Faster First-Order Methods for Stochastic Non-Convex Optimization on Riemannian Manifolds

First-order non-convex Riemannian optimization algorithms have gained recent popularity in structured machine learning problems including principal component analysis and low-rank matrix completion. The current paper presents an efficient Riemannian Stochastic Path Integrated Differential EstimatoR...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on pattern analysis and machine intelligence Ročník 43; číslo 2; s. 459 - 472
Hlavní autori: Zhou, Pan, Yuan, Xiao-Tong, Yan, Shuicheng, Feng, Jiashi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract First-order non-convex Riemannian optimization algorithms have gained recent popularity in structured machine learning problems including principal component analysis and low-rank matrix completion. The current paper presents an efficient Riemannian Stochastic Path Integrated Differential EstimatoR (R-SPIDER) algorithm to solve the finite-sum and online Riemannian non-convex minimization problems. At the core of R-SPIDER is a recursive semi-stochastic gradient estimator that can accurately estimate Riemannian gradient under not only exponential mapping and parallel transport, but also general retraction and vector transport operations. Compared with prior Riemannian algorithms, such a recursive gradient estimation mechanism endows R-SPIDER with lower computational cost in first-order oracle complexity. Specifically, for finite-sum problems with n components, R-SPIDER is proved to converge to an 6-approximate stationary point within O(min(n/ε 2 ,1/3)) stochastic gradient evaluations, beating the best-known complexity O(n+1/ ε 4 ); for online optimization, R-SPIDER is shown to converge with O(1/ε 3 ) complexity which is, to the best of our knowledge, the first non-asymptotic result for online Riemannian optimization. For the special case of gradient dominated functions, we further develop a variant of R-SPIDER with improved linear rate of convergence. Extensive experimental results demonstrate the advantage of the proposed algorithms over the state-of-the-art Riemannian non-convex optimization methods.
AbstractList First-order non-convex Riemannian optimization algorithms have gained recent popularity in structured machine learning problems including principal component analysis and low-rank matrix completion. The current paper presents an efficient Riemannian Stochastic Path Integrated Differential EstimatoR (R-SPIDER) algorithm to solve the finite-sum and online Riemannian non-convex minimization problems. At the core of R-SPIDER is a recursive semi-stochastic gradient estimator that can accurately estimate Riemannian gradient under not only exponential mapping and parallel transport, but also general retraction and vector transport operations. Compared with prior Riemannian algorithms, such a recursive gradient estimation mechanism endows R-SPIDER with lower computational cost in first-order oracle complexity. Specifically, for finite-sum problems with n components, R-SPIDER is proved to converge to an ϵ-approximate stationary point within [Formula: see text] stochastic gradient evaluations, beating the best-known complexity [Formula: see text]; for online optimization, R-SPIDER is shown to converge with [Formula: see text] complexity which is, to the best of our knowledge, the first non-asymptotic result for online Riemannian optimization. For the special case of gradient dominated functions, we further develop a variant of R-SPIDER with improved linear rate of convergence. Extensive experimental results demonstrate the advantage of the proposed algorithms over the state-of-the-art Riemannian non-convex optimization methods.First-order non-convex Riemannian optimization algorithms have gained recent popularity in structured machine learning problems including principal component analysis and low-rank matrix completion. The current paper presents an efficient Riemannian Stochastic Path Integrated Differential EstimatoR (R-SPIDER) algorithm to solve the finite-sum and online Riemannian non-convex minimization problems. At the core of R-SPIDER is a recursive semi-stochastic gradient estimator that can accurately estimate Riemannian gradient under not only exponential mapping and parallel transport, but also general retraction and vector transport operations. Compared with prior Riemannian algorithms, such a recursive gradient estimation mechanism endows R-SPIDER with lower computational cost in first-order oracle complexity. Specifically, for finite-sum problems with n components, R-SPIDER is proved to converge to an ϵ-approximate stationary point within [Formula: see text] stochastic gradient evaluations, beating the best-known complexity [Formula: see text]; for online optimization, R-SPIDER is shown to converge with [Formula: see text] complexity which is, to the best of our knowledge, the first non-asymptotic result for online Riemannian optimization. For the special case of gradient dominated functions, we further develop a variant of R-SPIDER with improved linear rate of convergence. Extensive experimental results demonstrate the advantage of the proposed algorithms over the state-of-the-art Riemannian non-convex optimization methods.
First-order non-convex Riemannian optimization algorithms have gained recent popularity in structured machine learning problems including principal component analysis and low-rank matrix completion. The current paper presents an efficient Riemannian Stochastic Path Integrated Differential EstimatoR (R-SPIDER) algorithm to solve the finite-sum and online Riemannian non-convex minimization problems. At the core of R-SPIDER is a recursive semi-stochastic gradient estimator that can accurately estimate Riemannian gradient under not only exponential mapping and parallel transport, but also general retraction and vector transport operations. Compared with prior Riemannian algorithms, such a recursive gradient estimation mechanism endows R-SPIDER with lower computational cost in first-order oracle complexity. Specifically, for finite-sum problems with n components, R-SPIDER is proved to converge to an ϵ-approximate stationary point within [Formula: see text] stochastic gradient evaluations, beating the best-known complexity [Formula: see text]; for online optimization, R-SPIDER is shown to converge with [Formula: see text] complexity which is, to the best of our knowledge, the first non-asymptotic result for online Riemannian optimization. For the special case of gradient dominated functions, we further develop a variant of R-SPIDER with improved linear rate of convergence. Extensive experimental results demonstrate the advantage of the proposed algorithms over the state-of-the-art Riemannian non-convex optimization methods.
First-order non-convex Riemannian optimization algorithms have gained recent popularity in structured machine learning problems including principal component analysis and low-rank matrix completion. The current paper presents an efficient Riemannian Stochastic Path Integrated Differential EstimatoR (R-SPIDER) algorithm to solve the finite-sum and online Riemannian non-convex minimization problems. At the core of R-SPIDER is a recursive semi-stochastic gradient estimator that can accurately estimate Riemannian gradient under not only exponential mapping and parallel transport, but also general retraction and vector transport operations. Compared with prior Riemannian algorithms, such a recursive gradient estimation mechanism endows R-SPIDER with lower computational cost in first-order oracle complexity. Specifically, for finite-sum problems with n components, R-SPIDER is proved to converge to an 6-approximate stationary point within O(min(n/ε 2 ,1/3)) stochastic gradient evaluations, beating the best-known complexity O(n+1/ ε 4 ); for online optimization, R-SPIDER is shown to converge with O(1/ε 3 ) complexity which is, to the best of our knowledge, the first non-asymptotic result for online Riemannian optimization. For the special case of gradient dominated functions, we further develop a variant of R-SPIDER with improved linear rate of convergence. Extensive experimental results demonstrate the advantage of the proposed algorithms over the state-of-the-art Riemannian non-convex optimization methods.
First-order non-convex Riemannian optimization algorithms have gained recent popularity in structured machine learning problems including principal component analysis and low-rank matrix completion. The current paper presents an efficient Riemannian Stochastic Path Integrated Differential EstimatoR (R-SPIDER) algorithm to solve the finite-sum and online Riemannian non-convex minimization problems. At the core of R-SPIDER is a recursive semi-stochastic gradient estimator that can accurately estimate Riemannian gradient under not only exponential mapping and parallel transport, but also general retraction and vector transport operations. Compared with prior Riemannian algorithms, such a recursive gradient estimation mechanism endows R-SPIDER with lower computational cost in first-order oracle complexity. Specifically, for finite-sum problems with [Formula Omitted] components, R-SPIDER is proved to converge to an [Formula Omitted]-approximate stationary point within [Formula Omitted] stochastic gradient evaluations, beating the best-known complexity [Formula Omitted]; for online optimization, R-SPIDER is shown to converge with [Formula Omitted] complexity which is, to the best of our knowledge, the first non-asymptotic result for online Riemannian optimization. For the special case of gradient dominated functions, we further develop a variant of R-SPIDER with improved linear rate of convergence. Extensive experimental results demonstrate the advantage of the proposed algorithms over the state-of-the-art Riemannian non-convex optimization methods.
Author Yan, Shuicheng
Feng, Jiashi
Zhou, Pan
Yuan, Xiao-Tong
Author_xml – sequence: 1
  givenname: Pan
  orcidid: 0000-0003-3400-8943
  surname: Zhou
  fullname: Zhou, Pan
  email: pzhou@u.nus.edu
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore
– sequence: 2
  givenname: Xiao-Tong
  orcidid: 0000-0002-7151-8806
  surname: Yuan
  fullname: Yuan, Xiao-Tong
  email: xtyuan1980@gmail.com
  organization: School of Automation, Nanjing University of Information Science & Technology, Nanjing, China
– sequence: 3
  givenname: Shuicheng
  surname: Yan
  fullname: Yan, Shuicheng
  email: eleyans@nus.edu.sg
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore
– sequence: 4
  givenname: Jiashi
  orcidid: 0000-0001-6843-0064
  surname: Feng
  fullname: Feng, Jiashi
  email: elefjia@nus.edu.sg
  organization: Department of Electrical and Computer Engineering, National University of Singapore, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31398110$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LXDEUhoMoOlr_gIVyoZtu7jTJuR_JUoZOKzid0tpFVyE3Hxi5N5kmmVL99Y3O6MJFIXDC4XlPwnlO0aEP3iB0QfCcEMw_3ny7XF3NKSZ8TjkAa8gBmlHS4ZpTTg_RDJOO1oxRdoJOU7rDmDQthmN0AgQ4KzNm6NdSpmxitXQx5XoddbmvTL4NOlU2xOpHDuq2IE5VX4OvF8H_MX-r9Sa7yT3I7IKvyvnuzCS9d9JXK-mdDaNOb9CRlWMy5_t6hn4uP90svtTX689Xi8vrWgFvc82k5Za0hhKjWwnQNcCI0haGzmIrJahGD1aZDg-91j0BqlVrpVVQOnLo4Ax92M3dxPB7a1IWk0vKjKP0JmyToLQnrAXW0oK-f4XehW305XeCNn1PG8YxKdS7PbUdJqPFJrpJxnvxvLQC0B2gYkgpGvuCECwezYgnM-LRjNibKSH2KqRcflpgjtKN_4--3UWdMeblLdbz4hrgH-zKnAE
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_TCOMM_2023_3277872
crossref_primary_10_1137_21M1405551
crossref_primary_10_1287_moor_2022_1302
crossref_primary_10_1016_j_sigpro_2025_109904
crossref_primary_10_1109_TNNLS_2021_3056947
crossref_primary_10_1007_s10589_023_00477_0
crossref_primary_10_1007_s10712_021_09644_6
crossref_primary_10_1109_TPAMI_2023_3234160
crossref_primary_10_1016_j_eswa_2022_118921
crossref_primary_10_1109_TCYB_2021_3049845
crossref_primary_10_1109_TPAMI_2019_2933841
crossref_primary_10_1016_j_jfranklin_2024_107311
crossref_primary_10_1109_TPAMI_2021_3112139
crossref_primary_10_3390_su151813815
Cites_doi 10.1109/CDC.2014.7039534
10.1016/S0893-6080(00)00026-5
10.1007/978-94-015-8390-9
10.1137/100802529
10.1109/TAC.2013.2254619
10.1016/0041-5553(63)90382-3
10.1016/j.neucom.2017.07.041
10.1007/s10107-012-0584-1
10.1109/TNNLS.2016.2601307
10.1109/34.927464
10.1016/0169-7439(87)80084-9
10.1137/110845768
10.1007/s10107-006-0706-8
10.1109/TPAMI.2019.2933841
10.1145/1970392.1970395
10.1007/s10107-014-0765-1
10.1016/S0893-6080(05)80089-9
10.1109/TIT.2016.2632149
10.1007/978-3-319-46128-1_50
10.1093/comjnl/4.3.265
10.1007/s11263-015-0816-y
10.1109/CVPR.2017.419
10.1137/140955483
10.1093/imanum/22.3.359
10.1109/TSP.2005.850378
10.1109/TIP.2017.2762595
10.1109/TPAMI.2003.1251154
10.1109/TIP.2016.2623487
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2019.2933841
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 472
ExternalDocumentID 31398110
10_1109_TPAMI_2019_2933841
8792163
Genre orig-research
Journal Article
GrantInformation_xml – fundername: NUS
  grantid: IDS R-263-000-C67-646; ECRA R-263-000-C87-133
– fundername: National Natural Science Foundation of China; Natural Science Foundation of China
  grantid: 61876090
  funderid: 10.13039/501100001809
– fundername: MOE
  grantid: Tier-II R-263-000-D17-112
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
AAYXX
CITATION
5VS
9M8
AAYOK
ABFSI
ADRHT
AETIX
AGSQL
AI.
AIBXA
ALLEH
FA8
H~9
IBMZZ
ICLAB
IFJZH
NPM
PKN
RIC
RIG
RNI
RZB
VH1
XJT
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c395t-8af9f15e21ed5a3364381cdf3b6f0faa3c4dbfce60b7dd7132dc5fafc360bab63
IEDL.DBID RIE
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000607383300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sun Sep 28 06:08:52 EDT 2025
Sun Jun 29 15:55:41 EDT 2025
Wed Feb 19 02:29:58 EST 2025
Sat Nov 29 05:15:59 EST 2025
Tue Nov 18 22:11:38 EST 2025
Wed Aug 27 02:28:32 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-8af9f15e21ed5a3364381cdf3b6f0faa3c4dbfce60b7dd7132dc5fafc360bab63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3400-8943
0000-0001-6843-0064
0000-0002-7151-8806
OpenAccessLink https://ink.library.smu.edu.sg/sis_research/9004
PMID 31398110
PQID 2477248901
PQPubID 85458
PageCount 14
ParticipantIDs ieee_primary_8792163
proquest_miscellaneous_2271853852
proquest_journals_2477248901
crossref_primary_10_1109_TPAMI_2019_2933841
crossref_citationtrail_10_1109_TPAMI_2019_2933841
pubmed_primary_31398110
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref12
ref15
ref14
ref52
ref11
ref54
ref10
zhou (ref49) 2018
meyer (ref5) 2011
ref17
nguyen (ref27) 2017
martinez (ref53) 1998
ref51
de sa (ref40) 2018
ref46
ref45
shen (ref50) 2017; 18
liu (ref35) 2017
ref42
ref41
ref44
ref43
zhang (ref20) 2016
kasai (ref8) 2016
zhou (ref48) 2018
ref9
ref4
ref6
kasai (ref23) 2016
hosseini (ref7) 2015
fang (ref28) 2018
ref37
ref31
ref30
zhou (ref47) 2018
ref32
ref2
ref1
zhang (ref18) 2016
kasai (ref22) 2018
john (ref29) 1961; 4
nesterov (ref34) 2006
park (ref39) 2018
kasai (ref24) 2018
courbariaux (ref38) 2015
ref21
nguyen (ref26) 2018
tan (ref3) 2014
absil (ref33) 2009
(ref55) 2014
zhang (ref19) 2018
johnson (ref25) 2013
zhang (ref36) 2018
da cruz neto (ref16) 1998; 3
References_xml – ident: ref6
  doi: 10.1109/CDC.2014.7039534
– ident: ref10
  doi: 10.1016/S0893-6080(00)00026-5
– ident: ref32
  doi: 10.1007/978-94-015-8390-9
– ident: ref42
  doi: 10.1137/100802529
– year: 2009
  ident: ref33
  publication-title: Optimization Algorithms on Matrix Manifolds
– ident: ref21
  doi: 10.1109/TAC.2013.2254619
– ident: ref45
  doi: 10.1016/0041-5553(63)90382-3
– volume: 18
  start-page: 7650
  year: 2017
  ident: ref50
  article-title: A tight bound of hard thresholding
  publication-title: J Mach Learn Res
– ident: ref11
  doi: 10.1016/j.neucom.2017.07.041
– start-page: 1703
  year: 2018
  ident: ref19
  article-title: An estimate sequence for geodesically convex optimization
  publication-title: Proc Conf Learn Theory
– ident: ref43
  doi: 10.1007/s10107-012-0584-1
– year: 2006
  ident: ref34
  publication-title: Introductory Lectures on Convex Optimization A Basic Course
– ident: ref1
  doi: 10.1109/TNNLS.2016.2601307
– ident: ref52
  doi: 10.1109/34.927464
– start-page: 1242
  year: 2018
  ident: ref48
  article-title: New insight into hybrid stochastic gradient descent: Beyond with-replacement sampling and convexity
  publication-title: Proc Conf Neutral Inf Process Syst
– year: 2018
  ident: ref40
  article-title: High-accuracy low-precision training
  publication-title: arXiv 1803 03383
– ident: ref9
  doi: 10.1016/0169-7439(87)80084-9
– start-page: 315
  year: 2013
  ident: ref25
  article-title: Accelerating stochastic gradient descent using predictive variance reduction
  publication-title: Proc Conf Neutral Inf Process Syst
– ident: ref4
  doi: 10.1137/110845768
– start-page: 1617
  year: 2016
  ident: ref20
  article-title: First-order methods for geodesically convex optimization
  publication-title: Proc Conf Learn Theory
– ident: ref46
  doi: 10.1007/s10107-006-0706-8
– year: 2015
  ident: ref38
  article-title: Training deep neural networks with low precision multiplications
  publication-title: Proc Workshop Int Conf Learn Represent
– start-page: 910
  year: 2015
  ident: ref7
  article-title: Matrix manifold optimization for Gaussian mixtures
  publication-title: Proc Conf Neutral Inf Process Syst
– ident: ref31
  doi: 10.1109/TPAMI.2019.2933841
– start-page: 4868
  year: 2017
  ident: ref35
  article-title: Accelerated first-order methods for geodesically convex optimization on Riemannian manifolds
  publication-title: Proc Conf Neutral Inf Process Syst
– ident: ref56
  doi: 10.1145/1970392.1970395
– start-page: 3925
  year: 2018
  ident: ref49
  article-title: Stochastic nested variance reduction for nonconvex optimization
  publication-title: Adv in Neural Info Proc Syst
– start-page: 2521
  year: 2018
  ident: ref22
  article-title: Riemannian stochastic recursive gradient algorithm with retraction and vector transport and its convergence analysis
  publication-title: Proc Int Conf Mach Learn
– start-page: 545
  year: 2011
  ident: ref5
  article-title: Linear regression under fixed-rank constraints: A Riemannian approach
  publication-title: Proc Int Conf Mach Learn
– year: 2018
  ident: ref39
  article-title: Training deep neural network in limited precision
  publication-title: arXiv 1810 05486
– ident: ref30
  doi: 10.1007/s10107-014-0765-1
– start-page: 1012
  year: 2016
  ident: ref8
  article-title: Low-rank tensor completion: A Riemannian manifold preconditioning approach
  publication-title: Proc Int Conf Mach Learn
– start-page: 1539
  year: 2014
  ident: ref3
  article-title: Riemannian pursuit for big matrix recovery
  publication-title: Proc Int Conf Mach Learn
– ident: ref15
  doi: 10.1016/S0893-6080(05)80089-9
– year: 2018
  ident: ref36
  article-title: R-SPIDER: A fast Riemannian stochastic optimization algorithm with curvature independent rate
  publication-title: arXiv 1811 04194
– start-page: 2613
  year: 2018
  ident: ref26
  article-title: SARAH: A novel method for machine learning problems using stochastic recursive gradient
  publication-title: Proc Int Conf Mach Learn
– ident: ref2
  doi: 10.1109/TIT.2016.2632149
– start-page: 4592
  year: 2016
  ident: ref18
  article-title: Riemannian SVRG: Fast stochastic optimization on Riemannian manifolds
  publication-title: Proc Conf Neutral Inf Process Syst
– start-page: 1988
  year: 2018
  ident: ref47
  article-title: Efficient stochastic gradient hard thresholding
  publication-title: Proc Conf Neutral Inf Process Syst
– start-page: 269
  year: 2018
  ident: ref24
  article-title: Riemannian stochastic quasi-Newton algorithm with variance reduction and its convergence analysis
  publication-title: Proc Int Conf Artif Intell Statist
– ident: ref51
  doi: 10.1007/978-3-319-46128-1_50
– volume: 3
  start-page: 89
  year: 1998
  ident: ref16
  article-title: Geodesic algorithms in Riemannian geometry
  publication-title: Balkan J Geom Appl
– year: 2017
  ident: ref27
  article-title: Stochastic recursive gradient algorithm for nonconvex optimization
  publication-title: arXiv 1705 07261
– volume: 4
  start-page: 265
  year: 1961
  ident: ref29
  article-title: The QR transformation a unitary analogue to the lr transformationpart 1
  publication-title: Comput J
  doi: 10.1093/comjnl/4.3.265
– ident: ref37
  doi: 10.1007/s11263-015-0816-y
– start-page: 689
  year: 2018
  ident: ref28
  article-title: SPIDER: Near-optimal non-convex optimization via stochastic path-integrated differential estimator
  publication-title: Adv in Neural Info Proc Syst
– year: 2016
  ident: ref23
  article-title: Riemannian stochastic variance reduced gradient on Grassmann manifold
  publication-title: arXiv 1605 07367
– year: 2014
  ident: ref55
  article-title: Optimization and estimation on manifolds
– ident: ref13
  doi: 10.1109/CVPR.2017.419
– ident: ref44
  doi: 10.1137/140955483
– ident: ref41
  doi: 10.1093/imanum/22.3.359
– ident: ref17
  doi: 10.1109/TSP.2005.850378
– year: 1998
  ident: ref53
  article-title: The AR face database
– ident: ref14
  doi: 10.1109/TIP.2017.2762595
– ident: ref54
  doi: 10.1109/TPAMI.2003.1251154
– ident: ref12
  doi: 10.1109/TIP.2016.2623487
SSID ssj0014503
Score 2.4532654
Snippet First-order non-convex Riemannian optimization algorithms have gained recent popularity in structured machine learning problems including principal component...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 459
SubjectTerms Algorithms
Complexity
Complexity theory
Computational geometry
Convergence
Convex analysis
Convexity
Machine learning
Manifolds
Minimization
non-convex optimization
online learning
Optimization
Principal components analysis
Riemann manifold
Riemannian optimization
Signal processing algorithms
Stochastic processes
stochastic variance-reduced algorithm
Title Faster First-Order Methods for Stochastic Non-Convex Optimization on Riemannian Manifolds
URI https://ieeexplore.ieee.org/document/8792163
https://www.ncbi.nlm.nih.gov/pubmed/31398110
https://www.proquest.com/docview/2477248901
https://www.proquest.com/docview/2271853852
Volume 43
WOSCitedRecordID wos000607383300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED5tEw_wsMEGrLBNRuINvKV2EtuP00QFEu0mGFJ5ipyzLSptCVpbxM_n7CbRHgBpUhRFjpNYuXPuu_juO4C3uqB21DV3Kqt5XmPJLdaCozalI_tkERNl_mc1m-n53FxtwfshF8Z7n4LP_Gk8TGv5rsV1_FV2ppURhB-2YVsptcnVGlYM8iJVQSYEQzOc3Ig-QSYzZ9dX59NPMYrLnJJxkzqP5WEkQR89jomz9-xRKrDyb6yZbM5k72GjfQq7HbZk5xtleAZbvtmHvb5uA-um8T48uUdCeADfJzaSJbDJgoAgv4xUnGya6kovGSFa9nXV4g8b6ZzZrG34RQxT_80u6VNz2-VwMtq-LPxtLH9kGza1zSK0N275HL5NPlxffORdwQWO0hQrrm0wYVx4MfausFKWkf8LXZB1GbJgrcTc1QF9mdXKOXJvhcMi2ICSWmxdyhew07SNPwQWlCFPztMuwzz4UgsnUBfoJbnBWvkRjPvXXmHHRh6LYtxUySvJTJWkVkWpVZ3URvBuuObnhovjv70PokyGnp04RnDUS7fqpuuyEjk5GTmNla56M5ymiRZXT2zj2zX1ESpiG12IEbzcaMVw716ZXv39ma_hsYihMCnY-wh2VndrfwyP8Ndqsbw7IW2e65OkzX8A8Vrv1g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED6NgQQ8MNgGFAYYiTfwlthO4jxOE9Um2m6CIo2nyDnbotKWoLVF_HzObhLtAZCQoihynMTKnXPfxXffAbzTGbWjrrktkpqrGnNusBYcdZlbsk8GMVLmT4rZTF9elhdb8GHIhXHOxeAzdxgO41q-bXEdfpUd6aIUhB_uwN1MKZFusrWGNQOVxTrIhGFojpMj0afIJOXR_OJ4ehbiuMpDMm9Sq1AgRhL40WlInb1lkWKJlb-jzWh1xjv_N97H8KhDl-x4ow5PYMs1u7DTV25g3UTehYe3aAj34NvYBLoENl4QFOTngYyTTWNl6SUjTMu-rFr8bgKhM5u1DT8Jgeq_2Dl9bK67LE5G2-eFuw4FkEzDpqZZ-PbKLvfh6_jj_OSUdyUXOMoyW3FtfOnTzInU2cxImQcGMLRe1rlPvDESla09ujypC2vJwRUWM288SmoxdS6fwnbTNu45MF-U5Ms52iWovMu1sAJ1hk6SI6wLN4K0f-0VdnzkoSzGVRX9kqSsotSqILWqk9oI3g_X_Niwcfyz916QydCzE8cIDnrpVt2EXVZCkZuhaKx01dvhNE21sH5iGteuqY8oArrRmRjBs41WDPfulenFn5_5Bu6fzqeTanI2-_QSHogQGBNDvw9ge3Wzdq_gHv5cLZY3r6NO_wbooPI1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Faster+First-Order+Methods+for+Stochastic+Non-Convex+Optimization+on+Riemannian+Manifolds&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Zhou%2C+Pan&rft.au=Xiao-Tong%2C+Yuan&rft.au=Shuicheng+Yan&rft.au=Feng%2C+Jiashi&rft.date=2021-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0162-8828&rft.eissn=1939-3539&rft.volume=43&rft.issue=2&rft.spage=459&rft_id=info:doi/10.1109%2FTPAMI.2019.2933841&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon