A stable partitioned FSI algorithm for rigid bodies and incompressible flow in three dimensions
This paper describes a novel partitioned algorithm for fluid–structure interaction (FSI) problems that couples the motion of rigid bodies and incompressible flow. This is the first partitioned algorithm that remains stable and second-order accurate, without sub-time-step iterations, for very light,...
Uloženo v:
| Vydáno v: | Journal of computational physics Ročník 373; číslo C; s. 455 - 492 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cambridge
Elsevier Inc
15.11.2018
Elsevier Science Ltd Elsevier |
| Témata: | |
| ISSN: | 0021-9991, 1090-2716 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper describes a novel partitioned algorithm for fluid–structure interaction (FSI) problems that couples the motion of rigid bodies and incompressible flow. This is the first partitioned algorithm that remains stable and second-order accurate, without sub-time-step iterations, for very light, and even zero-mass, bodies in three dimensions. This new added-mass partitioned (AMP) algorithm extends the previous developments in [1,2] by generalizing the added-damping tensors to account for arbitrary three-dimensional rotations, and by employing a general quadrature for the surface integral over a rigid body to derive the discrete AMP interface condition for the fluid pressure. Stability analyses for two three-dimensional model problems show that the algorithm remains stable for bodies of any mass when applied to the relevant model problems. The resulting AMP algorithm is implemented in parallel using a moving composite grid framework to treat one or more rigid bodies in complex three-dimensional configurations. The new three-dimensional algorithm is verified and validated though several benchmark problems, including the motion of a sphere in a viscous incompressible fluid and the interaction of a bi-leaflet mechanical heart valve and a pulsating fluid. Numerical simulations confirm the predictions of the stability analysis even for complex problems, and show that the AMP algorithm remains stable, without sub-iterations, for light and even zero-mass three-dimensional rigid bodies of general shape. These benchmark problems are further used to examine the parallel performance of the algorithm and to investigate the conditioning of the linear system for the pressure including the newly derived AMP interface conditions.
•A partitioned FSI scheme for incompressible flow and rigid bodies is extended to 3D.•Stability for simple geometries is proved using 3D model problems.•Numerical results confirm stability and accuracy for light bodies of general shapes.•A benchmark for a bi-leaflet mechanical heart valve is designed and conducted.•Refinement studies for the heart valve are provided. |
|---|---|
| AbstractList | This paper describes a novel partitioned algorithm for fluid–structure interaction (FSI) problems that couples the motion of rigid bodies and incompressible flow. This is the first partitioned algorithm that remains stable and second-order accurate, without sub-time-step iterations, for very light, and even zero-mass, bodies in three dimensions. This new added-mass partitioned (AMP) algorithm extends the previous developments in [1,2] by generalizing the added-damping tensors to account for arbitrary three-dimensional rotations, and by employing a general quadrature for the surface integral over a rigid body to derive the discrete AMP interface condition for the fluid pressure. Stability analyses for two three-dimensional model problems show that the algorithm remains stable for bodies of any mass when applied to the relevant model problems. The resulting AMP algorithm is implemented in parallel using a moving composite grid framework to treat one or more rigid bodies in complex three-dimensional configurations. The new three-dimensional algorithm is verified and validated though several benchmark problems, including the motion of a sphere in a viscous incompressible fluid and the interaction of a bi-leaflet mechanical heart valve and a pulsating fluid. Numerical simulations confirm the predictions of the stability analysis even for complex problems, and show that the AMP algorithm remains stable, without sub-iterations, for light and even zero-mass three-dimensional rigid bodies of general shape. These benchmark problems are further used to examine the parallel performance of the algorithm and to investigate the conditioning of the linear system for the pressure including the newly derived AMP interface conditions.
•A partitioned FSI scheme for incompressible flow and rigid bodies is extended to 3D.•Stability for simple geometries is proved using 3D model problems.•Numerical results confirm stability and accuracy for light bodies of general shapes.•A benchmark for a bi-leaflet mechanical heart valve is designed and conducted.•Refinement studies for the heart valve are provided. This paper describes a novel partitioned algorithm for fluid–structure interaction (FSI) problems that couples the motion of rigid bodies and incompressible flow. This is the first partitioned algorithm that remains stable and second-order accurate, without sub-time-step iterations, for very light, and even zero-mass, bodies in three dimensions. This new added-mass partitioned (AMP) algorithm extends the previous developments in [1], [2] by generalizing the added-damping tensors to account for arbitrary three-dimensional rotations, and by employing a general quadrature for the surface integral over a rigid body to derive the discrete AMP interface condition for the fluid pressure. Stability analyses for two three-dimensional model problems show that the algorithm remains stable for bodies of any mass when applied to the relevant model problems. The resulting AMP algorithm is implemented in parallel using a moving composite grid framework to treat one or more rigid bodies in complex three-dimensional configurations. The new three-dimensional algorithm is verified and validated though several benchmark problems, including the motion of a sphere in a viscous incompressible fluid and the interaction of a bi-leaflet mechanical heart valve and a pulsating fluid. Numerical simulations confirm the predictions of the stability analysis even for complex problems, and show that the AMP algorithm remains stable, without sub-iterations, for light and even zero-mass three-dimensional rigid bodies of general shape. These benchmark problems are further used to examine the parallel performance of the algorithm and to investigate the conditioning of the linear system for the pressure including the newly derived AMP interface conditions. |
| Author | Banks, J.W. Henshaw, W.D. Tang, Qi Schwendeman, D.W. |
| Author_xml | – sequence: 1 givenname: J.W. surname: Banks fullname: Banks, J.W. email: banksj3@rpi.edu – sequence: 2 givenname: W.D. surname: Henshaw fullname: Henshaw, W.D. email: henshw@rpi.edu – sequence: 3 givenname: D.W. surname: Schwendeman fullname: Schwendeman, D.W. email: schwed@rpi.edu – sequence: 4 givenname: Qi orcidid: 0000-0001-9614-1075 surname: Tang fullname: Tang, Qi email: tangq3@rpi.edu |
| BackLink | https://www.osti.gov/biblio/1564355$$D View this record in Osti.gov |
| BookMark | eNp9kE1r3DAURUVJoZM0PyA70a7tSBpLlugqhKYJBLJouxb6eM7IeCRXUlr67yszXWWR1YPHPZfLOUdnMUVA6IqSnhIqrud-dmvPCJU9ET0Z2Tu0o0SRjo1UnKEdIYx2Sin6AZ2XMhNCJB_kDukbXKqxC-DV5BpqaLUe331_wGZ5TjnUwxFPKeMcnoPHNvkABZvocYguHdcMpYSNnpb0p_1wPWQA7MMRYmld5SN6P5mlwOX_e4F-3n39cXvfPT59e7i9eezcXvHaSW-YUgS4FWAkFQz4OFhOHScTgHQDOEMGCVSN02iFhMkyx6dReWuZ8HZ_gT6delOpQRcXKriDSzGCq5pyMew5b6HPp9Ca068XKFXP6SXHtkszygZJFB1YS42nlMuplAyTbm1mM1OzCYumRG_K9aybcr0p10TopryR9BW55nA0-e-bzJcTA83O7wB5Gw_RgQ952-5TeIP-B2fQnEo |
| CitedBy_id | crossref_primary_10_1016_j_matcom_2024_01_027 crossref_primary_10_1016_j_jcp_2023_112221 crossref_primary_10_1002_fld_5034 crossref_primary_10_1007_s00162_025_00754_0 crossref_primary_10_1007_s10915_023_02430_z crossref_primary_10_1016_j_jweia_2021_104601 crossref_primary_10_1016_j_jcp_2024_113095 crossref_primary_10_3389_fmedt_2024_1399729 crossref_primary_10_1016_j_cma_2020_113040 crossref_primary_10_1016_j_jcp_2019_108923 crossref_primary_10_1016_j_jcp_2020_109921 crossref_primary_10_1137_20M1385470 crossref_primary_10_1016_j_oceaneng_2020_107923 crossref_primary_10_1007_s10409_019_00925_3 crossref_primary_10_3390_w12041025 crossref_primary_10_1016_j_compfluid_2023_105871 crossref_primary_10_1016_j_jcp_2020_109274 crossref_primary_10_1016_j_jcp_2023_112326 crossref_primary_10_1016_j_jcp_2021_110442 crossref_primary_10_1016_j_apm_2024_03_029 crossref_primary_10_1137_21M1458454 crossref_primary_10_1016_j_jcp_2021_110897 crossref_primary_10_1016_j_oceaneng_2022_110823 crossref_primary_10_1137_18M1232358 |
| Cites_doi | 10.1016/j.jcp.2017.01.015 10.1016/j.jcp.2008.04.033 10.1115/1.2746378 10.1016/j.jcp.2008.03.041 10.1016/j.jcp.2014.03.006 10.1016/j.jbiomech.2008.05.004 10.1007/s003660200023 10.1016/j.jcp.2012.04.012 10.1063/1.4944565 10.1016/j.jcp.2014.10.039 10.1016/j.jcp.2016.12.018 10.1007/s10439-009-9807-x 10.1016/j.jcp.2017.04.064 10.1016/j.jcp.2012.01.009 10.1115/1.4026198 10.2514/1.3660 10.1006/jcph.2000.6592 10.1114/B:ABME.0000049032.51742.10 10.1016/j.jcp.2017.03.026 10.1137/0908074 10.1016/j.jcp.2015.10.041 10.1016/j.jcp.2012.02.026 10.1007/PL00011074 10.1007/s11517-009-0438-z 10.1137/0915051 10.1016/j.jcp.2017.04.058 10.1063/1.1512918 10.1016/j.jcp.2008.04.028 10.1016/j.jcp.2006.01.005 10.1016/j.jcp.2015.10.043 10.1137/040603735 10.1016/j.jcp.2015.04.040 10.1137/050644379 10.1016/j.jcp.2015.04.005 10.1016/0045-7825(92)90085-X 10.1016/j.compstruc.2007.01.021 10.1017/S0022112008005156 10.1016/j.cma.2017.01.024 10.1016/S0301-9322(98)00048-2 10.1016/j.jcp.2017.04.076 10.1016/j.jcp.2014.03.004 10.1016/j.jcp.2011.12.034 10.1016/S0045-7825(99)00230-3 10.1016/j.jcp.2016.02.002 10.1016/j.cma.2007.12.013 10.1016/j.jcp.2017.05.003 10.1016/j.jcp.2005.03.017 10.1006/jcph.1994.1114 10.1016/j.jcp.2013.04.033 10.1016/j.jcp.2012.01.021 10.1016/S0142-727X(02)00159-5 10.2514/6.2009-3990 10.1016/j.cma.2015.11.001 10.1016/j.jcp.2005.07.010 10.1007/s10915-017-0638-x 10.1016/j.jcp.2013.02.050 10.1006/jcph.2001.6754 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Inc. Copyright Elsevier Science Ltd. Nov 15, 2018 |
| Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright Elsevier Science Ltd. Nov 15, 2018 |
| DBID | AAYXX CITATION 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D OTOTI |
| DOI | 10.1016/j.jcp.2018.06.072 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional OSTI.GOV |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1090-2716 |
| EndPage | 492 |
| ExternalDocumentID | 1564355 10_1016_j_jcp_2018_06_072 S0021999118304510 |
| GrantInformation_xml | – fundername: Eliza Ricketts Postdoctoral Fellowship – fundername: National Science Foundation grantid: DMS-1519934 funderid: https://doi.org/10.13039/100000001 – fundername: U.S. Presidential Early Career Award for Scientists and Engineers – fundername: U.S. Department of Energy ASCR funderid: https://doi.org/10.13039/100006192 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABNEU ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNCT ACRLP ACZNC ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF IHE J1W K-O KOM LG5 LX9 LZ4 M37 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSQ SSV SSZ T5K TN5 UPT YQT ZMT ZU3 ~02 ~G- 29K 6TJ 8WZ 9DU A6W AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADFGL ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CAG CITATION COF D-I EFKBS FGOYB G-2 HME HMV HZ~ NDZJH R2- SBC SEW SHN SPG T9H UQL WUQ ZY4 ~HD 7SC 7SP 7U5 8FD AFXIZ AGCQF AGRNS JQ2 L7M L~C L~D SSH AALMO ABPIF ABPTK ABQIS EFJIC OTOTI |
| ID | FETCH-LOGICAL-c395t-8da2990e5b6ea8162e574b51c50fee8c4eca048e197f7b68efb2c5f79dbb26db3 |
| ISICitedReferencesCount | 28 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000445108800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0021-9991 |
| IngestDate | Fri May 19 00:39:00 EDT 2023 Fri Jul 25 07:03:25 EDT 2025 Tue Nov 18 22:42:21 EST 2025 Sat Nov 29 03:10:21 EST 2025 Fri Feb 23 02:49:43 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | C |
| Keywords | Rigid bodies Moving overlapping grids Fluid–structure interaction Incompressible Navier–Stokes Added-mass Partitioned schemes |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c395t-8da2990e5b6ea8162e574b51c50fee8c4eca048e197f7b68efb2c5f79dbb26db3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR) |
| ORCID | 0000-0001-9614-1075 0000000196141075 |
| OpenAccessLink | https://doi.org/10.1016/j.jcp.2018.06.072 |
| PQID | 2124809142 |
| PQPubID | 2047462 |
| PageCount | 38 |
| ParticipantIDs | osti_scitechconnect_1564355 proquest_journals_2124809142 crossref_citationtrail_10_1016_j_jcp_2018_06_072 crossref_primary_10_1016_j_jcp_2018_06_072 elsevier_sciencedirect_doi_10_1016_j_jcp_2018_06_072 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-11-15 |
| PublicationDateYYYYMMDD | 2018-11-15 |
| PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Cambridge |
| PublicationPlace_xml | – name: Cambridge – name: United States |
| PublicationTitle | Journal of computational physics |
| PublicationYear | 2018 |
| Publisher | Elsevier Inc Elsevier Science Ltd Elsevier |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Science Ltd – name: Elsevier |
| References | Yih (br0500) 1977 Banks, Henshaw, Sjögreen (br0420) 2013; 245 Coquerelle, Cottet (br0190) 2008; 227 Tschisgale, Kempe, Fröhlich (br0410) 2017; 339 Banks, Henshaw, Schwendeman (br0450) 2014; 269 Chesshire, Henshaw (br0530) 1991 Bhalla, Bale, Griffith, Patankar (br0300) 2013; 250 Petersson (br0490) 2001; 172 Banks, Henshaw, Schwendeman (br0460) 2014; 268 Wang, Eldredge (br0320) 2015; 295 Henshaw (br0550) 2010 Tai, Liew, Zhao (br0100) 2007; 85 Kim, Peskin (br0330) 2016; 28 Henshaw, Schwendeman (br0030) 2006; 216 Yoon, Min, Kim (br0480) 2018; 76 Dumont, Vierendeels, Kaminsky, Van Nooten, Verdonck, Bluestein (br0090) 2007; 129 Costarelli, Garelli, Cruchaga, Storti, Ausensi, Idelsohn (br0220) 2016; 300 Glowinski, Pan, Hesla, Joseph, Périaux (br0630) 2000; 184 Yang, Stern (br0290) 2012; 231 Vierendeels, Dumont, Dick, Verdonck (br0180) 2005; 43 Saye (br0360) 2017; 344 Li, Henshaw, Banks, Schwendeman, Main (br0470) 2016; 312 Balay, Abhyankar, Adams, Brown, Brune, Buschelman, Dalcin, Eijkhout, Gropp, Kaushik, Knepley, McInnes, Rupp, Smith, Zampini, Zhang, Zhang (br0560) 2016 Lācis, Taira, Bagheri (br0340) 2016; 305 Nobili, Morbiducci, Ponzini, Del Gaudio, Balducci, Grigioni, Montevecchi, Redaelli (br0120) 2008; 41 Kim, Choi (br0250) 2006; 212 Kajishima, Takiguchi (br0230) 2002; 23 Saye (br0370) 2017; 344 Breugem (br0270) 2012; 231 Henshaw (br0510) 1998 Henshaw, Schwendeman (br0070) 2008; 227 Lee, Chang, Choi, Kim, Liu, Kim (br0260) 2008; 197 Henshaw (br0600) 2002; 18 Koblitz, Lovett, Nikiforakis, Henshaw (br0380) 2017; 343 Cheng, Lai, Chandran (br0080) 2004; 32 Henshaw (br0040) 1994; 113 Borazjani, Ge, Sotiropoulos (br0110) 2008; 227 Banks, Henshaw, Schwendeman, Tang (br0020) 2017; 343 Banks, Henshaw, Schwendeman, Tang (br0010) 2017; 343 Mordant, Pinton (br0580) 2000; 18 Glowinski, Pan, Hesla, Joseph (br0210) 1999; 25 Chesshire, Henshaw (br0540) 1994; 15 Yang, Stern (br0590) 2014; 136 Takashi, Hughes (br0160) 1992; 95 Henshaw (br0620) 2005; 26 Henshaw, Petersson (br0050) 2003 Kempe, Fröhlich (br0280) 2012; 231 Schwarz, Kempe, Fröhlich (br0400) 2015; 281 Hu, Patankar, Zhu (br0170) 2001; 169 Gibou, Min (br0200) 2012; 231 De Tullio, Cristallo, Balaras, Verzicco (br0130) 2009; 622 Banks, Henshaw, Schwendeman (br0430) 2012; 231 Borazjani, Ge, Sotiropoulos (br0140) 2010; 38 Uhlmann (br0240) 2005; 209 ten Cate, Nieuwstad, Derksen, den Akker (br0570) 2002; 14 Sotiropoulos, Borazjani (br0150) 2009; 47 W.M. Chan, Enhancements to the hybrid mesh approach to surface loads integration on overset structured grids, AIAA paper 2009-3990. Henshaw, Chesshire (br0610) 1987; 8 Banks, Henshaw, Kapila, Schwendeman (br0440) 2016; 305 Yang, Stern (br0310) 2015; 295 Kadapa, Dettmer, Perić (br0390) 2017; 318 Henshaw (br0060) 2006; 28 Corona, Greengard, Rachh, Veerapaneni (br0350) 2017; 332 Mordant (10.1016/j.jcp.2018.06.072_br0580) 2000; 18 Dumont (10.1016/j.jcp.2018.06.072_br0090) 2007; 129 Coquerelle (10.1016/j.jcp.2018.06.072_br0190) 2008; 227 Yang (10.1016/j.jcp.2018.06.072_br0310) 2015; 295 Takashi (10.1016/j.jcp.2018.06.072_br0160) 1992; 95 Kadapa (10.1016/j.jcp.2018.06.072_br0390) 2017; 318 Lācis (10.1016/j.jcp.2018.06.072_br0340) 2016; 305 Li (10.1016/j.jcp.2018.06.072_br0470) 2016; 312 Lee (10.1016/j.jcp.2018.06.072_br0260) 2008; 197 Yang (10.1016/j.jcp.2018.06.072_br0590) 2014; 136 Glowinski (10.1016/j.jcp.2018.06.072_br0210) 1999; 25 Chesshire (10.1016/j.jcp.2018.06.072_br0540) 1994; 15 ten Cate (10.1016/j.jcp.2018.06.072_br0570) 2002; 14 Saye (10.1016/j.jcp.2018.06.072_br0370) 2017; 344 Petersson (10.1016/j.jcp.2018.06.072_br0490) 2001; 172 Kim (10.1016/j.jcp.2018.06.072_br0250) 2006; 212 Cheng (10.1016/j.jcp.2018.06.072_br0080) 2004; 32 Breugem (10.1016/j.jcp.2018.06.072_br0270) 2012; 231 Saye (10.1016/j.jcp.2018.06.072_br0360) 2017; 344 Nobili (10.1016/j.jcp.2018.06.072_br0120) 2008; 41 Yang (10.1016/j.jcp.2018.06.072_br0290) 2012; 231 Banks (10.1016/j.jcp.2018.06.072_br0450) 2014; 269 Kempe (10.1016/j.jcp.2018.06.072_br0280) 2012; 231 Henshaw (10.1016/j.jcp.2018.06.072_br0620) 2005; 26 Corona (10.1016/j.jcp.2018.06.072_br0350) 2017; 332 Banks (10.1016/j.jcp.2018.06.072_br0460) 2014; 268 Henshaw (10.1016/j.jcp.2018.06.072_br0610) 1987; 8 Wang (10.1016/j.jcp.2018.06.072_br0320) 2015; 295 Tschisgale (10.1016/j.jcp.2018.06.072_br0410) 2017; 339 Glowinski (10.1016/j.jcp.2018.06.072_br0630) 2000; 184 Banks (10.1016/j.jcp.2018.06.072_br0020) 2017; 343 Henshaw (10.1016/j.jcp.2018.06.072_br0060) 2006; 28 Schwarz (10.1016/j.jcp.2018.06.072_br0400) 2015; 281 Kajishima (10.1016/j.jcp.2018.06.072_br0230) 2002; 23 Banks (10.1016/j.jcp.2018.06.072_br0010) 2017; 343 Henshaw (10.1016/j.jcp.2018.06.072_br0600) 2002; 18 Henshaw (10.1016/j.jcp.2018.06.072_br0070) 2008; 227 Banks (10.1016/j.jcp.2018.06.072_br0430) 2012; 231 Hu (10.1016/j.jcp.2018.06.072_br0170) 2001; 169 Chesshire (10.1016/j.jcp.2018.06.072_br0530) 1991 Uhlmann (10.1016/j.jcp.2018.06.072_br0240) 2005; 209 Sotiropoulos (10.1016/j.jcp.2018.06.072_br0150) 2009; 47 Henshaw (10.1016/j.jcp.2018.06.072_br0030) 2006; 216 Borazjani (10.1016/j.jcp.2018.06.072_br0110) 2008; 227 Banks (10.1016/j.jcp.2018.06.072_br0420) 2013; 245 Banks (10.1016/j.jcp.2018.06.072_br0440) 2016; 305 Yoon (10.1016/j.jcp.2018.06.072_br0480) 2018; 76 Bhalla (10.1016/j.jcp.2018.06.072_br0300) 2013; 250 10.1016/j.jcp.2018.06.072_br0520 Henshaw (10.1016/j.jcp.2018.06.072_br0050) 2003 Henshaw (10.1016/j.jcp.2018.06.072_br0510) 1998 Tai (10.1016/j.jcp.2018.06.072_br0100) 2007; 85 Balay (10.1016/j.jcp.2018.06.072_br0560) 2016 Henshaw (10.1016/j.jcp.2018.06.072_br0040) 1994; 113 Gibou (10.1016/j.jcp.2018.06.072_br0200) 2012; 231 Koblitz (10.1016/j.jcp.2018.06.072_br0380) 2017; 343 Yih (10.1016/j.jcp.2018.06.072_br0500) 1977 Borazjani (10.1016/j.jcp.2018.06.072_br0140) 2010; 38 De Tullio (10.1016/j.jcp.2018.06.072_br0130) 2009; 622 Costarelli (10.1016/j.jcp.2018.06.072_br0220) 2016; 300 Vierendeels (10.1016/j.jcp.2018.06.072_br0180) 2005; 43 Kim (10.1016/j.jcp.2018.06.072_br0330) 2016; 28 Henshaw (10.1016/j.jcp.2018.06.072_br0550) 2010 |
| References_xml | – reference: W.M. Chan, Enhancements to the hybrid mesh approach to surface loads integration on overset structured grids, AIAA paper 2009-3990. – volume: 231 start-page: 4469 year: 2012 end-page: 4498 ident: br0270 article-title: A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows publication-title: J. Comput. Phys. – volume: 343 start-page: 469 year: 2017 end-page: 500 ident: br0020 article-title: A stable partitioned FSI algorithm for rigid bodies and incompressible flow. Part II: general formulation publication-title: J. Comput. Phys. – volume: 344 start-page: 647 year: 2017 end-page: 682 ident: br0360 article-title: Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body fluid–structure interaction, and free surface flow: part I publication-title: J. Comput. Phys. – volume: 26 start-page: 1547 year: 2005 end-page: 1572 ident: br0620 article-title: On multigrid for overlapping grids publication-title: SIAM J. Sci. Comput. – volume: 332 start-page: 504 year: 2017 end-page: 519 ident: br0350 article-title: An integral equation formulation for rigid bodies in Stokes flow in three dimensions publication-title: J. Comput. Phys. – volume: 85 start-page: 749 year: 2007 end-page: 762 ident: br0100 article-title: Numerical simulation of 3D fluid–structure interaction flow using an immersed object method with overlapping grids publication-title: Comput. Struct. – volume: 129 start-page: 558 year: 2007 end-page: 565 ident: br0090 article-title: Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model publication-title: J. Biomech. Eng. – year: 2010 ident: br0550 article-title: Cgins User Guide: An Overture Solver for the Incompressible Navier–Stokes Equations on Composite Overlapping Grids – volume: 344 start-page: 683 year: 2017 end-page: 723 ident: br0370 article-title: Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body fluid–structure interaction, and free surface flow: part II publication-title: J. Comput. Phys. – volume: 32 start-page: 1471 year: 2004 end-page: 1483 ident: br0080 article-title: Three-dimensional fluid–structure interaction simulation of bileaflet mechanical heart valve flow dynamics publication-title: Ann. Biomed. Eng. – volume: 18 start-page: 343 year: 2000 end-page: 352 ident: br0580 article-title: Velocity measurement of a settling sphere publication-title: Eur. Phys. J. B – volume: 41 start-page: 2539 year: 2008 end-page: 2550 ident: br0120 article-title: Numerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluid–structure interaction approach publication-title: J. Biomech. – volume: 15 start-page: 819 year: 1994 end-page: 845 ident: br0540 article-title: A scheme for conservative interpolation on overlapping grids publication-title: SIAM J. Sci. Comput. – volume: 227 start-page: 7469 year: 2008 end-page: 7502 ident: br0070 article-title: Parallel computation of three-dimensional flows using overlapping grids with adaptive mesh refinement publication-title: J. Comput. Phys. – volume: 38 start-page: 326 year: 2010 end-page: 344 ident: br0140 article-title: High-resolution fluid–structure interaction simulations of flow through a bi-leaflet mechanical heart valve in an anatomic aorta publication-title: Ann. Biomed. Eng. – volume: 250 start-page: 446 year: 2013 end-page: 476 ident: br0300 article-title: A unified mathematical framework and an adaptive numerical method for fluid–structure interaction with rigid, deforming, and elastic bodies publication-title: J. Comput. Phys. – volume: 312 start-page: 272 year: 2016 end-page: 306 ident: br0470 article-title: A stable partitioned FSI algorithm for incompressible flow and deforming beams publication-title: J. Comput. Phys. – volume: 169 start-page: 427 year: 2001 end-page: 462 ident: br0170 article-title: Direct numerical simulations of fluid–solid systems using the arbitrary Langrangian–Eulerian technique publication-title: J. Comput. Phys. – volume: 318 start-page: 242 year: 2017 end-page: 269 ident: br0390 article-title: A stabilised immersed boundary method on hierarchical b-spline grids for fluid–rigid body interaction with solid–solid contact publication-title: Comput. Methods Appl. Mech. Eng. – volume: 18 start-page: 265 year: 2002 end-page: 273 ident: br0600 article-title: An algorithm for projecting points onto a patched CAD model publication-title: Eng. Comput. – volume: 339 start-page: 432 year: 2017 end-page: 452 ident: br0410 article-title: A non-iterative immersed boundary method for spherical particles of arbitrary density ratio publication-title: J. Comput. Phys. – volume: 305 start-page: 300 year: 2016 end-page: 318 ident: br0340 article-title: A stable fluid–structure-interaction solver for low-density rigid bodies using the immersed boundary projection method publication-title: J. Comput. Phys. – volume: 231 start-page: 3518 year: 2012 end-page: 3547 ident: br0430 article-title: Deforming composite grids for solving fluid structure problems publication-title: J. Comput. Phys. – volume: 295 start-page: 87 year: 2015 end-page: 113 ident: br0320 article-title: Strongly coupled dynamics of fluids and rigid-body systems with the immersed boundary projection method publication-title: J. Comput. Phys. – volume: 300 start-page: 106 year: 2016 end-page: 128 ident: br0220 article-title: An embedded strategy for the analysis of fluid structure interaction problems publication-title: Comput. Methods Appl. Mech. Eng. – volume: 343 start-page: 432 year: 2017 end-page: 468 ident: br0010 article-title: A stable partitioned FSI algorithm for rigid bodies and incompressible flow. Part I: model problem analysis publication-title: J. Comput. Phys. – volume: 136 year: 2014 ident: br0590 article-title: A sharp interface direct forcing immersed boundary approach for fully resolved simulations of particulate flows publication-title: J. Fluids Eng. – volume: 305 start-page: 1037 year: 2016 end-page: 1064 ident: br0440 article-title: An added-mass partitioned algorithm for fluid–structure interactions of compressible fluids and nonlinear solids publication-title: J. Comput. Phys. – volume: 343 start-page: 414 year: 2017 end-page: 431 ident: br0380 article-title: Direct numerical simulation of particulate flows with an overset grid method publication-title: J. Comput. Phys. – volume: 23 start-page: 639 year: 2002 end-page: 646 ident: br0230 article-title: Interaction between particle clusters and particle-induced turbulence publication-title: Int. J. Heat Fluid Flow – volume: 197 start-page: 2305 year: 2008 end-page: 2316 ident: br0260 article-title: Immersed finite element method for rigid body motions in the incompressible Navier–Stokes flow publication-title: Comput. Methods Appl. Mech. Eng. – volume: 281 start-page: 591 year: 2015 end-page: 613 ident: br0400 article-title: A temporal discretization scheme to compute the motion of light particles in viscous flows by an immersed boundary method publication-title: J. Comput. Phys. – volume: 113 start-page: 13 year: 1994 end-page: 25 ident: br0040 article-title: A fourth-order accurate method for the incompressible Navier–Stokes equations on overlapping grids publication-title: J. Comput. Phys. – year: 1977 ident: br0500 article-title: Fluid Mechanics – volume: 14 start-page: 4012 year: 2002 end-page: 4025 ident: br0570 article-title: Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity publication-title: Phys. Fluids – volume: 43 start-page: 2549 year: 2005 end-page: 2557 ident: br0180 article-title: Analysis and stabilization of fluid–structure interaction algorithm for rigid-body motion publication-title: AIAA J. – volume: 269 start-page: 108 year: 2014 end-page: 137 ident: br0450 article-title: An analysis of a new stable partitioned algorithm for FSI problems. Part I: incompressible flow and elastic solids publication-title: J. Comput. Phys. – volume: 172 start-page: 40 year: 2001 end-page: 70 ident: br0490 article-title: Stability of pressure boundary conditions for Stokes and Navier–Stokes equations publication-title: J. Comput. Phys. – volume: 95 start-page: 115 year: 1992 end-page: 138 ident: br0160 article-title: An arbitrary Lagrangian–Eulerian finite element method for interaction of fluid and a rigid body publication-title: Comput. Methods Appl. Mech. Eng. – volume: 227 start-page: 7587 year: 2008 end-page: 7620 ident: br0110 article-title: Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies publication-title: J. Comput. Phys. – year: 1991 ident: br0530 article-title: Conservation on Composite Overlapping Grids – volume: 212 start-page: 662 year: 2006 end-page: 680 ident: br0250 article-title: Immersed boundary method for flow around an arbitrarily moving body publication-title: J. Comput. Phys. – volume: 216 start-page: 744 year: 2006 end-page: 779 ident: br0030 article-title: Moving overlapping grids with adaptive mesh refinement for high-speed reactive and non-reactive flow publication-title: J. Comput. Phys. – volume: 231 start-page: 3246 year: 2012 end-page: 3263 ident: br0200 article-title: Efficient symmetric positive definite second-order accurate monolithic solver for fluid/solid interactions publication-title: J. Comput. Phys. – volume: 622 start-page: 259 year: 2009 end-page: 290 ident: br0130 article-title: Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve publication-title: J. Fluid Mech. – volume: 231 start-page: 5029 year: 2012 end-page: 5061 ident: br0290 article-title: A simple and efficient direct forcing immersed boundary framework for fluid–structure interactions publication-title: J. Comput. Phys. – volume: 295 start-page: 779 year: 2015 end-page: 804 ident: br0310 article-title: A non-iterative direct forcing immersed boundary method for strongly-coupled fluid–solid interactions publication-title: J. Comput. Phys. – volume: 268 start-page: 399 year: 2014 end-page: 416 ident: br0460 article-title: An analysis of a new stable partitioned algorithm for FSI problems. Part II: incompressible flow and structural shells publication-title: J. Comput. Phys. – volume: 25 start-page: 755 year: 1999 end-page: 794 ident: br0210 article-title: A distributed Lagrange multiplier/fictitious domain method for particulate flows publication-title: Int. J. Multiph. Flow – volume: 209 start-page: 448 year: 2005 end-page: 476 ident: br0240 article-title: An immersed boundary method with direct forcing for the simulation of particulate flows publication-title: J. Comput. Phys. – volume: 76 start-page: 727 year: 2018 end-page: 758 ident: br0480 article-title: A stable and convergent Hodge decomposition method for fluid–solid interaction publication-title: J. Sci. Comput. – volume: 47 start-page: 245 year: 2009 end-page: 256 ident: br0150 article-title: A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves publication-title: Med. Biol. Eng. Comput. – year: 2016 ident: br0560 article-title: PETSc users manual – volume: 231 start-page: 3663 year: 2012 end-page: 3684 ident: br0280 article-title: An improved immersed boundary method with direct forcing for the simulation of particle laden flows publication-title: J. Comput. Phys. – volume: 184 start-page: 241 year: 2000 end-page: 267 ident: br0630 article-title: A distributed Lagrange multiplier/fictitious domain method for the simulation of flow around moving rigid bodies: application to particulate flow publication-title: Comput. Methods Appl. Mech. Eng. – year: 1998 ident: br0510 article-title: Ogen: An Overlapping Grid Generator for Overture – volume: 28 year: 2016 ident: br0330 article-title: A penalty immersed boundary method for a rigid body in fluid publication-title: Phys. Fluids – volume: 8 start-page: 914 year: 1987 end-page: 923 ident: br0610 article-title: Multigrid on composite meshes publication-title: SIAM J. Sci. Stat. Comput. – volume: 227 start-page: 9121 year: 2008 end-page: 9137 ident: br0190 article-title: A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies publication-title: J. Comput. Phys. – start-page: 108 year: 2003 end-page: 125 ident: br0050 article-title: A split-step scheme for the incompressible Navier–Stokes equations publication-title: Numerical Simulation of Incompressible Flows – volume: 245 start-page: 399 year: 2013 end-page: 430 ident: br0420 article-title: A stable FSI algorithm for light rigid bodies in compressible flow publication-title: J. Comput. Phys. – volume: 28 start-page: 1730 year: 2006 end-page: 1765 ident: br0060 article-title: A high-order accurate parallel solver for Maxwell's equations on overlapping grids publication-title: SIAM J. Sci. Comput. – year: 2010 ident: 10.1016/j.jcp.2018.06.072_br0550 – volume: 343 start-page: 432 year: 2017 ident: 10.1016/j.jcp.2018.06.072_br0010 article-title: A stable partitioned FSI algorithm for rigid bodies and incompressible flow. Part I: model problem analysis publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.01.015 – volume: 227 start-page: 7469 issue: 16 year: 2008 ident: 10.1016/j.jcp.2018.06.072_br0070 article-title: Parallel computation of three-dimensional flows using overlapping grids with adaptive mesh refinement publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2008.04.033 – volume: 129 start-page: 558 issue: 4 year: 2007 ident: 10.1016/j.jcp.2018.06.072_br0090 article-title: Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model publication-title: J. Biomech. Eng. doi: 10.1115/1.2746378 – volume: 227 start-page: 9121 issue: 21 year: 2008 ident: 10.1016/j.jcp.2018.06.072_br0190 article-title: A vortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2008.03.041 – volume: 269 start-page: 108 year: 2014 ident: 10.1016/j.jcp.2018.06.072_br0450 article-title: An analysis of a new stable partitioned algorithm for FSI problems. Part I: incompressible flow and elastic solids publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.03.006 – volume: 41 start-page: 2539 issue: 11 year: 2008 ident: 10.1016/j.jcp.2018.06.072_br0120 article-title: Numerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluid–structure interaction approach publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2008.05.004 – volume: 18 start-page: 265 year: 2002 ident: 10.1016/j.jcp.2018.06.072_br0600 article-title: An algorithm for projecting points onto a patched CAD model publication-title: Eng. Comput. doi: 10.1007/s003660200023 – volume: 231 start-page: 5029 issue: 15 year: 2012 ident: 10.1016/j.jcp.2018.06.072_br0290 article-title: A simple and efficient direct forcing immersed boundary framework for fluid–structure interactions publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.04.012 – volume: 28 issue: 3 year: 2016 ident: 10.1016/j.jcp.2018.06.072_br0330 article-title: A penalty immersed boundary method for a rigid body in fluid publication-title: Phys. Fluids doi: 10.1063/1.4944565 – volume: 281 start-page: 591 year: 2015 ident: 10.1016/j.jcp.2018.06.072_br0400 article-title: A temporal discretization scheme to compute the motion of light particles in viscous flows by an immersed boundary method publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.10.039 – volume: 332 start-page: 504 year: 2017 ident: 10.1016/j.jcp.2018.06.072_br0350 article-title: An integral equation formulation for rigid bodies in Stokes flow in three dimensions publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.12.018 – volume: 38 start-page: 326 issue: 2 year: 2010 ident: 10.1016/j.jcp.2018.06.072_br0140 article-title: High-resolution fluid–structure interaction simulations of flow through a bi-leaflet mechanical heart valve in an anatomic aorta publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-009-9807-x – volume: 343 start-page: 469 year: 2017 ident: 10.1016/j.jcp.2018.06.072_br0020 article-title: A stable partitioned FSI algorithm for rigid bodies and incompressible flow. Part II: general formulation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.04.064 – volume: 231 start-page: 3246 issue: 8 year: 2012 ident: 10.1016/j.jcp.2018.06.072_br0200 article-title: Efficient symmetric positive definite second-order accurate monolithic solver for fluid/solid interactions publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.01.009 – volume: 136 issue: 4 year: 2014 ident: 10.1016/j.jcp.2018.06.072_br0590 article-title: A sharp interface direct forcing immersed boundary approach for fully resolved simulations of particulate flows publication-title: J. Fluids Eng. doi: 10.1115/1.4026198 – volume: 43 start-page: 2549 issue: 12 year: 2005 ident: 10.1016/j.jcp.2018.06.072_br0180 article-title: Analysis and stabilization of fluid–structure interaction algorithm for rigid-body motion publication-title: AIAA J. doi: 10.2514/1.3660 – volume: 169 start-page: 427 issue: 2 year: 2001 ident: 10.1016/j.jcp.2018.06.072_br0170 article-title: Direct numerical simulations of fluid–solid systems using the arbitrary Langrangian–Eulerian technique publication-title: J. Comput. Phys. doi: 10.1006/jcph.2000.6592 – volume: 32 start-page: 1471 issue: 11 year: 2004 ident: 10.1016/j.jcp.2018.06.072_br0080 article-title: Three-dimensional fluid–structure interaction simulation of bileaflet mechanical heart valve flow dynamics publication-title: Ann. Biomed. Eng. doi: 10.1114/B:ABME.0000049032.51742.10 – volume: 339 start-page: 432 year: 2017 ident: 10.1016/j.jcp.2018.06.072_br0410 article-title: A non-iterative immersed boundary method for spherical particles of arbitrary density ratio publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.03.026 – year: 1991 ident: 10.1016/j.jcp.2018.06.072_br0530 – volume: 8 start-page: 914 issue: 6 year: 1987 ident: 10.1016/j.jcp.2018.06.072_br0610 article-title: Multigrid on composite meshes publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0908074 – start-page: 108 year: 2003 ident: 10.1016/j.jcp.2018.06.072_br0050 article-title: A split-step scheme for the incompressible Navier–Stokes equations – volume: 305 start-page: 300 year: 2016 ident: 10.1016/j.jcp.2018.06.072_br0340 article-title: A stable fluid–structure-interaction solver for low-density rigid bodies using the immersed boundary projection method publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.10.041 – volume: 231 start-page: 4469 issue: 13 year: 2012 ident: 10.1016/j.jcp.2018.06.072_br0270 article-title: A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.02.026 – volume: 18 start-page: 343 issue: 2 year: 2000 ident: 10.1016/j.jcp.2018.06.072_br0580 article-title: Velocity measurement of a settling sphere publication-title: Eur. Phys. J. B doi: 10.1007/PL00011074 – volume: 47 start-page: 245 issue: 3 year: 2009 ident: 10.1016/j.jcp.2018.06.072_br0150 article-title: A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-009-0438-z – volume: 15 start-page: 819 issue: 4 year: 1994 ident: 10.1016/j.jcp.2018.06.072_br0540 article-title: A scheme for conservative interpolation on overlapping grids publication-title: SIAM J. Sci. Comput. doi: 10.1137/0915051 – volume: 343 start-page: 414 year: 2017 ident: 10.1016/j.jcp.2018.06.072_br0380 article-title: Direct numerical simulation of particulate flows with an overset grid method publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.04.058 – volume: 14 start-page: 4012 issue: 11 year: 2002 ident: 10.1016/j.jcp.2018.06.072_br0570 article-title: Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity publication-title: Phys. Fluids doi: 10.1063/1.1512918 – volume: 227 start-page: 7587 issue: 16 year: 2008 ident: 10.1016/j.jcp.2018.06.072_br0110 article-title: Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2008.04.028 – volume: 216 start-page: 744 issue: 2 year: 2006 ident: 10.1016/j.jcp.2018.06.072_br0030 article-title: Moving overlapping grids with adaptive mesh refinement for high-speed reactive and non-reactive flow publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2006.01.005 – volume: 305 start-page: 1037 year: 2016 ident: 10.1016/j.jcp.2018.06.072_br0440 article-title: An added-mass partitioned algorithm for fluid–structure interactions of compressible fluids and nonlinear solids publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.10.043 – volume: 26 start-page: 1547 issue: 5 year: 2005 ident: 10.1016/j.jcp.2018.06.072_br0620 article-title: On multigrid for overlapping grids publication-title: SIAM J. Sci. Comput. doi: 10.1137/040603735 – volume: 295 start-page: 779 year: 2015 ident: 10.1016/j.jcp.2018.06.072_br0310 article-title: A non-iterative direct forcing immersed boundary method for strongly-coupled fluid–solid interactions publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.04.040 – volume: 28 start-page: 1730 issue: 5 year: 2006 ident: 10.1016/j.jcp.2018.06.072_br0060 article-title: A high-order accurate parallel solver for Maxwell's equations on overlapping grids publication-title: SIAM J. Sci. Comput. doi: 10.1137/050644379 – volume: 295 start-page: 87 year: 2015 ident: 10.1016/j.jcp.2018.06.072_br0320 article-title: Strongly coupled dynamics of fluids and rigid-body systems with the immersed boundary projection method publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.04.005 – year: 1998 ident: 10.1016/j.jcp.2018.06.072_br0510 – volume: 95 start-page: 115 issue: 1 year: 1992 ident: 10.1016/j.jcp.2018.06.072_br0160 article-title: An arbitrary Lagrangian–Eulerian finite element method for interaction of fluid and a rigid body publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(92)90085-X – volume: 85 start-page: 749 issue: 11 year: 2007 ident: 10.1016/j.jcp.2018.06.072_br0100 article-title: Numerical simulation of 3D fluid–structure interaction flow using an immersed object method with overlapping grids publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2007.01.021 – volume: 622 start-page: 259 year: 2009 ident: 10.1016/j.jcp.2018.06.072_br0130 article-title: Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve publication-title: J. Fluid Mech. doi: 10.1017/S0022112008005156 – volume: 318 start-page: 242 year: 2017 ident: 10.1016/j.jcp.2018.06.072_br0390 article-title: A stabilised immersed boundary method on hierarchical b-spline grids for fluid–rigid body interaction with solid–solid contact publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2017.01.024 – year: 1977 ident: 10.1016/j.jcp.2018.06.072_br0500 – volume: 25 start-page: 755 issue: 5 year: 1999 ident: 10.1016/j.jcp.2018.06.072_br0210 article-title: A distributed Lagrange multiplier/fictitious domain method for particulate flows publication-title: Int. J. Multiph. Flow doi: 10.1016/S0301-9322(98)00048-2 – year: 2016 ident: 10.1016/j.jcp.2018.06.072_br0560 – volume: 344 start-page: 647 year: 2017 ident: 10.1016/j.jcp.2018.06.072_br0360 article-title: Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body fluid–structure interaction, and free surface flow: part I publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.04.076 – volume: 268 start-page: 399 year: 2014 ident: 10.1016/j.jcp.2018.06.072_br0460 article-title: An analysis of a new stable partitioned algorithm for FSI problems. Part II: incompressible flow and structural shells publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.03.004 – volume: 231 start-page: 3518 issue: 9 year: 2012 ident: 10.1016/j.jcp.2018.06.072_br0430 article-title: Deforming composite grids for solving fluid structure problems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.12.034 – volume: 184 start-page: 241 issue: 2 year: 2000 ident: 10.1016/j.jcp.2018.06.072_br0630 article-title: A distributed Lagrange multiplier/fictitious domain method for the simulation of flow around moving rigid bodies: application to particulate flow publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(99)00230-3 – volume: 312 start-page: 272 year: 2016 ident: 10.1016/j.jcp.2018.06.072_br0470 article-title: A stable partitioned FSI algorithm for incompressible flow and deforming beams publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.02.002 – volume: 197 start-page: 2305 issue: 25 year: 2008 ident: 10.1016/j.jcp.2018.06.072_br0260 article-title: Immersed finite element method for rigid body motions in the incompressible Navier–Stokes flow publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2007.12.013 – volume: 344 start-page: 683 year: 2017 ident: 10.1016/j.jcp.2018.06.072_br0370 article-title: Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body fluid–structure interaction, and free surface flow: part II publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.05.003 – volume: 209 start-page: 448 issue: 2 year: 2005 ident: 10.1016/j.jcp.2018.06.072_br0240 article-title: An immersed boundary method with direct forcing for the simulation of particulate flows publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2005.03.017 – volume: 113 start-page: 13 issue: 1 year: 1994 ident: 10.1016/j.jcp.2018.06.072_br0040 article-title: A fourth-order accurate method for the incompressible Navier–Stokes equations on overlapping grids publication-title: J. Comput. Phys. doi: 10.1006/jcph.1994.1114 – volume: 250 start-page: 446 year: 2013 ident: 10.1016/j.jcp.2018.06.072_br0300 article-title: A unified mathematical framework and an adaptive numerical method for fluid–structure interaction with rigid, deforming, and elastic bodies publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.04.033 – volume: 231 start-page: 3663 issue: 9 year: 2012 ident: 10.1016/j.jcp.2018.06.072_br0280 article-title: An improved immersed boundary method with direct forcing for the simulation of particle laden flows publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.01.021 – volume: 23 start-page: 639 issue: 5 year: 2002 ident: 10.1016/j.jcp.2018.06.072_br0230 article-title: Interaction between particle clusters and particle-induced turbulence publication-title: Int. J. Heat Fluid Flow doi: 10.1016/S0142-727X(02)00159-5 – ident: 10.1016/j.jcp.2018.06.072_br0520 doi: 10.2514/6.2009-3990 – volume: 300 start-page: 106 year: 2016 ident: 10.1016/j.jcp.2018.06.072_br0220 article-title: An embedded strategy for the analysis of fluid structure interaction problems publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2015.11.001 – volume: 212 start-page: 662 issue: 2 year: 2006 ident: 10.1016/j.jcp.2018.06.072_br0250 article-title: Immersed boundary method for flow around an arbitrarily moving body publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2005.07.010 – volume: 76 start-page: 727 issue: 2 year: 2018 ident: 10.1016/j.jcp.2018.06.072_br0480 article-title: A stable and convergent Hodge decomposition method for fluid–solid interaction publication-title: J. Sci. Comput. doi: 10.1007/s10915-017-0638-x – volume: 245 start-page: 399 year: 2013 ident: 10.1016/j.jcp.2018.06.072_br0420 article-title: A stable FSI algorithm for light rigid bodies in compressible flow publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.02.050 – volume: 172 start-page: 40 issue: 1 year: 2001 ident: 10.1016/j.jcp.2018.06.072_br0490 article-title: Stability of pressure boundary conditions for Stokes and Navier–Stokes equations publication-title: J. Comput. Phys. doi: 10.1006/jcph.2001.6754 |
| SSID | ssj0008548 |
| Score | 2.4486952 |
| Snippet | This paper describes a novel partitioned algorithm for fluid–structure interaction (FSI) problems that couples the motion of rigid bodies and incompressible... |
| SourceID | osti proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 455 |
| SubjectTerms | Added-mass Algorithms Benchmarks Computational fluid dynamics Computational physics Computer simulation Damping Dimensional stability Fluid flow Fluid mechanics Fluid pressure Fluid-structure interaction Heart valves Incompressible flow Incompressible fluids Incompressible Navier–Stokes Interface stability Mathematical models Moving overlapping grids Navier-Stokes equations Partitioned schemes Rigid bodies Rigid structures Stability analysis Tensors Three dimensional analysis Three dimensional flow Three dimensional models |
| Title | A stable partitioned FSI algorithm for rigid bodies and incompressible flow in three dimensions |
| URI | https://dx.doi.org/10.1016/j.jcp.2018.06.072 https://www.proquest.com/docview/2124809142 https://www.osti.gov/biblio/1564355 |
| Volume | 373 |
| WOSCitedRecordID | wos000445108800021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bjxIxFG6Q9cEX70bc1fTB-CAZw1zbPhIX4hqyamQjb8200xEQBwTc3R_iD_acaWcGJRJ98GVCphQmPR-nH1_PhZDnQgfA2Xzj9XKeelEmUk-FYeYBOrRIRCa0Kou4jtj5OZ9MxPtW60eVC3O5YEXBr6_F6r-aGu6BsTF19h_MXX8o3IDXYHS4gtnh-leG76M8gPlQKxwsKxFl3eHHs266-Lxcz7bTr2VoITbEAvK5xChCV4IJw8vLsFicnS-WVzYIcm1MN8MmAJta29tns7rsDlEpi1YvaRT4tPhi8dIoOnp6heq7E2BP64GxE7A_zBqZtthM0_II6tPprkrhc0zXs3maVjqr0mcqj9XELNmUAt9Dpmo3JeuJe6LnBcwmYlauOmThjrONbIHfvU3A6hHzV3ONBUl9V6A1aHa86pT__J0cXoxGcjyYjF-svnnYiwzP7F1jlhvkKGCxAHd_1D8bTN7WOzyPI7vDu8euTsvLuMHfvvVPfKe9BBe-RwBKVjO-S247A9K-hdE90jLFfXLH_TWhbhk3D4jsU4squoMqCqiiNaoooIqWqKIWVRRQRX9FFUVUwT1aooo2qHpILoaD8es3nuvN4elQxFuPZykSGROrxKTcTwITs0jFvo57uTFcR0ansDkYX7CcqYSbXAU6zpnIlAqSTIWPSLuAR31MKO6wLI17SqdBpHnCeehrHak8ZErrnHVIr1pBqV3heuyfspBVhOJcwqJLXHSJUZos6JCX9ZSVrdpy6M1RZRbpaKelkxIAdWjaMZoQp2C5ZY1xaTAHiy8Bh--Qk8qy0jmHjQSaGHEg6FHw5PDwMbnV_IhOSHu7_m6ekpv6cjvbrJ85OP4EK7i3kQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+stable+partitioned+FSI+algorithm+for+rigid+bodies+and+incompressible+flow+in+three+dimensions&rft.jtitle=Journal+of+computational+physics&rft.au=Banks%2C+JW&rft.au=Schwendeman%2C+DW&rft.au=Tang%2C+Qi&rft.au=Henshaw%2C+WD&rft.date=2018-11-15&rft.pub=Elsevier+Science+Ltd&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=373&rft.spage=455&rft_id=info:doi/10.1016%2Fj.jcp.2018.06.072&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon |