.enbuild.2019.109564_bib0057) 2008; 43
Luo (10.1016/j.enbuild.2019.109564_bib0009) 2014; 72
Mortazavi (10.1016/j.enbuild.2019.109564_bib0046) 2019; 2
Spiegel (10.1016/j.enbuild.2019.109564_bib0056) 2018
Haldi (10.1016/j.enbuild.2019.109564_bib0014) 2017; 10
Wei (10.1016/j.enbuild.2019.109564_bib0058) 2014; 70
Barthelmes (10.1016/j.enbuild.2019.109564_bib0034) 2017; 126
Gortmaker (10.1016/j.enbuild.2019.109564_bib0024) 1994; 23
Fan (10.1016/j.enbuild.2019.109564_bib0039) 2017; 195
Fan (10.1016/j.enbuild.2019.109564_bib0041) 2018; 164
Goutte (10.1016/j.enbuild.2019.109564_bib0059) 2005; 3408
Haldi (10.1016/j.enbuild.2019.109564_bib0026) 2009; 44
Nishio (10.1016/j.enbuild.2019.109564_bib0042) 2018; 13
Chen (10.1016/j.enbuild.2019.109564_bib0038) 2019; 101
Porritt (10.1016/j.enbuild.2019.109564_bib0013) 2012; 55
Pan (10.1016/j.enbuild.2019.109564_bib0030) 2019; 149
Torlay (10.1016/j.enbuild.2019.109564_bib0049) 2017; 4
10.1016/j.enbuild.2019.109564_bib0060
10.1016/j.enbuild.2019.109564_bib0062
Shi (10.1016/j.enbuild.2019.109564_bib0029) 2018; 130
Gunay (10.1016/j.enbuild.2019.109564_bib0002) 2013; 70
Lai (10.1016/j.enbuild.2019.109564_bib0054) 2018; 143
Agha-Hossein (10.1016/j.enbuild.2019.109564_bib0004) 2015; 7
Rijal (10.1016/j.enbuild.2019.109564_bib0027) 2018; 1
Kim (10.1016/j.enbuild.2019.109564_bib0018) 2019; 153
Uerge-Vorsatz (10.1016/j.enbuild.2019.109564_bib0001) 2015; 41
Jones (10.1016/j.enbuild.2019.109564_bib0020) 2017; 118
Cali (10.1016/j.enbuild.2019.109564_bib0032) 2016; 103
Zeng (10.1016/j.enbuild.2019.109564_bib0044) 2019
Roetzel (10.1016/j.enbuild.2019.109564_bib0017) 2010; 14
Lai (10.1016/j.enbuild.2019.109564_bib0053) 2018; 142
Dobbin (10.1016/j.enbuild.2019.109564_bib0061) 2011; 4
Andersen (10.1016/j.enbuild.2019.109564_bib0019) 2013; 69
Darby (10.1016/j.enbuild.2019.109564_bib0011) 2016; 8
Wei (10.1016/j.enbuild.2019.109564_bib0022) 2013; 62
10.1016/j.enbuild.2019.109564_bib0037
Peffer (10.1016/j.enbuild.2019.109564_bib0006) 2011; 46
Langevin (10.1016/j.enbuild.2019.109564_bib0036) 2015; 88
Zhang (10.1016/j.enbuild.2019.109564_bib0055) 2019; 50
Steemers (10.1016/j.enbuild.2019.109564_bib0010) 2009; 37
References_xml – volume: 9
  start-page: 97
  year: 2017
  end-page: 106
  ident: bib0005
  article-title: Impact of occupant behaviour on the energy-saving potential of retrofit measures for a public building in the UK
  publication-title: Intell. Build. Int.
– volume: 84
  start-page: 1216
  year: 2010
  end-page: 1231
  ident: bib0028
  article-title: Night-time naturally ventilated offices: statistical simulations of window-use patterns from field monitoring
  publication-title: Sol. Energy
– reference: H. Huang, J. Wang, H. Abudureyimu, A. International speech communications, Maximum F1-Score Discriminative Training for Automatic Mispronunciation Detection in Computer-Assisted Language Learning, 2012.
– volume: 149
  start-page: 210
  year: 2019
  end-page: 219
  ident: bib0030
  article-title: A model based on Gauss Distribution for predicting window behavior in building
  publication-title: Build. Environ.
– volume: 23
  start-page: 159
  year: 1994
  ident: bib0024
  publication-title: Applied Logistic Regression
– volume: 127
  start-page: 206
  year: 2016
  end-page: 216
  ident: bib0021
  article-title: Occupant behavior regarding the manual control of windows in residential buildings
  publication-title: Energy Build.
– volume: 247
  start-page: 111
  year: 2018
  end-page: 115
  ident: bib0048
  article-title: Using machine learning approaches for emergency room visit prediction based on electronic health record data
  publication-title: Stud. Health Technol. Inform.
– volume: 62
  start-page: 87
  year: 2013
  end-page: 96
  ident: bib0022
  article-title: Factors affecting end-of-day window position in a non-air-conditioned office building
  publication-title: Energy Build.
– volume: 60
  start-page: 319
  year: 2013
  end-page: 338
  ident: bib0016
  article-title: Manually-operated window shade patterns in office buildings: a critical review
  publication-title: Build. Environ.
– volume: 111
  start-page: 24
  year: 2017
  end-page: 32
  ident: bib0025
  article-title: Modelling window status in school classrooms. Results from a case study in Italy
  publication-title: Build. Environ.
– volume: 70
  start-page: 36
  year: 2014
  end-page: 44
  ident: bib0058
  article-title: Driving factors for occupant-controlled space heating in residential buildings
  publication-title: Energy Build.
– volume: 5
  start-page: 55
  year: 2012
  end-page: 74
  ident: bib0064
  article-title: Verification of stochastic models of window opening behaviour for residential buildings
  publication-title: J. Build. Perform. Simul.
– volume: 143
  start-page: 679
  year: 2018
  end-page: 690
  ident: bib0054
  article-title: Ventilation behavior in residential buildings with mechanical ventilation systems across different climate zones in China
  publication-title: Build. Environ.
– volume: 50
  start-page: 158
  year: 2019
  end-page: 167
  ident: bib0055
  article-title: Feature selection with multi-view data: a survey
  publication-title: Inf. Fusion
– volume: 3408
  start-page: 345
  year: 2005
  end-page: 359
  ident: bib0059
  article-title: A probabilistic interpretation of precision, recall and F-score, with implication for evaluation
  publication-title: Advances in Information Retrieval
– volume: 37
  start-page: 625
  year: 2009
  end-page: 637
  ident: bib0010
  article-title: Household energy consumption: a study of the role of occupants
  publication-title: Build. Res. Inf.
– volume: 44
  start-page: 2378
  year: 2009
  end-page: 2395
  ident: bib0026
  article-title: Interactions with window openings by office occupants
  publication-title: Build. Environ.
– year: 2018
  ident: bib0056
  article-title: Statistics
– volume: 8
  start-page: 157
  year: 2016
  end-page: 175
  ident: bib0011
  article-title: Influence of occupants’ behaviour on energy and carbon emission reduction in a higher education building in the UK
  publication-title: Intell. Build. Int.
– volume: 16
  start-page: 4095
  year: 2012
  end-page: 4104
  ident: bib0003
  article-title: Energy behaviours as promoters of energy efficiency: a 21st century review
  publication-title: Renew. Sustain. Energy Rev.
– start-page: 10
  year: 2019
  ident: bib0047
  article-title: Five-Feature model for developing the classifier for synergistic vs. antagonistic drug combinations built by XGBoost
  publication-title: Front. Genet.
– volume: 10
  start-page: 527
  year: 2017
  end-page: 544
  ident: bib0014
  article-title: Modelling diversity in building occupant behaviour: a novel statistical approach
  publication-title: J. Build. Perform. Simul.
– volume: 9
  year: 2019
  ident: bib0045
  article-title: Prediction of future gastric cancer risk using a machine learning algorithm and comprehensive medical check-up data: a case-control study
  publication-title: Sci. Rep.
– volume: 13
  year: 2018
  ident: bib0042
  article-title: Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization
  publication-title: PLoS One
– volume: 34
  start-page: 549
  year: 2002
  end-page: 561
  ident: bib0008
  article-title: Thermal comfort in naturally ventilated buildings: revisions to Ashrae Standard 55
  publication-title: Energy Build.
– volume: 195
  start-page: 222
  year: 2017
  end-page: 233
  ident: bib0039
  article-title: A short-term building cooling load prediction method using deep learning algorithms
  publication-title: Appl. Energy
– volume: 2
  year: 2019
  ident: bib0046
  article-title: Comparison of machine learning methods with national cardiovascular data registry models for prediction of risk of bleeding after percutaneous coronary intervention
  publication-title: JAMA Netw. Open
– volume: E102D
  start-page: 878
  year: 2019
  end-page: 887
  ident: bib0050
  article-title: AI@ntiPhish – Machine Learning mechanisms for cyber-phishing attack
  publication-title: IEICE Trans. Inf. Syst.
– volume: 4
  start-page: 159
  year: 2017
  end-page: 169
  ident: bib0049
  article-title: Machine learning-XGBoost analysis of language networks to classify patients with epilepsy
  publication-title: Brain Inform.
– volume: 130
  start-page: 85
  year: 2018
  end-page: 93
  ident: bib0029
  article-title: Seasonal variation of window opening behaviors in two naturally ventilated hospital wards
  publication-title: Build. Environ.
– volume: 88
  start-page: 27
  year: 2015
  end-page: 45
  ident: bib0036
  article-title: Simulating the human-building interaction: development and validation of an agent-based model of office occupant behaviors
  publication-title: Build. Environ.
– volume: 153
  start-page: 46
  year: 2019
  end-page: 59
  ident: bib0018
  article-title: Automatic ventilation control algorithm considering the indoor environmental quality factors and occupant ventilation behavior using a logistic regression model
  publication-title: Build. Environ.
– volume: 66
  year: 2018
  ident: bib0023
  publication-title: Definition and Simulation of Occupant Behavior in Buildings
– volume: 46
  start-page: 2529
  year: 2011
  end-page: 2541
  ident: bib0006
  article-title: How people use thermostats in homes: a review
  publication-title: Build. Environ.
– volume: 70
  start-page: 31
  year: 2013
  end-page: 47
  ident: bib0002
  article-title: A critical review of observation studies, modeling, and simulation of adaptive occupant behaviors in offices
  publication-title: Build. Environ.
– volume: 142
  start-page: 234
  year: 2018
  end-page: 243
  ident: bib0053
  article-title: Window-opening behavior in Chinese residential buildings across different climate zones
  publication-title: Build. Environ.
– volume: 43
  start-page: 1471
  year: 2008
  end-page: 1482
  ident: bib0057
  article-title: Time-dependent occupant behaviour models of window control in summer
  publication-title: Build. Environ.
– volume: 164
  start-page: 102
  year: 2018
  end-page: 111
  ident: bib0041
  article-title: Comparison of support vector machine and extreme gradient boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: a case study in China
  publication-title: Energy Convers. Manag.
– volume: 157
  start-page: 1
  year: 2019
  end-page: 15
  ident: bib0031
  article-title: Comparison of different window behavior modeling approaches during transition season in Beijing, China
  publication-title: Build. Environ.
– volume: 185
  start-page: 326
  year: 2019
  end-page: 344
  ident: bib0040
  article-title: Early detection of faults in HVAC systems using an XGBoost model with a dynamic threshold
  publication-title: Energy Build.
– reference: T. Chen, C. Guestrin, M. Assoc Comp, XGBoost: a scalable tree boosting system, 2016.
– volume: 147
  start-page: 473
  year: 2019
  end-page: 481
  ident: bib0052
  article-title: Operating behavior and corresponding performance of portable air cleaners in residential buildings, China
  publication-title: Build. Environ.
– volume: 126
  start-page: 318
  year: 2017
  end-page: 330
  ident: bib0034
  article-title: Exploration of the Bayesian Network framework for modelling. window control behaviour
  publication-title: Build. Environ.
– volume: 1
  start-page: 310
  year: 2018
  end-page: 321
  ident: bib0027
  article-title: Development of a window opening algorithm based on adaptive thermal comfort to predict occupant behavior in Japanese dwellings
  publication-title: Jpn. Archit. Rev.
– year: 2019
  ident: bib0044
  article-title: Prediction of complications after paediatric cardiac surgery
  publication-title: Eur. J. Cardiothorac. Surg.
– volume: 92
  start-page: 313
  year: 2015
  end-page: 321
  ident: bib0012
  article-title: Window operation and impacts on building energy consumption
  publication-title: Energy Build.
– volume: 58
  start-page: 188
  year: 2012
  end-page: 198
  ident: bib0015
  article-title: Occupants' window opening behaviour: a literature review of factors influencing occupant behaviour and models
  publication-title: Build. Environ.
– volume: 96
  start-page: 92
  year: 2019
  end-page: 97
  ident: bib0051
  article-title: Prediction of antiepileptic drug treatment outcomes of patients with newly diagnosed epilepsy by machine learning
  publication-title: Epilepsy Behav.
– volume: 4
  year: 2011
  ident: bib0061
  article-title: Optimally splitting cases for training and testing high dimensional classifiers
  publication-title: BMC Med. Genom.
– volume: 41
  start-page: 85
  year: 2015
  end-page: 98
  ident: bib0001
  article-title: Heating and cooling energy trends and drivers in buildings
  publication-title: Renew. Sustain. Energy Rev.
– volume: 69
  start-page: 101
  year: 2013
  end-page: 113
  ident: bib0019
  article-title: Window opening behaviour modelled from measurements in Danish dwellings
  publication-title: Build. Environ.
– volume: 51
  start-page: 156
  year: 2019
  end-page: 163
  ident: bib0043
  article-title: Extensive phenotype data and machine learning in prediction of mortality in acute coronary syndrome – the Maddec study
  publication-title: Ann. Med.
– reference: J.S. Weihl, P.M. Gladhart, Occupant behavior and successful energy conservation: finding and implications of behavioral monitoring, (1990).
– volume: 1
  start-page: 296
  year: 2009
  end-page: 315
  ident: bib0007
  article-title: Feedback and adaptive behaviour in green buildings
  publication-title: Intell. Build. Int.
– volume: 72
  start-page: 411
  year: 2014
  end-page: 418
  ident: bib0009
  article-title: Can personal control influence human thermal comfort? A field study in residential buildings in China in winter
  publication-title: Energy Build.
– volume: 101
  start-page: 2283
  year: 2019
  end-page: 2295
  ident: bib0038
  article-title: Prediction of weld bead geometry of MAG welding based on XGBoost algorithm
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 145
  start-page: 319
  year: 2018
  end-page: 329
  ident: bib0035
  article-title: Window opening model using deep learning methods
  publication-title: Build. Environ.
– volume: 103
  start-page: 54
  year: 2016
  end-page: 69
  ident: bib0032
  article-title: Analysis of occupants' behavior related to the use of windows in German households
  publication-title: Build. Environ.
– volume: 73
  start-page: 84
  year: 2015
  end-page: 91
  ident: bib0063
  article-title: Probability of occupant operation of windows during transition seasons in office buildings
  publication-title: Renew. Energy
– volume: 55
  start-page: 16
  year: 2012
  end-page: 27
  ident: bib0013
  article-title: Ranking of interventions to reduce dwelling overheating during heat waves
  publication-title: Energy Build.
– volume: 7
  start-page: 16
  year: 2015
  end-page: 35
  ident: bib0004
  article-title: Providing persuasive feedback through interactive posters to motivate energy-saving behaviours
  publication-title: Intell. Build. Int.
– volume: 14
  start-page: 1001
  year: 2010
  end-page: 1013
  ident: bib0017
  article-title: A review of occupant control on natural ventilation
  publication-title: Renew. Sustain. Energy Rev.
– volume: 94
  start-page: 371
  year: 2015
  end-page: 383
  ident: bib0033
  article-title: Verification of stochastic behavioural models of occupants' interactions with windows in residential buildings
  publication-title: Build. Environ.
– volume: 118
  start-page: 144
  year: 2017
  end-page: 158
  ident: bib0020
  article-title: Stochastic behavioural models of occupants' main bedroom window operation for UK residential buildings
  publication-title: Build. Environ.
– volume: 37
  start-page: 625
  issue: 5–6
  year: 2009
  ident: 10.1016/j.enbuild.2019.109564_bib0010
  article-title: Household energy consumption: a study of the role of occupants
  publication-title: Build. Res. Inf.
– volume: 157
  start-page: 1
  year: 2019
  ident: 10.1016/j.enbuild.2019.109564_bib0031
  article-title: Comparison of different window behavior modeling approaches during transition season in Beijing, China
  publication-title: Build. Environ.
– volume: 88
  start-page: 27
  year: 2015
  ident: 10.1016/j.enbuild.2019.109564_bib0036
  article-title: Simulating the human-building interaction: development and validation of an agent-based model of office occupant behaviors
  publication-title: Build. Environ.
– volume: 127
  start-page: 206
  year: 2016
  ident: 10.1016/j.enbuild.2019.109564_bib0021
  article-title: Occupant behavior regarding the manual control of windows in residential buildings
  publication-title: Energy Build.
– volume: E102D
  start-page: 878
  issue: 5
  year: 2019
  ident: 10.1016/j.enbuild.2019.109564_bib0050
  article-title: AI@ntiPhish – Machine Learning mechanisms for cyber-phishing attack
  publication-title: IEICE Trans. Inf. Syst.
– volume: 3408
  start-page: 345
  year: 2005
  ident: 10.1016/j.enbuild.2019.109564_bib0059
  article-title: A probabilistic interpretation of precision, recall and F-score, with implication for evaluation
– volume: 51
  start-page: 156
  issue: 2
  year: 2019
  ident: 10.1016/j.enbuild.2019.109564_bib0043
  article-title: Extensive phenotype data and machine learning in prediction of mortality in acute coronary syndrome – the Maddec study
  publication-title: Ann. Med.
– volume: 118
  start-page: 144
  year: 2017
  ident: 10.1016/j.enbuild.2019.109564_bib0020
  article-title: Stochastic behavioural models of occupants' main bedroom window operation for UK residential buildings
  publication-title: Build. Environ.
– volume: 46
  start-page: 2529
  issue: 12
  year: 2011
  ident: 10.1016/j.enbuild.2019.109564_bib0006
  article-title: How people use thermostats in homes: a review
  publication-title: Build. Environ.
– volume: 92
  start-page: 313
  year: 2015
  ident: 10.1016/j.enbuild.2019.109564_bib0012
  article-title: Window operation and impacts on building energy consumption
  publication-title: Energy Build.
– volume: 164
  start-page: 102
  year: 2018
  ident: 10.1016/j.enbuild.2019.109564_bib0041
  article-title: Comparison of support vector machine and extreme gradient boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: a case study in China
  publication-title: Energy Convers. Manag.
– volume: 247
  start-page: 111
  year: 2018
  ident: 10.1016/j.enbuild.2019.109564_bib0048
  article-title: Using machine learning approaches for emergency room visit prediction based on electronic health record data
  publication-title: Stud. Health Technol. Inform.
– volume: 1
  start-page: 310
  issue: 3
  year: 2018
  ident: 10.1016/j.enbuild.2019.109564_bib0027
  article-title: Development of a window opening algorithm based on adaptive thermal comfort to predict occupant behavior in Japanese dwellings
  publication-title: Jpn. Archit. Rev.
– volume: 69
  start-page: 101
  year: 2013
  ident: 10.1016/j.enbuild.2019.109564_bib0019
  article-title: Window opening behaviour modelled from measurements in Danish dwellings
  publication-title: Build. Environ.
– year: 2019
  ident: 10.1016/j.enbuild.2019.109564_bib0044
  article-title: Prediction of complications after paediatric cardiac surgery
  publication-title: Eur. J. Cardiothorac. Surg.
– volume: 153
  start-page: 46
  year: 2019
  ident: 10.1016/j.enbuild.2019.109564_bib0018
  article-title: Automatic ventilation control algorithm considering the indoor environmental quality factors and occupant ventilation behavior using a logistic regression model
  publication-title: Build. Environ.
– volume: 101
  start-page: 2283
  issue: 9–12
  year: 2019
  ident: 10.1016/j.enbuild.2019.109564_bib0038
  article-title: Prediction of weld bead geometry of MAG welding based on XGBoost algorithm
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 62
  start-page: 87
  year: 2013
  ident: 10.1016/j.enbuild.2019.109564_bib0022
  article-title: Factors affecting end-of-day window position in a non-air-conditioned office building
  publication-title: Energy Build.
– volume: 23
  start-page: 159
  year: 1994
  ident: 10.1016/j.enbuild.2019.109564_bib0024
– year: 2018
  ident: 10.1016/j.enbuild.2019.109564_bib0056
– volume: 44
  start-page: 2378
  issue: 12
  year: 2009
  ident: 10.1016/j.enbuild.2019.109564_bib0026
  article-title: Interactions with window openings by office occupants
  publication-title: Build. Environ.
– volume: 5
  start-page: 55
  issue: 1
  year: 2012
  ident: 10.1016/j.enbuild.2019.109564_bib0064
  article-title: Verification of stochastic models of window opening behaviour for residential buildings
  publication-title: J. Build. Perform. Simul.
– volume: 70
  start-page: 31
  year: 2013
  ident: 10.1016/j.enbuild.2019.109564_bib0002
  article-title: A critical review of observation studies, modeling, and simulation of adaptive occupant behaviors in offices
  publication-title: Build. Environ.
– volume: 73
  start-page: 84
  year: 2015
  ident: 10.1016/j.enbuild.2019.109564_bib0063
  article-title: Probability of occupant operation of windows during transition seasons in office buildings
  publication-title: Renew. Energy
– volume: 4
  start-page: 159
  issue: 3
  year: 2017
  ident: 10.1016/j.enbuild.2019.109564_bib0049
  article-title: Machine learning-XGBoost analysis of language networks to classify patients with epilepsy
  publication-title: Brain Inform.
– volume: 13
  issue: 4
  year: 2018
  ident: 10.1016/j.enbuild.2019.109564_bib0042
  article-title: Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization
  publication-title: PLoS One
– volume: 4
  year: 2011
  ident: 10.1016/j.enbuild.2019.109564_bib0061
  article-title: Optimally splitting cases for training and testing high dimensional classifiers
  publication-title: BMC Med. Genom.
– volume: 41
  start-page: 85
  year: 2015
  ident: 10.1016/j.enbuild.2019.109564_bib0001
  article-title: Heating and cooling energy trends and drivers in buildings
  publication-title: Renew. Sustain. Energy Rev.
– volume: 60
  start-page: 319
  year: 2013
  ident: 10.1016/j.enbuild.2019.109564_bib0016
  article-title: Manually-operated window shade patterns in office buildings: a critical review
  publication-title: Build. Environ.
– volume: 9
  year: 2019
  ident: 10.1016/j.enbuild.2019.109564_bib0045
  article-title: Prediction of future gastric cancer risk using a machine learning algorithm and comprehensive medical check-up data: a case-control study
  publication-title: Sci. Rep.
– volume: 70
  start-page: 36
  year: 2014
  ident: 10.1016/j.enbuild.2019.109564_bib0058
  article-title: Driving factors for occupant-controlled space heating in residential buildings
  publication-title: Energy Build.
– volume: 58
  start-page: 188
  year: 2012
  ident: 10.1016/j.enbuild.2019.109564_bib0015
  article-title: Occupants' window opening behaviour: a literature review of factors influencing occupant behaviour and models
  publication-title: Build. Environ.
– volume: 126
  start-page: 318
  year: 2017
  ident: 10.1016/j.enbuild.2019.109564_bib0034
  article-title: Exploration of the Bayesian Network framework for modelling. window control behaviour
  publication-title: Build. Environ.
– ident: 10.1016/j.enbuild.2019.109564_bib0060
– volume: 145
  start-page: 319
  year: 2018
  ident: 10.1016/j.enbuild.2019.109564_bib0035
  article-title: Window opening model using deep learning methods
  publication-title: Build. Environ.
– volume: 142
  start-page: 234
  year: 2018
  ident: 10.1016/j.enbuild.2019.109564_bib0053
  article-title: Window-opening behavior in Chinese residential buildings across different climate zones
  publication-title: Build. Environ.
– volume: 50
  start-page: 158
  year: 2019
  ident: 10.1016/j.enbuild.2019.109564_bib0055
  article-title: Feature selection with multi-view data: a survey
  publication-title: Inf. Fusion
– ident: 10.1016/j.enbuild.2019.109564_bib0037
– ident: 10.1016/j.enbuild.2019.109564_bib0062
– volume: 10
  start-page: 527
  issue: 5–6
  year: 2017
  ident: 10.1016/j.enbuild.2019.109564_bib0014
  article-title: Modelling diversity in building occupant behaviour: a novel statistical approach
  publication-title: J. Build. Perform. Simul.
– volume: 143
  start-page: 679
  year: 2018
  ident: 10.1016/j.enbuild.2019.109564_bib0054
  article-title: Ventilation behavior in residential buildings with mechanical ventilation systems across different climate zones in China
  publication-title: Build. Environ.
– volume: 130
  start-page: 85
  year: 2018
  ident: 10.1016/j.enbuild.2019.109564_bib0029
  article-title: Seasonal variation of window opening behaviors in two naturally ventilated hospital wards
  publication-title: Build. Environ.
– volume: 195
  start-page: 222
  year: 2017
  ident: 10.1016/j.enbuild.2019.109564_bib0039
  article-title: A short-term building cooling load prediction method using deep learning algorithms
  publication-title: Appl. Energy
– volume: 94
  start-page: 371
  year: 2015
  ident: 10.1016/j.enbuild.2019.109564_bib0033
  article-title: Verification of stochastic behavioural models of occupants' interactions with windows in residential buildings
  publication-title: Build. Environ.
– volume: 34
  start-page: 549
  issue: 6
  year: 2002
  ident: 10.1016/j.enbuild.2019.109564_bib0008
  article-title: Thermal comfort in naturally ventilated buildings: revisions to Ashrae Standard 55
  publication-title: Energy Build.
– volume: 1
  start-page: 296
  issue: 4
  year: 2009
  ident: 10.1016/j.enbuild.2019.109564_bib0007
  article-title: Feedback and adaptive behaviour in green buildings
  publication-title: Intell. Build. Int.
– volume: 8
  start-page: 157
  issue: 3
  year: 2016
  ident: 10.1016/j.enbuild.2019.109564_bib0011
  article-title: Influence of occupants’ behaviour on energy and carbon emission reduction in a higher education building in the UK
  publication-title: Intell. Build. Int.
– volume: 7
  start-page: 16
  issue: 1
  year: 2015
  ident: 10.1016/j.enbuild.2019.109564_bib0004
  article-title: Providing persuasive feedback through interactive posters to motivate energy-saving behaviours
  publication-title: Intell. Build. Int.
– volume: 66
  year: 2018
  ident: 10.1016/j.enbuild.2019.109564_bib0023
– volume: 72
  start-page: 411
  year: 2014
  ident: 10.1016/j.enbuild.2019.109564_bib0009
  article-title: Can personal control influence human thermal comfort? A field study in residential buildings in China in winter
  publication-title: Energy Build.
– volume: 149
  start-page: 210
  year: 2019
  ident: 10.1016/j.enbuild.2019.109564_bib0030
  article-title: A model based on Gauss Distribution for predicting window behavior in building
  publication-title: Build. Environ.
– volume: 147
  start-page: 473
  year: 2019
  ident: 10.1016/j.enbuild.2019.109564_bib0052
  article-title: Operating behavior and corresponding performance of portable air cleaners in residential buildings, China
  publication-title: Build. Environ.
– volume: 55
  start-page: 16
  year: 2012
  ident: 10.1016/j.enbuild.2019.109564_bib0013
  article-title: Ranking of interventions to reduce dwelling overheating during heat waves
  publication-title: Energy Build.
– volume: 185
  start-page: 326
  year: 2019
  ident: 10.1016/j.enbuild.2019.109564_bib0040
  article-title: Early detection of faults in HVAC systems using an XGBoost model with a dynamic threshold
  publication-title: Energy Build.
– volume: 9
  start-page: 97
  issue: 2
  year: 2017
  ident: 10.1016/j.enbuild.2019.109564_bib0005
  article-title: Impact of occupant behaviour on the energy-saving potential of retrofit measures for a public building in the UK
  publication-title: Intell. Build. Int.
– volume: 96
  start-page: 92
  year: 2019
  ident: 10.1016/j.enbuild.2019.109564_bib0051
  article-title: Prediction of antiepileptic drug treatment outcomes of patients with newly diagnosed epilepsy by machine learning
  publication-title: Epilepsy Behav.
– start-page: 10
  year: 2019
  ident: 10.1016/j.enbuild.2019.109564_bib0047
  article-title: Five-Feature model for developing the classifier for synergistic vs. antagonistic drug combinations built by XGBoost
  publication-title: Front. Genet.
– volume: 14
  start-page: 1001
  issue: 3
  year: 2010
  ident: 10.1016/j.enbuild.2019.109564_bib0017
  article-title: A review of occupant control on natural ventilation
  publication-title: Renew. Sustain. Energy Rev.
– volume: 16
  start-page: 4095
  issue: 6
  year: 2012
  ident: 10.1016/j.enbuild.2019.109564_bib0003
  article-title: Energy behaviours as promoters of energy efficiency: a 21st century review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 2
  issue: 7
  year: 2019
  ident: 10.1016/j.enbuild.2019.109564_bib0046
  article-title: Comparison of machine learning methods with national cardiovascular data registry models for prediction of risk of bleeding after percutaneous coronary intervention
  publication-title: JAMA Netw. Open
– volume: 111
  start-page: 24
  year: 2017
  ident: 10.1016/j.enbuild.2019.109564_bib0025
  article-title: Modelling window status in school classrooms. Results from a case study in Italy
  publication-title: Build. Environ.
– volume: 103
  start-page: 54
  year: 2016
  ident: 10.1016/j.enbuild.2019.109564_bib0032
  article-title: Analysis of occupants' behavior related to the use of windows in German households
  publication-title: Build. Environ.
– volume: 43
  start-page: 1471
  issue: 9
  year: 2008
  ident: 10.1016/j.enbuild.2019.109564_bib0057
  article-title: Time-dependent occupant behaviour models of window control in summer
  publication-title: Build. Environ.
– volume: 84
  start-page: 1216
  issue: 7
  year: 2010
  ident: 10.1016/j.enbuild.2019.109564_bib0028
  article-title: Night-time naturally ventilated offices: statistical simulations of window-use patterns from field monitoring
  publication-title: Sol. Energy
SSID ssj0006571
Score 2.6458485
Snippet •Longitudinal behavioral data were collected from six apartments, lasting for 136 days.•Window behavior models were developed for residential buildings in...
Buildings account for over 32% of total society energy consumption, and to make buildings more energy efficient dynamic building performance simulation has...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109564
SubjectTerms Accuracy
Air conditioners
Air conditioning
Algorithms
Artificial intelligence
Behavior
Behavior modeling
Building design
Buildings
Computer simulation
Energy consumption
Energy efficiency
Learning algorithms
Logistics regression
Machine learning
Mathematical models
Model accuracy
Regression analysis
Residential areas
Residential buildings
Ventilation
Window behavior
XGBoost algorithm
Title Developing window behavior models for residential buildings using XGBoost algorithm
URI https://dx.doi.org/10.1016/j.enbuild.2019.109564
https://www.proquest.com/docview/2325293858
Volume 205
WOSCitedRecordID wos000499767900015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6178
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006571
  issn: 0378-7788
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgywEOiKcoFOQD4lJlifN0jgW2FLRakBqq3Kw87DYrSJbNLu3PZ_yIk6JC4cAlWmXlfXg-T2bG_r5B6GVSJVUkSOBAbC0pOR74QQjiYMVzIUhVlETJNZ3M48WCZlny2RRzOtVOIG4aenGRrP6rqeEeGFtSZ__B3PZD4Qa8BqPDFcwO178y_LuBBnUOCXd7bqn4uu2NEmDYhyy7VhxdMFFhWmN3-1tVOcjev2nbTtaCT9t1vTn7dql8r8mCst5ux1mrqbrrUd4OW02NfrYtAYWn9vBPvdWEkGZZj7aG1LmC4zPDTTOVCKLaKGgupi6PWYrMyciJ-ZClxrFu3Tfl2slSAIOkJo69sOeGIz9KrvTuutCwnEpVCPiD8mBeIvWwQi2EfllNe_GJHX6Zz1k6y9JXq--ObDQmN-RN15WbaMeDXMmdoJ2DD7Pso318R6HK0u0PH2hfr6_85t8FNL882lW8kt5Dd02igQ80QO6jG7x5gO6M5CcfouMBKlhDBfdQwRoqGKCCR1DB1uRYQQUbqGALlUcoPZylb48c02TDKf0k3DiJjHGFS3ichzwOvbIUES9oJYgvRBkFRUHCWHhVUHlJSXOa5AXE7JXPYzcgtPAfo0nTNvwJwhAqlkHAfY9IpXwpb5FHQURIFYGTz91qFwX9RLHSCNDLPihfWX_ScMnM_DI5v0zP7y6a2mErrcBy3QDaW4GZMFKHhwxwdN3Qvd5qzCzpjkHOEUJQTEP69M9vP0O3h2Wxhyab9ZY_R7fKH5u6W78wOPsJ2XWdmA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+window+behavior+models+for+residential+buildings+using+XGBoost+algorithm&rft.jtitle=Energy+and+buildings&rft.au=Mo%2C+Hao&rft.au=Sun%2C+Hejiang&rft.au=Liu%2C+Junjie&rft.au=Wei%2C+Shen&rft.date=2019-12-15&rft.pub=Elsevier+BV&rft.issn=0378-7788&rft.eissn=1872-6178&rft.volume=205&rft.spage=1&rft_id=info:doi/10.1016%2Fj.enbuild.2019.109564&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon