A stable partitioned FSI algorithm for rigid bodies and incompressible flow in three dimensions

This paper describes a novel partitioned algorithm for fluid–structure interaction (FSI) problems that couples the motion of rigid bodies and incompressible flow. This is the first partitioned algorithm that remains stable and second-order accurate, without sub-time-step iterations, for very light,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational physics Ročník 373; číslo C; s. 455 - 492
Hlavní autoři: Banks, J.W., Henshaw, W.D., Schwendeman, D.W., Tang, Qi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cambridge Elsevier Inc 15.11.2018
Elsevier Science Ltd
Elsevier
Témata:
ISSN:0021-9991, 1090-2716
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper describes a novel partitioned algorithm for fluid–structure interaction (FSI) problems that couples the motion of rigid bodies and incompressible flow. This is the first partitioned algorithm that remains stable and second-order accurate, without sub-time-step iterations, for very light, and even zero-mass, bodies in three dimensions. This new added-mass partitioned (AMP) algorithm extends the previous developments in [1,2] by generalizing the added-damping tensors to account for arbitrary three-dimensional rotations, and by employing a general quadrature for the surface integral over a rigid body to derive the discrete AMP interface condition for the fluid pressure. Stability analyses for two three-dimensional model problems show that the algorithm remains stable for bodies of any mass when applied to the relevant model problems. The resulting AMP algorithm is implemented in parallel using a moving composite grid framework to treat one or more rigid bodies in complex three-dimensional configurations. The new three-dimensional algorithm is verified and validated though several benchmark problems, including the motion of a sphere in a viscous incompressible fluid and the interaction of a bi-leaflet mechanical heart valve and a pulsating fluid. Numerical simulations confirm the predictions of the stability analysis even for complex problems, and show that the AMP algorithm remains stable, without sub-iterations, for light and even zero-mass three-dimensional rigid bodies of general shape. These benchmark problems are further used to examine the parallel performance of the algorithm and to investigate the conditioning of the linear system for the pressure including the newly derived AMP interface conditions. •A partitioned FSI scheme for incompressible flow and rigid bodies is extended to 3D.•Stability for simple geometries is proved using 3D model problems.•Numerical results confirm stability and accuracy for light bodies of general shapes.•A benchmark for a bi-leaflet mechanical heart valve is designed and conducted.•Refinement studies for the heart valve are provided.
AbstractList This paper describes a novel partitioned algorithm for fluid–structure interaction (FSI) problems that couples the motion of rigid bodies and incompressible flow. This is the first partitioned algorithm that remains stable and second-order accurate, without sub-time-step iterations, for very light, and even zero-mass, bodies in three dimensions. This new added-mass partitioned (AMP) algorithm extends the previous developments in [1,2] by generalizing the added-damping tensors to account for arbitrary three-dimensional rotations, and by employing a general quadrature for the surface integral over a rigid body to derive the discrete AMP interface condition for the fluid pressure. Stability analyses for two three-dimensional model problems show that the algorithm remains stable for bodies of any mass when applied to the relevant model problems. The resulting AMP algorithm is implemented in parallel using a moving composite grid framework to treat one or more rigid bodies in complex three-dimensional configurations. The new three-dimensional algorithm is verified and validated though several benchmark problems, including the motion of a sphere in a viscous incompressible fluid and the interaction of a bi-leaflet mechanical heart valve and a pulsating fluid. Numerical simulations confirm the predictions of the stability analysis even for complex problems, and show that the AMP algorithm remains stable, without sub-iterations, for light and even zero-mass three-dimensional rigid bodies of general shape. These benchmark problems are further used to examine the parallel performance of the algorithm and to investigate the conditioning of the linear system for the pressure including the newly derived AMP interface conditions. •A partitioned FSI scheme for incompressible flow and rigid bodies is extended to 3D.•Stability for simple geometries is proved using 3D model problems.•Numerical results confirm stability and accuracy for light bodies of general shapes.•A benchmark for a bi-leaflet mechanical heart valve is designed and conducted.•Refinement studies for the heart valve are provided.
This paper describes a novel partitioned algorithm for fluid–structure interaction (FSI) problems that couples the motion of rigid bodies and incompressible flow. This is the first partitioned algorithm that remains stable and second-order accurate, without sub-time-step iterations, for very light, and even zero-mass, bodies in three dimensions. This new added-mass partitioned (AMP) algorithm extends the previous developments in [1], [2] by generalizing the added-damping tensors to account for arbitrary three-dimensional rotations, and by employing a general quadrature for the surface integral over a rigid body to derive the discrete AMP interface condition for the fluid pressure. Stability analyses for two three-dimensional model problems show that the algorithm remains stable for bodies of any mass when applied to the relevant model problems. The resulting AMP algorithm is implemented in parallel using a moving composite grid framework to treat one or more rigid bodies in complex three-dimensional configurations. The new three-dimensional algorithm is verified and validated though several benchmark problems, including the motion of a sphere in a viscous incompressible fluid and the interaction of a bi-leaflet mechanical heart valve and a pulsating fluid. Numerical simulations confirm the predictions of the stability analysis even for complex problems, and show that the AMP algorithm remains stable, without sub-iterations, for light and even zero-mass three-dimensional rigid bodies of general shape. These benchmark problems are further used to examine the parallel performance of the algorithm and to investigate the conditioning of the linear system for the pressure including the newly derived AMP interface conditions.
Author Banks, J.W.
Henshaw, W.D.
Tang, Qi
Schwendeman, D.W.
Author_xml – sequence: 1
  givenname: J.W.
  surname: Banks
  fullname: Banks, J.W.
  email: banksj3@rpi.edu
– sequence: 2
  givenname: W.D.
  surname: Henshaw
  fullname: Henshaw, W.D.
  email: henshw@rpi.edu
– sequence: 3
  givenname: D.W.
  surname: Schwendeman
  fullname: Schwendeman, D.W.
  email: schwed@rpi.edu
– sequence: 4
  givenname: Qi
  orcidid: 0000-0001-9614-1075
  surname: Tang
  fullname: Tang, Qi
  email: tangq3@rpi.edu
BackLink https://www.osti.gov/biblio/1564355$$D View this record in Osti.gov
BookMark eNp9kE1r3DAURUVJoZM0PyA70a7tSBpLlugqhKYJBLJouxb6eM7IeCRXUlr67yszXWWR1YPHPZfLOUdnMUVA6IqSnhIqrud-dmvPCJU9ET0Z2Tu0o0SRjo1UnKEdIYx2Sin6AZ2XMhNCJB_kDukbXKqxC-DV5BpqaLUe331_wGZ5TjnUwxFPKeMcnoPHNvkABZvocYguHdcMpYSNnpb0p_1wPWQA7MMRYmld5SN6P5mlwOX_e4F-3n39cXvfPT59e7i9eezcXvHaSW-YUgS4FWAkFQz4OFhOHScTgHQDOEMGCVSN02iFhMkyx6dReWuZ8HZ_gT6delOpQRcXKriDSzGCq5pyMew5b6HPp9Ca068XKFXP6SXHtkszygZJFB1YS42nlMuplAyTbm1mM1OzCYumRG_K9aybcr0p10TopryR9BW55nA0-e-bzJcTA83O7wB5Gw_RgQ952-5TeIP-B2fQnEo
CitedBy_id crossref_primary_10_1016_j_matcom_2024_01_027
crossref_primary_10_1016_j_jcp_2023_112221
crossref_primary_10_1002_fld_5034
crossref_primary_10_1007_s00162_025_00754_0
crossref_primary_10_1007_s10915_023_02430_z
crossref_primary_10_1016_j_jweia_2021_104601
crossref_primary_10_1016_j_jcp_2024_113095
crossref_primary_10_3389_fmedt_2024_1399729
crossref_primary_10_1016_j_cma_2020_113040
crossref_primary_10_1016_j_jcp_2019_108923
crossref_primary_10_1016_j_jcp_2020_109921
crossref_primary_10_1137_20M1385470
crossref_primary_10_1016_j_oceaneng_2020_107923
crossref_primary_10_1007_s10409_019_00925_3
crossref_primary_10_3390_w12041025
crossref_primary_10_1016_j_compfluid_2023_105871
crossref_primary_10_1016_j_jcp_2020_109274
crossref_primary_10_1016_j_jcp_2023_112326
crossref_primary_10_1016_j_jcp_2021_110442
crossref_primary_10_1016_j_apm_2024_03_029
crossref_primary_10_1137_21M1458454
crossref_primary_10_1016_j_jcp_2021_110897
crossref_primary_10_1016_j_oceaneng_2022_110823
crossref_primary_10_1137_18M1232358
Cites_doi 10.1016/j.jcp.2017.01.015
10.1016/j.jcp.2008.04.033
10.1115/1.2746378
10.1016/j.jcp.2008.03.041
10.1016/j.jcp.2014.03.006
10.1016/j.jbiomech.2008.05.004
10.1007/s003660200023
10.1016/j.jcp.2012.04.012
10.1063/1.4944565
10.1016/j.jcp.2014.10.039
10.1016/j.jcp.2016.12.018
10.1007/s10439-009-9807-x
10.1016/j.jcp.2017.04.064
10.1016/j.jcp.2012.01.009
10.1115/1.4026198
10.2514/1.3660
10.1006/jcph.2000.6592
10.1114/B:ABME.0000049032.51742.10
10.1016/j.jcp.2017.03.026
10.1137/0908074
10.1016/j.jcp.2015.10.041
10.1016/j.jcp.2012.02.026
10.1007/PL00011074
10.1007/s11517-009-0438-z
10.1137/0915051
10.1016/j.jcp.2017.04.058
10.1063/1.1512918
10.1016/j.jcp.2008.04.028
10.1016/j.jcp.2006.01.005
10.1016/j.jcp.2015.10.043
10.1137/040603735
10.1016/j.jcp.2015.04.040
10.1137/050644379
10.1016/j.jcp.2015.04.005
10.1016/0045-7825(92)90085-X
10.1016/j.compstruc.2007.01.021
10.1017/S0022112008005156
10.1016/j.cma.2017.01.024
10.1016/S0301-9322(98)00048-2
10.1016/j.jcp.2017.04.076
10.1016/j.jcp.2014.03.004
10.1016/j.jcp.2011.12.034
10.1016/S0045-7825(99)00230-3
10.1016/j.jcp.2016.02.002
10.1016/j.cma.2007.12.013
10.1016/j.jcp.2017.05.003
10.1016/j.jcp.2005.03.017
10.1006/jcph.1994.1114
10.1016/j.jcp.2013.04.033
10.1016/j.jcp.2012.01.021
10.1016/S0142-727X(02)00159-5
10.2514/6.2009-3990
10.1016/j.cma.2015.11.001
10.1016/j.jcp.2005.07.010
10.1007/s10915-017-0638-x
10.1016/j.jcp.2013.02.050
10.1006/jcph.2001.6754
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright Elsevier Science Ltd. Nov 15, 2018
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright Elsevier Science Ltd. Nov 15, 2018
DBID AAYXX
CITATION
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
OTOTI
DOI 10.1016/j.jcp.2018.06.072
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
OSTI.GOV
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1090-2716
EndPage 492
ExternalDocumentID 1564355
10_1016_j_jcp_2018_06_072
S0021999118304510
GrantInformation_xml – fundername: Eliza Ricketts Postdoctoral Fellowship
– fundername: National Science Foundation
  grantid: DMS-1519934
  funderid: https://doi.org/10.13039/100000001
– fundername: U.S. Presidential Early Career Award for Scientists and Engineers
– fundername: U.S. Department of Energy ASCR
  funderid: https://doi.org/10.13039/100006192
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABNEU
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSV
SSZ
T5K
TN5
UPT
YQT
ZMT
ZU3
~02
~G-
29K
6TJ
8WZ
9DU
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CAG
CITATION
COF
D-I
EFKBS
FGOYB
G-2
HME
HMV
HZ~
NDZJH
R2-
SBC
SEW
SHN
SPG
T9H
UQL
WUQ
ZY4
~HD
7SC
7SP
7U5
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
SSH
AALMO
ABPIF
ABPTK
ABQIS
EFJIC
OTOTI
ID FETCH-LOGICAL-c395t-8da2990e5b6ea8162e574b51c50fee8c4eca048e197f7b68efb2c5f79dbb26db3
ISICitedReferencesCount 28
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000445108800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9991
IngestDate Fri May 19 00:39:00 EDT 2023
Fri Jul 25 07:03:25 EDT 2025
Tue Nov 18 22:42:21 EST 2025
Sat Nov 29 03:10:21 EST 2025
Fri Feb 23 02:49:43 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Rigid bodies
Moving overlapping grids
Fluid–structure interaction
Incompressible Navier–Stokes
Added-mass
Partitioned schemes
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c395t-8da2990e5b6ea8162e574b51c50fee8c4eca048e197f7b68efb2c5f79dbb26db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
ORCID 0000-0001-9614-1075
0000000196141075
OpenAccessLink https://doi.org/10.1016/j.jcp.2018.06.072
PQID 2124809142
PQPubID 2047462
PageCount 38
ParticipantIDs osti_scitechconnect_1564355
proquest_journals_2124809142
crossref_citationtrail_10_1016_j_jcp_2018_06_072
crossref_primary_10_1016_j_jcp_2018_06_072
elsevier_sciencedirect_doi_10_1016_j_jcp_2018_06_072
PublicationCentury 2000
PublicationDate 2018-11-15
PublicationDateYYYYMMDD 2018-11-15
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-15
  day: 15
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
– name: United States
PublicationTitle Journal of computational physics
PublicationYear 2018
Publisher Elsevier Inc
Elsevier Science Ltd
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science Ltd
– name: Elsevier
References Yih (br0500) 1977
Banks, Henshaw, Sjögreen (br0420) 2013; 245
Coquerelle, Cottet (br0190) 2008; 227
Tschisgale, Kempe, Fröhlich (br0410) 2017; 339
Banks, Henshaw, Schwendeman (br0450) 2014; 269
Chesshire, Henshaw (br0530) 1991
Bhalla, Bale, Griffith, Patankar (br0300) 2013; 250
Petersson (br0490) 2001; 172
Banks, Henshaw, Schwendeman (br0460) 2014; 268
Wang, Eldredge (br0320) 2015; 295
Henshaw (br0550) 2010
Tai, Liew, Zhao (br0100) 2007; 85
Kim, Peskin (br0330) 2016; 28
Henshaw, Schwendeman (br0030) 2006; 216
Yoon, Min, Kim (br0480) 2018; 76
Dumont, Vierendeels, Kaminsky, Van Nooten, Verdonck, Bluestein (br0090) 2007; 129
Costarelli, Garelli, Cruchaga, Storti, Ausensi, Idelsohn (br0220) 2016; 300
Glowinski, Pan, Hesla, Joseph, Périaux (br0630) 2000; 184
Yang, Stern (br0290) 2012; 231
Vierendeels, Dumont, Dick, Verdonck (br0180) 2005; 43
Saye (br0360) 2017; 344
Li, Henshaw, Banks, Schwendeman, Main (br0470) 2016; 312
Balay, Abhyankar, Adams, Brown, Brune, Buschelman, Dalcin, Eijkhout, Gropp, Kaushik, Knepley, McInnes, Rupp, Smith, Zampini, Zhang, Zhang (br0560) 2016
Lācis, Taira, Bagheri (br0340) 2016; 305
Nobili, Morbiducci, Ponzini, Del Gaudio, Balducci, Grigioni, Montevecchi, Redaelli (br0120) 2008; 41
Kim, Choi (br0250) 2006; 212
Kajishima, Takiguchi (br0230) 2002; 23
Saye (br0370) 2017; 344
Breugem (br0270) 2012; 231
Henshaw (br0510) 1998
Henshaw, Schwendeman (br0070) 2008; 227
Lee, Chang, Choi, Kim, Liu, Kim (br0260) 2008; 197
Henshaw (br0600) 2002; 18
Koblitz, Lovett, Nikiforakis, Henshaw (br0380) 2017; 343
Cheng, Lai, Chandran (br0080) 2004; 32
Henshaw (br0040) 1994; 113
Borazjani, Ge, Sotiropoulos (br0110) 2008; 227
Banks, Henshaw, Schwendeman, Tang (br0020) 2017; 343
Banks, Henshaw, Schwendeman, Tang (br0010) 2017; 343
Mordant, Pinton (br0580) 2000; 18
Glowinski, Pan, Hesla, Joseph (br0210) 1999; 25
Chesshire, Henshaw (br0540) 1994; 15
Yang, Stern (br0590) 2014; 136
Takashi, Hughes (br0160) 1992; 95
Henshaw (br0620) 2005; 26
Henshaw, Petersson (br0050) 2003
Kempe, Fröhlich (br0280) 2012; 231
Schwarz, Kempe, Fröhlich (br0400) 2015; 281
Hu, Patankar, Zhu (br0170) 2001; 169
Gibou, Min (br0200) 2012; 231
De Tullio, Cristallo, Balaras, Verzicco (br0130) 2009; 622
Banks, Henshaw, Schwendeman (br0430) 2012; 231
Borazjani, Ge, Sotiropoulos (br0140) 2010; 38
Uhlmann (br0240) 2005; 209
ten Cate, Nieuwstad, Derksen, den Akker (br0570) 2002; 14
Sotiropoulos, Borazjani (br0150) 2009; 47
W.M. Chan, Enhancements to the hybrid mesh approach to surface loads integration on overset structured grids, AIAA paper 2009-3990.
Henshaw, Chesshire (br0610) 1987; 8
Banks, Henshaw, Kapila, Schwendeman (br0440) 2016; 305
Yang, Stern (br0310) 2015; 295
Kadapa, Dettmer, Perić (br0390) 2017; 318
Henshaw (br0060) 2006; 28
Corona, Greengard, Rachh, Veerapaneni (br0350) 2017; 332
Mordant (10.1016/j.jcp.2018.06.072_br0580) 2000; 18
Dumont (10.1016/j.jcp.2018.06.072_br0090) 2007; 129
Coquerelle (10.1016/j.jcp.2018.06.072_br0190) 2008; 227
Yang (10.1016/j.jcp.2018.06.072_br0310) 2015; 295
Takashi (10.1016/j.jcp.2018.06.072_br0160) 1992; 95
Kadapa (10.1016/j.jcp.2018.06.072_br0390) 2017; 318
Lācis (10.1016/j.jcp.2018.06.072_br0340) 2016; 305
Li (10.1016/j.jcp.2018.06.072_br0470) 2016; 312
Lee (10.1016/j.jcp.2018.06.072_br0260) 2008; 197
Yang (10.1016/j.jcp.2018.06.072_br0590) 2014; 136
Glowinski (10.1016/j.jcp.2018.06.072_br0210) 1999; 25
Chesshire (10.1016/j.jcp.2018.06.072_br0540) 1994; 15
ten Cate (10.1016/j.jcp.2018.06.072_br0570) 2002; 14
Saye (10.1016/j.jcp.2018.06.072_br0370) 2017; 344
Petersson (10.1016/j.jcp.2018.06.072_br0490) 2001; 172
Kim (10.1016/j.jcp.2018.06.072_br0250) 2006; 212
Cheng (10.1016/j.jcp.2018.06.072_br0080) 2004; 32
Breugem (10.1016/j.jcp.2018.06.072_br0270) 2012; 231
Saye (10.1016/j.jcp.2018.06.072_br0360) 2017; 344
Nobili (10.1016/j.jcp.2018.06.072_br0120) 2008; 41
Yang (10.1016/j.jcp.2018.06.072_br0290) 2012; 231
Banks (10.1016/j.jcp.2018.06.072_br0450) 2014; 269
Kempe (10.1016/j.jcp.2018.06.072_br0280) 2012; 231
Henshaw (10.1016/j.jcp.2018.06.072_br0620) 2005; 26
Corona (10.1016/j.jcp.2018.06.072_br0350) 2017; 332
Banks (10.1016/j.jcp.2018.06.072_br0460) 2014; 268
Henshaw (10.1016/j.jcp.2018.06.072_br0610) 1987; 8
Wang (10.1016/j.jcp.2018.06.072_br0320) 2015; 295
Tschisgale (10.1016/j.jcp.2018.06.072_br0410) 2017; 339
Glowinski (10.1016/j.jcp.2018.06.072_br0630) 2000; 184
Banks (10.1016/j.jcp.2018.06.072_br0020) 2017; 343
Henshaw (10.1016/j.jcp.2018.06.072_br0060) 2006; 28
Schwarz (10.1016/j.jcp.2018.06.072_br0400) 2015; 281
Kajishima (10.1016/j.jcp.2018.06.072_br0230) 2002; 23
Banks (10.1016/j.jcp.2018.06.072_br0010) 2017; 343
Henshaw (10.1016/j.jcp.2018.06.072_br0600) 2002; 18
Henshaw (10.1016/j.jcp.2018.06.072_br0070) 2008; 227
Banks (10.1016/j.jcp.2018.06.072_br0430) 2012; 231
Hu (10.1016/j.jcp.2018.06.072_br0170) 2001; 169
Chesshire (10.1016/j.jcp.2018.06.072_br0530) 1991
Uhlmann (10.1016/j.jcp.2018.06.072_br0240) 2005; 209
Sotiropoulos (10.1016/j.jcp.2018.06.072_br0150) 2009; 47
Henshaw (10.1016/j.jcp.2018.06.072_br0030) 2006; 216
Borazjani (10.1016/j.jcp.2018.06.072_br0110) 2008; 227
Banks (10.1016/j.jcp.2018.06.072_br0420) 2013; 245
Banks (10.1016/j.jcp.2018.06.072_br0440) 2016; 305
Yoon (10.1016/j.jcp.2018.06.072_br0480) 2018; 76
Bhalla (10.1016/j.jcp.2018.06.072_br0300) 2013; 250
10.1016/j.jcp.2018.06.072_br0520
Henshaw (10.1016/j.jcp.2018.06.072_br0050) 2003
Henshaw (10.1016/j.jcp.2018.06.072_br0510) 1998
Tai (10.1016/j.jcp.2018.06.072_br0100) 2007; 85
Balay (10.1016/j.jcp.2018.06.072_br0560) 2016
Henshaw (10.1016/j.jcp.2018.06.072_br0040) 1994; 113
Gibou (10.1016/j.jcp.2018.06.072_br0200) 2012; 231
Koblitz (10.1016/j.jcp.2018.06.072_br0380) 2017; 343
Yih (10.1016/j.jcp.2018.06.072_br0500) 1977
Borazjani (10.1016/j.jcp.2018.06.072_br0140) 2010; 38
De Tullio (10.1016/j.jcp.2018.06.072_br0130) 2009; 622
Costarelli (10.1016/j.jcp.2018.06.072_br0220) 2016; 300
Vierendeels (10.1016/j.jcp.2018.06.072_br0180) 2005; 43
Kim (10.1016/j.jcp.2018.06.072_br0330) 2016; 28
Henshaw (10.1016/j.jcp.2018.06.072_br0550) 2010
References_xml – reference: W.M. Chan, Enhancements to the hybrid mesh approach to surface loads integration on overset structured grids, AIAA paper 2009-3990.
– volume: 231
  start-page: 4469
  year: 2012
  end-page: 4498
  ident: br0270
  article-title: A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows
  publication-title: J. Comput. Phys.
– volume: 343
  start-page: 469
  year: 2017
  end-page: 500
  ident: br0020
  article-title: A stable partitioned FSI algorithm for rigid bodies and incompressible flow. Part II: general formulation
  publication-title: J. Comput. Phys.
– volume: 344
  start-page: 647
  year: 2017
  end-page: 682
  ident: br0360
  article-title: Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body fluid–structure interaction, and free surface flow: part I
  publication-title: J. Comput. Phys.
– volume: 26
  start-page: 1547
  year: 2005
  end-page: 1572
  ident: br0620
  article-title: On multigrid for overlapping grids
  publication-title: SIAM J. Sci. Comput.
– volume: 332
  start-page: 504
  year: 2017
  end-page: 519
  ident: br0350
  article-title: An integral equation formulation for rigid bodies in Stokes flow in three dimensions
  publication-title: J. Comput. Phys.
– volume: 85
  start-page: 749
  year: 2007
  end-page: 762
  ident: br0100
  article-title: Numerical simulation of 3D fluid–structure interaction flow using an immersed object method with overlapping grids
  publication-title: Comput. Struct.
– volume: 129
  start-page: 558
  year: 2007
  end-page: 565
  ident: br0090
  article-title: Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model
  publication-title: J. Biomech. Eng.
– year: 2010
  ident: br0550
  article-title: Cgins User Guide: An Overture Solver for the Incompressible Navier–Stokes Equations on Composite Overlapping Grids
– volume: 344
  start-page: 683
  year: 2017
  end-page: 723
  ident: br0370
  article-title: Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body fluid–structure interaction, and free surface flow: part II
  publication-title: J. Comput. Phys.
– volume: 32
  start-page: 1471
  year: 2004
  end-page: 1483
  ident: br0080
  article-title: Three-dimensional fluid–structure interaction simulation of bileaflet mechanical heart valve flow dynamics
  publication-title: Ann. Biomed. Eng.
– volume: 18
  start-page: 343
  year: 2000
  end-page: 352
  ident: br0580
  article-title: Velocity measurement of a settling sphere
  publication-title: Eur. Phys. J. B
– volume: 41
  start-page: 2539
  year: 2008
  end-page: 2550
  ident: br0120
  article-title: Numerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluid–structure interaction approach
  publication-title: J. Biomech.
– volume: 15
  start-page: 819
  year: 1994
  end-page: 845
  ident: br0540
  article-title: A scheme for conservative interpolation on overlapping grids
  publication-title: SIAM J. Sci. Comput.
– volume: 227
  start-page: 7469
  year: 2008
  end-page: 7502
  ident: br0070
  article-title: Parallel computation of three-dimensional flows using overlapping grids with adaptive mesh refinement
  publication-title: J. Comput. Phys.
– volume: 38
  start-page: 326
  year: 2010
  end-page: 344
  ident: br0140
  article-title: High-resolution fluid–structure interaction simulations of flow through a bi-leaflet mechanical heart valve in an anatomic aorta
  publication-title: Ann. Biomed. Eng.
– volume: 250
  start-page: 446
  year: 2013
  end-page: 476
  ident: br0300
  article-title: A unified mathematical framework and an adaptive numerical method for fluid–structure interaction with rigid, deforming, and elastic bodies
  publication-title: J. Comput. Phys.
– volume: 312
  start-page: 272
  year: 2016
  end-page: 306
  ident: br0470
  article-title: A stable partitioned FSI algorithm for incompressible flow and deforming beams
  publication-title: J. Comput. Phys.
– volume: 169
  start-page: 427
  year: 2001
  end-page: 462
  ident: br0170
  article-title: Direct numerical simulations of fluid–solid systems using the arbitrary Langrangian–Eulerian technique
  publication-title: J. Comput. Phys.
– volume: 318
  start-page: 242
  year: 2017
  end-page: 269
  ident: br0390
  article-title: A stabilised immersed boundary method on hierarchical b-spline grids for fluid–rigid body interaction with solid–solid contact
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 18
  start-page: 265
  year: 2002
  end-page: 273
  ident: br0600
  article-title: An algorithm for projecting points onto a patched CAD model
  publication-title: Eng. Comput.
– volume: 339
  start-page: 432
  year: 2017
  end-page: 452
  ident: br0410
  article-title: A non-iterative immersed boundary method for spherical particles of arbitrary density ratio
  publication-title: J. Comput. Phys.
– volume: 305
  start-page: 300
  year: 2016
  end-page: 318
  ident: br0340
  article-title: A stable fluid–structure-interaction solver for low-density rigid bodies using the immersed boundary projection method
  publication-title: J. Comput. Phys.
– volume: 231
  start-page: 3518
  year: 2012
  end-page: 3547
  ident: br0430
  article-title: Deforming composite grids for solving fluid structure problems
  publication-title: J. Comput. Phys.
– volume: 295
  start-page: 87
  year: 2015
  end-page: 113
  ident: br0320
  article-title: Strongly coupled dynamics of fluids and rigid-body systems with the immersed boundary projection method
  publication-title: J. Comput. Phys.
– volume: 300
  start-page: 106
  year: 2016
  end-page: 128
  ident: br0220
  article-title: An embedded strategy for the analysis of fluid structure interaction problems
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 343
  start-page: 432
  year: 2017
  end-page: 468
  ident: br0010
  article-title: A stable partitioned FSI algorithm for rigid bodies and incompressible flow. Part I: model problem analysis
  publication-title: J. Comput. Phys.
– volume: 136
  year: 2014
  ident: br0590
  article-title: A sharp interface direct forcing immersed boundary approach for fully resolved simulations of particulate flows
  publication-title: J. Fluids Eng.
– volume: 305
  start-page: 1037
  year: 2016
  end-page: 1064
  ident: br0440
  article-title: An added-mass partitioned algorithm for fluid–structure interactions of compressible fluids and nonlinear solids
  publication-title: J. Comput. Phys.
– volume: 343
  start-page: 414
  year: 2017
  end-page: 431
  ident: br0380
  article-title: Direct numerical simulation of particulate flows with an overset grid method
  publication-title: J. Comput. Phys.
– volume: 23
  start-page: 639
  year: 2002
  end-page: 646
  ident: br0230
  article-title: Interaction between particle clusters and particle-induced turbulence
  publication-title: Int. J. Heat Fluid Flow
– volume: 197
  start-page: 2305
  year: 2008
  end-page: 2316
  ident: br0260
  article-title: Immersed finite element method for rigid body motions in the incompressible Navier–Stokes flow
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 281
  start-page: 591
  year: 2015
  end-page: 613
  ident: br0400
  article-title: A temporal discretization scheme to compute the motion of light particles in viscous flows by an immersed boundary method
  publication-title: J. Comput. Phys.
– volume: 113
  start-page: 13
  year: 1994
  end-page: 25
  ident: br0040
  article-title: A fourth-order accurate method for the incompressible Navier–Stokes equations on overlapping grids
  publication-title: J. Comput. Phys.
– year: 1977
  ident: br0500
  article-title: Fluid Mechanics
– volume: 14
  start-page: 4012
  year: 2002
  end-page: 4025
  ident: br0570
  article-title: Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity
  publication-title: Phys. Fluids
– volume: 43
  start-page: 2549
  year: 2005
  end-page: 2557
  ident: br0180
  article-title: Analysis and stabilization of fluid–structure interaction algorithm for rigid-body motion
  publication-title: AIAA J.
– volume: 269
  start-page: 108
  year: 2014
  end-page: 137
  ident: br0450
  article-title: An analysis of a new stable partitioned algorithm for FSI problems. Part I: incompressible flow and elastic solids
  publication-title: J. Comput. Phys.
– volume: 172
  start-page: 40
  year: 2001
  end-page: 70
  ident: br0490
  article-title: Stability of pressure boundary conditions for Stokes and Navier–Stokes equations
  publication-title: J. Comput. Phys.
– volume: 95
  start-page: 115
  year: 1992
  end-page: 138
  ident: br0160
  article-title: An arbitrary Lagrangian–Eulerian finite element method for interaction of fluid and a rigid body
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 227
  start-page: 7587
  year: 2008
  end-page: 7620
  ident: br0110
  article-title: Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies
  publication-title: J. Comput. Phys.
– year: 1991
  ident: br0530
  article-title: Conservation on Composite Overlapping Grids
– volume: 212
  start-page: 662
  year: 2006
  end-page: 680
  ident: br0250
  article-title: Immersed boundary method for flow around an arbitrarily moving body
  publication-title: J. Comput. Phys.
– volume: 216
  start-page: 744
  year: 2006
  end-page: 779
  ident: br0030
  article-title: Moving overlapping grids with adaptive mesh refinement for high-speed reactive and non-reactive flow
  publication-title: J. Comput. Phys.
– volume: 231
  start-page: 3246
  year: 2012
  end-page: 3263
  ident: br0200
  article-title: Efficient symmetric positive definite second-order accurate monolithic solver for fluid/solid interactions
  publication-title: J. Comput. Phys.
– volume: 622
  start-page: 259
  year: 2009
  end-page: 290
  ident: br0130
  article-title: Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve
  publication-title: J. Fluid Mech.
– volume: 231
  start-page: 5029
  year: 2012
  end-page: 5061
  ident: br0290
  article-title: A simple and efficient direct forcing immersed boundary framework for fluid–structure interactions
  publication-title: J. Comput. Phys.
– volume: 295
  start-page: 779
  year: 2015
  end-page: 804
  ident: br0310
  article-title: A non-iterative direct forcing immersed boundary method for strongly-coupled fluid–solid interactions
  publication-title: J. Comput. Phys.
– volume: 268
  start-page: 399
  year: 2014
  end-page: 416
  ident: br0460
  article-title: An analysis of a new stable partitioned algorithm for FSI problems. Part II: incompressible flow and structural shells
  publication-title: J. Comput. Phys.
– volume: 25
  start-page: 755
  year: 1999
  end-page: 794
  ident: br0210
  article-title: A distributed Lagrange multiplier/fictitious domain method for particulate flows
  publication-title: Int. J. Multiph. Flow
– volume: 209
  start-page: 448
  year: 2005
  end-page: 476
  ident: br0240
  article-title: An immersed boundary method with direct forcing for the simulation of particulate flows
  publication-title: J. Comput. Phys.
– volume: 76
  start-page: 727
  year: 2018
  end-page: 758
  ident: br0480
  article-title: A stable and convergent Hodge decomposition method for fluid–solid interaction
  publication-title: J. Sci. Comput.
– volume: 47
  start-page: 245
  year: 2009
  end-page: 256
  ident: br0150
  article-title: A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves
  publication-title: Med. Biol. Eng. Comput.
– year: 2016
  ident: br0560
  article-title: PETSc users manual
– volume: 231
  start-page: 3663
  year: 2012
  end-page: 3684
  ident: br0280
  article-title: An improved immersed boundary method with direct forcing for the simulation of particle laden flows
  publication-title: J. Comput. Phys.
– volume: 184
  start-page: 241
  year: 2000
  end-page: 267
  ident: br0630
  article-title: A distributed Lagrange multiplier/fictitious domain method for the simulation of flow around moving rigid bodies: application to particulate flow
  publication-title: Comput. Methods Appl. Mech. Eng.
– year: 1998
  ident: br0510
  article-title: Ogen: An Overlapping Grid Generator for Overture
– volume: 28
  year: 2016
  ident: br0330
  article-title: A penalty immersed boundary method for a rigid body in fluid
  publication-title: Phys. Fluids
– volume: 8
  start-page: 914
  year: 1987
  end-page: 923
  ident: br0610
  article-title: Multigrid on composite meshes
  publication-title: SIAM J. Sci. Stat. Comput.
– volume: 227
  start-page: 9121
  year: 2008
  end-page: 9137
  ident: br0190
  article-title: A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies
  publication-title: J. Comput. Phys.
– start-page: 108
  year: 2003
  end-page: 125
  ident: br0050
  article-title: A split-step scheme for the incompressible Navier–Stokes equations
  publication-title: Numerical Simulation of Incompressible Flows
– volume: 245
  start-page: 399
  year: 2013
  end-page: 430
  ident: br0420
  article-title: A stable FSI algorithm for light rigid bodies in compressible flow
  publication-title: J. Comput. Phys.
– volume: 28
  start-page: 1730
  year: 2006
  end-page: 1765
  ident: br0060
  article-title: A high-order accurate parallel solver for Maxwell's equations on overlapping grids
  publication-title: SIAM J. Sci. Comput.
– year: 2010
  ident: 10.1016/j.jcp.2018.06.072_br0550
– volume: 343
  start-page: 432
  year: 2017
  ident: 10.1016/j.jcp.2018.06.072_br0010
  article-title: A stable partitioned FSI algorithm for rigid bodies and incompressible flow. Part I: model problem analysis
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.01.015
– volume: 227
  start-page: 7469
  issue: 16
  year: 2008
  ident: 10.1016/j.jcp.2018.06.072_br0070
  article-title: Parallel computation of three-dimensional flows using overlapping grids with adaptive mesh refinement
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.04.033
– volume: 129
  start-page: 558
  issue: 4
  year: 2007
  ident: 10.1016/j.jcp.2018.06.072_br0090
  article-title: Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2746378
– volume: 227
  start-page: 9121
  issue: 21
  year: 2008
  ident: 10.1016/j.jcp.2018.06.072_br0190
  article-title: A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.03.041
– volume: 269
  start-page: 108
  year: 2014
  ident: 10.1016/j.jcp.2018.06.072_br0450
  article-title: An analysis of a new stable partitioned algorithm for FSI problems. Part I: incompressible flow and elastic solids
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.03.006
– volume: 41
  start-page: 2539
  issue: 11
  year: 2008
  ident: 10.1016/j.jcp.2018.06.072_br0120
  article-title: Numerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluid–structure interaction approach
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2008.05.004
– volume: 18
  start-page: 265
  year: 2002
  ident: 10.1016/j.jcp.2018.06.072_br0600
  article-title: An algorithm for projecting points onto a patched CAD model
  publication-title: Eng. Comput.
  doi: 10.1007/s003660200023
– volume: 231
  start-page: 5029
  issue: 15
  year: 2012
  ident: 10.1016/j.jcp.2018.06.072_br0290
  article-title: A simple and efficient direct forcing immersed boundary framework for fluid–structure interactions
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.04.012
– volume: 28
  issue: 3
  year: 2016
  ident: 10.1016/j.jcp.2018.06.072_br0330
  article-title: A penalty immersed boundary method for a rigid body in fluid
  publication-title: Phys. Fluids
  doi: 10.1063/1.4944565
– volume: 281
  start-page: 591
  year: 2015
  ident: 10.1016/j.jcp.2018.06.072_br0400
  article-title: A temporal discretization scheme to compute the motion of light particles in viscous flows by an immersed boundary method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.10.039
– volume: 332
  start-page: 504
  year: 2017
  ident: 10.1016/j.jcp.2018.06.072_br0350
  article-title: An integral equation formulation for rigid bodies in Stokes flow in three dimensions
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.12.018
– volume: 38
  start-page: 326
  issue: 2
  year: 2010
  ident: 10.1016/j.jcp.2018.06.072_br0140
  article-title: High-resolution fluid–structure interaction simulations of flow through a bi-leaflet mechanical heart valve in an anatomic aorta
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-009-9807-x
– volume: 343
  start-page: 469
  year: 2017
  ident: 10.1016/j.jcp.2018.06.072_br0020
  article-title: A stable partitioned FSI algorithm for rigid bodies and incompressible flow. Part II: general formulation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.04.064
– volume: 231
  start-page: 3246
  issue: 8
  year: 2012
  ident: 10.1016/j.jcp.2018.06.072_br0200
  article-title: Efficient symmetric positive definite second-order accurate monolithic solver for fluid/solid interactions
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.01.009
– volume: 136
  issue: 4
  year: 2014
  ident: 10.1016/j.jcp.2018.06.072_br0590
  article-title: A sharp interface direct forcing immersed boundary approach for fully resolved simulations of particulate flows
  publication-title: J. Fluids Eng.
  doi: 10.1115/1.4026198
– volume: 43
  start-page: 2549
  issue: 12
  year: 2005
  ident: 10.1016/j.jcp.2018.06.072_br0180
  article-title: Analysis and stabilization of fluid–structure interaction algorithm for rigid-body motion
  publication-title: AIAA J.
  doi: 10.2514/1.3660
– volume: 169
  start-page: 427
  issue: 2
  year: 2001
  ident: 10.1016/j.jcp.2018.06.072_br0170
  article-title: Direct numerical simulations of fluid–solid systems using the arbitrary Langrangian–Eulerian technique
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6592
– volume: 32
  start-page: 1471
  issue: 11
  year: 2004
  ident: 10.1016/j.jcp.2018.06.072_br0080
  article-title: Three-dimensional fluid–structure interaction simulation of bileaflet mechanical heart valve flow dynamics
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/B:ABME.0000049032.51742.10
– volume: 339
  start-page: 432
  year: 2017
  ident: 10.1016/j.jcp.2018.06.072_br0410
  article-title: A non-iterative immersed boundary method for spherical particles of arbitrary density ratio
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.03.026
– year: 1991
  ident: 10.1016/j.jcp.2018.06.072_br0530
– volume: 8
  start-page: 914
  issue: 6
  year: 1987
  ident: 10.1016/j.jcp.2018.06.072_br0610
  article-title: Multigrid on composite meshes
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0908074
– start-page: 108
  year: 2003
  ident: 10.1016/j.jcp.2018.06.072_br0050
  article-title: A split-step scheme for the incompressible Navier–Stokes equations
– volume: 305
  start-page: 300
  year: 2016
  ident: 10.1016/j.jcp.2018.06.072_br0340
  article-title: A stable fluid–structure-interaction solver for low-density rigid bodies using the immersed boundary projection method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.10.041
– volume: 231
  start-page: 4469
  issue: 13
  year: 2012
  ident: 10.1016/j.jcp.2018.06.072_br0270
  article-title: A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.02.026
– volume: 18
  start-page: 343
  issue: 2
  year: 2000
  ident: 10.1016/j.jcp.2018.06.072_br0580
  article-title: Velocity measurement of a settling sphere
  publication-title: Eur. Phys. J. B
  doi: 10.1007/PL00011074
– volume: 47
  start-page: 245
  issue: 3
  year: 2009
  ident: 10.1016/j.jcp.2018.06.072_br0150
  article-title: A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-009-0438-z
– volume: 15
  start-page: 819
  issue: 4
  year: 1994
  ident: 10.1016/j.jcp.2018.06.072_br0540
  article-title: A scheme for conservative interpolation on overlapping grids
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0915051
– volume: 343
  start-page: 414
  year: 2017
  ident: 10.1016/j.jcp.2018.06.072_br0380
  article-title: Direct numerical simulation of particulate flows with an overset grid method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.04.058
– volume: 14
  start-page: 4012
  issue: 11
  year: 2002
  ident: 10.1016/j.jcp.2018.06.072_br0570
  article-title: Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity
  publication-title: Phys. Fluids
  doi: 10.1063/1.1512918
– volume: 227
  start-page: 7587
  issue: 16
  year: 2008
  ident: 10.1016/j.jcp.2018.06.072_br0110
  article-title: Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.04.028
– volume: 216
  start-page: 744
  issue: 2
  year: 2006
  ident: 10.1016/j.jcp.2018.06.072_br0030
  article-title: Moving overlapping grids with adaptive mesh refinement for high-speed reactive and non-reactive flow
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2006.01.005
– volume: 305
  start-page: 1037
  year: 2016
  ident: 10.1016/j.jcp.2018.06.072_br0440
  article-title: An added-mass partitioned algorithm for fluid–structure interactions of compressible fluids and nonlinear solids
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.10.043
– volume: 26
  start-page: 1547
  issue: 5
  year: 2005
  ident: 10.1016/j.jcp.2018.06.072_br0620
  article-title: On multigrid for overlapping grids
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/040603735
– volume: 295
  start-page: 779
  year: 2015
  ident: 10.1016/j.jcp.2018.06.072_br0310
  article-title: A non-iterative direct forcing immersed boundary method for strongly-coupled fluid–solid interactions
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.04.040
– volume: 28
  start-page: 1730
  issue: 5
  year: 2006
  ident: 10.1016/j.jcp.2018.06.072_br0060
  article-title: A high-order accurate parallel solver for Maxwell's equations on overlapping grids
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/050644379
– volume: 295
  start-page: 87
  year: 2015
  ident: 10.1016/j.jcp.2018.06.072_br0320
  article-title: Strongly coupled dynamics of fluids and rigid-body systems with the immersed boundary projection method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.04.005
– year: 1998
  ident: 10.1016/j.jcp.2018.06.072_br0510
– volume: 95
  start-page: 115
  issue: 1
  year: 1992
  ident: 10.1016/j.jcp.2018.06.072_br0160
  article-title: An arbitrary Lagrangian–Eulerian finite element method for interaction of fluid and a rigid body
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(92)90085-X
– volume: 85
  start-page: 749
  issue: 11
  year: 2007
  ident: 10.1016/j.jcp.2018.06.072_br0100
  article-title: Numerical simulation of 3D fluid–structure interaction flow using an immersed object method with overlapping grids
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2007.01.021
– volume: 622
  start-page: 259
  year: 2009
  ident: 10.1016/j.jcp.2018.06.072_br0130
  article-title: Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112008005156
– volume: 318
  start-page: 242
  year: 2017
  ident: 10.1016/j.jcp.2018.06.072_br0390
  article-title: A stabilised immersed boundary method on hierarchical b-spline grids for fluid–rigid body interaction with solid–solid contact
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2017.01.024
– year: 1977
  ident: 10.1016/j.jcp.2018.06.072_br0500
– volume: 25
  start-page: 755
  issue: 5
  year: 1999
  ident: 10.1016/j.jcp.2018.06.072_br0210
  article-title: A distributed Lagrange multiplier/fictitious domain method for particulate flows
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/S0301-9322(98)00048-2
– year: 2016
  ident: 10.1016/j.jcp.2018.06.072_br0560
– volume: 344
  start-page: 647
  year: 2017
  ident: 10.1016/j.jcp.2018.06.072_br0360
  article-title: Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body fluid–structure interaction, and free surface flow: part I
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.04.076
– volume: 268
  start-page: 399
  year: 2014
  ident: 10.1016/j.jcp.2018.06.072_br0460
  article-title: An analysis of a new stable partitioned algorithm for FSI problems. Part II: incompressible flow and structural shells
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.03.004
– volume: 231
  start-page: 3518
  issue: 9
  year: 2012
  ident: 10.1016/j.jcp.2018.06.072_br0430
  article-title: Deforming composite grids for solving fluid structure problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.12.034
– volume: 184
  start-page: 241
  issue: 2
  year: 2000
  ident: 10.1016/j.jcp.2018.06.072_br0630
  article-title: A distributed Lagrange multiplier/fictitious domain method for the simulation of flow around moving rigid bodies: application to particulate flow
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(99)00230-3
– volume: 312
  start-page: 272
  year: 2016
  ident: 10.1016/j.jcp.2018.06.072_br0470
  article-title: A stable partitioned FSI algorithm for incompressible flow and deforming beams
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.02.002
– volume: 197
  start-page: 2305
  issue: 25
  year: 2008
  ident: 10.1016/j.jcp.2018.06.072_br0260
  article-title: Immersed finite element method for rigid body motions in the incompressible Navier–Stokes flow
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2007.12.013
– volume: 344
  start-page: 683
  year: 2017
  ident: 10.1016/j.jcp.2018.06.072_br0370
  article-title: Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body fluid–structure interaction, and free surface flow: part II
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.05.003
– volume: 209
  start-page: 448
  issue: 2
  year: 2005
  ident: 10.1016/j.jcp.2018.06.072_br0240
  article-title: An immersed boundary method with direct forcing for the simulation of particulate flows
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.03.017
– volume: 113
  start-page: 13
  issue: 1
  year: 1994
  ident: 10.1016/j.jcp.2018.06.072_br0040
  article-title: A fourth-order accurate method for the incompressible Navier–Stokes equations on overlapping grids
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1994.1114
– volume: 250
  start-page: 446
  year: 2013
  ident: 10.1016/j.jcp.2018.06.072_br0300
  article-title: A unified mathematical framework and an adaptive numerical method for fluid–structure interaction with rigid, deforming, and elastic bodies
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.04.033
– volume: 231
  start-page: 3663
  issue: 9
  year: 2012
  ident: 10.1016/j.jcp.2018.06.072_br0280
  article-title: An improved immersed boundary method with direct forcing for the simulation of particle laden flows
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.01.021
– volume: 23
  start-page: 639
  issue: 5
  year: 2002
  ident: 10.1016/j.jcp.2018.06.072_br0230
  article-title: Interaction between particle clusters and particle-induced turbulence
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/S0142-727X(02)00159-5
– ident: 10.1016/j.jcp.2018.06.072_br0520
  doi: 10.2514/6.2009-3990
– volume: 300
  start-page: 106
  year: 2016
  ident: 10.1016/j.jcp.2018.06.072_br0220
  article-title: An embedded strategy for the analysis of fluid structure interaction problems
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2015.11.001
– volume: 212
  start-page: 662
  issue: 2
  year: 2006
  ident: 10.1016/j.jcp.2018.06.072_br0250
  article-title: Immersed boundary method for flow around an arbitrarily moving body
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.07.010
– volume: 76
  start-page: 727
  issue: 2
  year: 2018
  ident: 10.1016/j.jcp.2018.06.072_br0480
  article-title: A stable and convergent Hodge decomposition method for fluid–solid interaction
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-017-0638-x
– volume: 245
  start-page: 399
  year: 2013
  ident: 10.1016/j.jcp.2018.06.072_br0420
  article-title: A stable FSI algorithm for light rigid bodies in compressible flow
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.02.050
– volume: 172
  start-page: 40
  issue: 1
  year: 2001
  ident: 10.1016/j.jcp.2018.06.072_br0490
  article-title: Stability of pressure boundary conditions for Stokes and Navier–Stokes equations
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2001.6754
SSID ssj0008548
Score 2.4486952
Snippet This paper describes a novel partitioned algorithm for fluid–structure interaction (FSI) problems that couples the motion of rigid bodies and incompressible...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 455
SubjectTerms Added-mass
Algorithms
Benchmarks
Computational fluid dynamics
Computational physics
Computer simulation
Damping
Dimensional stability
Fluid flow
Fluid mechanics
Fluid pressure
Fluid-structure interaction
Heart valves
Incompressible flow
Incompressible fluids
Incompressible Navier–Stokes
Interface stability
Mathematical models
Moving overlapping grids
Navier-Stokes equations
Partitioned schemes
Rigid bodies
Rigid structures
Stability analysis
Tensors
Three dimensional analysis
Three dimensional flow
Three dimensional models
Title A stable partitioned FSI algorithm for rigid bodies and incompressible flow in three dimensions
URI https://dx.doi.org/10.1016/j.jcp.2018.06.072
https://www.proquest.com/docview/2124809142
https://www.osti.gov/biblio/1564355
Volume 373
WOSCitedRecordID wos000445108800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bjxIxFG6Q9cEX70bc1fTB-CAZw1zbPhIX4hqyamQjb8200xEQBwTc3R_iD_acaWcGJRJ98GVCphQmPR-nH1_PhZDnQgfA2Xzj9XKeelEmUk-FYeYBOrRIRCa0Kou4jtj5OZ9MxPtW60eVC3O5YEXBr6_F6r-aGu6BsTF19h_MXX8o3IDXYHS4gtnh-leG76M8gPlQKxwsKxFl3eHHs266-Lxcz7bTr2VoITbEAvK5xChCV4IJw8vLsFicnS-WVzYIcm1MN8MmAJta29tns7rsDlEpi1YvaRT4tPhi8dIoOnp6heq7E2BP64GxE7A_zBqZtthM0_II6tPprkrhc0zXs3maVjqr0mcqj9XELNmUAt9Dpmo3JeuJe6LnBcwmYlauOmThjrONbIHfvU3A6hHzV3ONBUl9V6A1aHa86pT__J0cXoxGcjyYjF-svnnYiwzP7F1jlhvkKGCxAHd_1D8bTN7WOzyPI7vDu8euTsvLuMHfvvVPfKe9BBe-RwBKVjO-S247A9K-hdE90jLFfXLH_TWhbhk3D4jsU4squoMqCqiiNaoooIqWqKIWVRRQRX9FFUVUwT1aooo2qHpILoaD8es3nuvN4elQxFuPZykSGROrxKTcTwITs0jFvo57uTFcR0ansDkYX7CcqYSbXAU6zpnIlAqSTIWPSLuAR31MKO6wLI17SqdBpHnCeehrHak8ZErrnHVIr1pBqV3heuyfspBVhOJcwqJLXHSJUZos6JCX9ZSVrdpy6M1RZRbpaKelkxIAdWjaMZoQp2C5ZY1xaTAHiy8Bh--Qk8qy0jmHjQSaGHEg6FHw5PDwMbnV_IhOSHu7_m6ekpv6cjvbrJ85OP4EK7i3kQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+stable+partitioned+FSI+algorithm+for+rigid+bodies+and+incompressible+flow+in+three+dimensions&rft.jtitle=Journal+of+computational+physics&rft.au=Banks%2C+JW&rft.au=Schwendeman%2C+DW&rft.au=Tang%2C+Qi&rft.au=Henshaw%2C+WD&rft.date=2018-11-15&rft.pub=Elsevier+Science+Ltd&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=373&rft.spage=455&rft_id=info:doi/10.1016%2Fj.jcp.2018.06.072&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon