Flow over an espresso cup: inferring 3-D velocity and pressure fields from tomographic background oriented Schlieren via physics-informed neural networks

Tomographic background oriented Schlieren (Tomo-BOS) imaging measures density or temperature fields in three dimensions using multiple camera BOS projections, and is particularly useful for instantaneous flow visualizations of complex fluid dynamics problems. We propose a new method based on physics...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics Vol. 915
Main Authors: Cai, Shengze, Wang, Zhicheng, Fuest, Frederik, Jeon, Young Jin, Gray, Callum, Karniadakis, George Em
Format: Journal Article
Language:English
Published: Cambridge, UK Cambridge University Press 25.03.2021
Subjects:
ISSN:0022-1120, 1469-7645
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Tomographic background oriented Schlieren (Tomo-BOS) imaging measures density or temperature fields in three dimensions using multiple camera BOS projections, and is particularly useful for instantaneous flow visualizations of complex fluid dynamics problems. We propose a new method based on physics-informed neural networks (PINNs) to infer the full continuous three-dimensional (3-D) velocity and pressure fields from snapshots of 3-D temperature fields obtained by Tomo-BOS imaging. The PINNs seamlessly integrate the underlying physics of the observed fluid flow and the visualization data, hence enabling the inference of latent quantities using limited experimental data. In this hidden fluid mechanics paradigm, we train the neural network by minimizing a loss function composed of a data mismatch term and residual terms associated with the coupled Navier–Stokes and heat transfer equations. We first quantify the accuracy of the proposed method based on a two-dimensional synthetic data set for buoyancy-driven flow, and subsequently apply it to the Tomo-BOS data set, where we are able to infer the instantaneous velocity and pressure fields of the flow over an espresso cup based only on the temperature field provided by the Tomo-BOS imaging. Moreover, we conduct an independent PIV experiment to validate the PINN inference for the unsteady velocity field at a centre plane. To explain the observed flow physics, we also perform systematic PINN simulations at different Reynolds and Richardson numbers and quantify the variations in velocity and pressure fields. The results in this paper indicate that the proposed deep learning technique can become a promising direction in experimental fluid mechanics.
AbstractList Tomographic background oriented Schlieren (Tomo-BOS) imaging measures density or temperature fields in three dimensions using multiple camera BOS projections, and is particularly useful for instantaneous flow visualizations of complex fluid dynamics problems. We propose a new method based on physics-informed neural networks (PINNs) to infer the full continuous three-dimensional (3-D) velocity and pressure fields from snapshots of 3-D temperature fields obtained by Tomo-BOS imaging. The PINNs seamlessly integrate the underlying physics of the observed fluid flow and the visualization data, hence enabling the inference of latent quantities using limited experimental data. In this hidden fluid mechanics paradigm, we train the neural network by minimizing a loss function composed of a data mismatch term and residual terms associated with the coupled Navier–Stokes and heat transfer equations. We first quantify the accuracy of the proposed method based on a two-dimensional synthetic data set for buoyancy-driven flow, and subsequently apply it to the Tomo-BOS data set, where we are able to infer the instantaneous velocity and pressure fields of the flow over an espresso cup based only on the temperature field provided by the Tomo-BOS imaging. Moreover, we conduct an independent PIV experiment to validate the PINN inference for the unsteady velocity field at a centre plane. To explain the observed flow physics, we also perform systematic PINN simulations at different Reynolds and Richardson numbers and quantify the variations in velocity and pressure fields. Furthermore, the results in this paper indicate that the proposed deep learning technique can become a promising direction in experimental fluid mechanics.
Tomographic background oriented Schlieren (Tomo-BOS) imaging measures density or temperature fields in three dimensions using multiple camera BOS projections, and is particularly useful for instantaneous flow visualizations of complex fluid dynamics problems. We propose a new method based on physics-informed neural networks (PINNs) to infer the full continuous three-dimensional (3-D) velocity and pressure fields from snapshots of 3-D temperature fields obtained by Tomo-BOS imaging. The PINNs seamlessly integrate the underlying physics of the observed fluid flow and the visualization data, hence enabling the inference of latent quantities using limited experimental data. In this hidden fluid mechanics paradigm, we train the neural network by minimizing a loss function composed of a data mismatch term and residual terms associated with the coupled Navier–Stokes and heat transfer equations. We first quantify the accuracy of the proposed method based on a two-dimensional synthetic data set for buoyancy-driven flow, and subsequently apply it to the Tomo-BOS data set, where we are able to infer the instantaneous velocity and pressure fields of the flow over an espresso cup based only on the temperature field provided by the Tomo-BOS imaging. Moreover, we conduct an independent PIV experiment to validate the PINN inference for the unsteady velocity field at a centre plane. To explain the observed flow physics, we also perform systematic PINN simulations at different Reynolds and Richardson numbers and quantify the variations in velocity and pressure fields. The results in this paper indicate that the proposed deep learning technique can become a promising direction in experimental fluid mechanics.
ArticleNumber A102
Author Wang, Zhicheng
Fuest, Frederik
Karniadakis, George Em
Cai, Shengze
Jeon, Young Jin
Gray, Callum
Author_xml – sequence: 1
  givenname: Shengze
  orcidid: 0000-0003-0122-6864
  surname: Cai
  fullname: Cai, Shengze
  organization: 1Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
– sequence: 2
  givenname: Zhicheng
  orcidid: 0000-0002-5856-6459
  surname: Wang
  fullname: Wang, Zhicheng
  organization: 1Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
– sequence: 3
  givenname: Frederik
  surname: Fuest
  fullname: Fuest, Frederik
  organization: 2LaVision GmbH, Anna-Vandenhoeck-Ring 19, D-37081 Goettingen, Germany
– sequence: 4
  givenname: Young Jin
  surname: Jeon
  fullname: Jeon, Young Jin
  organization: 2LaVision GmbH, Anna-Vandenhoeck-Ring 19, D-37081 Goettingen, Germany
– sequence: 5
  givenname: Callum
  surname: Gray
  fullname: Gray, Callum
  organization: 3LaVision Inc., 211 W. Michigan Ave., Ypsilanti, MI 48197, USA
– sequence: 6
  givenname: George Em
  surname: Karniadakis
  fullname: Karniadakis, George Em
  email: george_karniadakis@brown.edu
  organization: 1Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
BackLink https://www.osti.gov/servlets/purl/2282981$$D View this record in Osti.gov
BookMark eNp1kc9uEzEQxi3USqQtNx7Agisb_Ce76-WGWgpIlTi0nC3HO06c7trL2Jsqj8Lb4pBKSAhOo5F_n7-Z-S7IWYgBCHnN2ZIz3r7fuXEpmOBLLusXZMFXTVe1zao-IwvGhKg4F-wluUhpxxiXrGsX5OftEJ9o3ANSEyikCSGlSO08faA-OED0YUNldUP3METr86FwPf2NzQjUeRj6RB3GkeY4xg2aaestXRv7uME4Fzaih5Chp_d2O3hACHTvDZ22h-RtqopLxLE8B5jRDKXkp4iP6YqcOzMkePVcL8n3208P11-qu2-fv15_vKus7OpcKQWiZsI4aWFteslrq5QyrnfQukYo3na9kfWx74BzY9yKQecc2EY2oNbykrw5_RtT9jqVFcFubQwBbNZCKNEpXqC3J2jC-GOGlPUuzhjKXLq4lzvXqmOFeneiLMaUEJye0I8GD5ozfUxIl4T0MSFdEiq4-Asv5ib7GDIaP_xPtHwWmXGNvt_An1H-KfgFDFmqEg
CitedBy_id crossref_primary_10_1038_s41524_024_01223_8
crossref_primary_10_1016_j_rineng_2024_101931
crossref_primary_10_1016_j_jcp_2024_113494
crossref_primary_10_1063_5_0218499
crossref_primary_10_1016_j_combustflame_2025_114454
crossref_primary_10_1038_s43247_024_01942_2
crossref_primary_10_1063_5_0228610
crossref_primary_10_3390_buildings15111876
crossref_primary_10_1002_nme_6828
crossref_primary_10_1088_1361_6501_adee38
crossref_primary_10_1103_PhysRevResearch_5_033079
crossref_primary_10_1088_1361_6501_ac5437
crossref_primary_10_1007_s00348_023_03629_4
crossref_primary_10_1063_5_0275335
crossref_primary_10_1016_j_advengsoft_2023_103525
crossref_primary_10_1016_j_jcp_2023_112435
crossref_primary_10_1016_j_optlastec_2022_108948
crossref_primary_10_1007_s10444_023_10065_9
crossref_primary_10_1016_j_apor_2024_104193
crossref_primary_10_1016_j_enconman_2024_119474
crossref_primary_10_1016_j_jcp_2025_114338
crossref_primary_10_1063_5_0274621
crossref_primary_10_1088_1742_6596_2509_1_012023
crossref_primary_10_1016_j_cma_2022_114740
crossref_primary_10_1007_s42154_022_00200_5
crossref_primary_10_1515_revce_2024_0055
crossref_primary_10_1007_s10494_022_00385_z
crossref_primary_10_1016_j_oceaneng_2023_113693
crossref_primary_10_1063_5_0211508
crossref_primary_10_1016_j_compfluid_2024_106419
crossref_primary_10_1016_j_jweia_2023_105534
crossref_primary_10_1134_S0021364024602203
crossref_primary_10_1016_j_expthermflusci_2025_111562
crossref_primary_10_1016_j_isatra_2024_01_001
crossref_primary_10_1007_s10494_023_00417_2
crossref_primary_10_1016_j_combustflame_2023_113094
crossref_primary_10_1088_1361_6501_ad3fd3
crossref_primary_10_1016_j_cma_2023_116278
crossref_primary_10_5194_gchron_6_227_2024
crossref_primary_10_1063_5_0269183
crossref_primary_10_1137_21M1447039
crossref_primary_10_1016_j_neucom_2021_10_036
crossref_primary_10_1029_2020WR029479
crossref_primary_10_1088_2399_6528_ace416
crossref_primary_10_1016_j_engstruct_2024_118918
crossref_primary_10_1063_5_0281347
crossref_primary_10_1140_epje_s10189_023_00268_9
crossref_primary_10_1007_s00521_024_09791_y
crossref_primary_10_1016_j_euromechflu_2024_08_007
crossref_primary_10_1109_TEC_2022_3180295
crossref_primary_10_1016_j_jcp_2022_111402
crossref_primary_10_3390_fluids10090226
crossref_primary_10_3390_ijms26104911
crossref_primary_10_1016_j_applthermaleng_2022_118962
crossref_primary_10_1007_s00348_022_03554_y
crossref_primary_10_1038_s41598_022_19157_w
crossref_primary_10_1016_j_engstruct_2025_119801
crossref_primary_10_1088_1674_1056_acc1d5
crossref_primary_10_1007_s10409_021_01148_1
crossref_primary_10_1016_j_jclepro_2024_140891
crossref_primary_10_1063_5_0208040
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126680
crossref_primary_10_3390_jmse10091285
crossref_primary_10_1007_s00348_023_03698_5
crossref_primary_10_1016_j_pecs_2022_101024
crossref_primary_10_3390_aerospace11020137
crossref_primary_10_1007_s00348_023_03618_7
crossref_primary_10_1016_j_oceaneng_2022_110775
crossref_primary_10_1016_j_oceaneng_2023_114759
crossref_primary_10_1016_j_optlaseng_2022_107104
crossref_primary_10_1021_acs_macromol_5c00720
crossref_primary_10_1016_j_paerosci_2022_100849
crossref_primary_10_1007_s00348_025_04052_7
crossref_primary_10_3390_electronics14173503
crossref_primary_10_1109_LGRS_2024_3485686
crossref_primary_10_1007_s11663_025_03766_7
crossref_primary_10_1016_j_ast_2023_108740
crossref_primary_10_1145_3689037
crossref_primary_10_1016_j_cma_2023_116290
crossref_primary_10_1115_1_4068396
crossref_primary_10_1016_j_engappai_2023_107258
crossref_primary_10_1121_10_0026025
crossref_primary_10_1186_s13636_024_00376_0
crossref_primary_10_1007_s00348_023_03672_1
crossref_primary_10_1186_s42774_024_00197_x
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123809
crossref_primary_10_1016_j_engappai_2025_112044
crossref_primary_10_1016_j_euromechsol_2022_104639
crossref_primary_10_1016_j_ceja_2025_100775
crossref_primary_10_1063_5_0251167
crossref_primary_10_1103_PhysRevResearch_4_043090
crossref_primary_10_1126_sciadv_ads5236
crossref_primary_10_1016_j_ijthermalsci_2025_109694
crossref_primary_10_1016_j_cep_2023_109540
crossref_primary_10_1016_j_applthermaleng_2022_119633
crossref_primary_10_1016_j_expthermflusci_2022_110824
crossref_primary_10_1017_jfm_2025_91
crossref_primary_10_1515_nanoph_2023_0852
crossref_primary_10_1016_j_jcp_2024_113285
crossref_primary_10_1007_s10409_022_22302_x
crossref_primary_10_1615_HeatTransRes_2024055270
crossref_primary_10_1016_j_ynexs_2024_100016
crossref_primary_10_1007_s00466_023_02434_4
crossref_primary_10_1007_s44379_025_00015_1
crossref_primary_10_1063_5_0289122
crossref_primary_10_1016_j_engappai_2023_107307
crossref_primary_10_1007_s10845_025_02641_1
crossref_primary_10_1016_j_ijheatmasstransfer_2025_127430
crossref_primary_10_1007_s00348_024_03849_2
crossref_primary_10_1016_j_icheatmasstransfer_2025_109085
crossref_primary_10_1140_epje_s10189_023_00276_9
crossref_primary_10_1017_jfm_2024_49
crossref_primary_10_1016_j_flowmeasinst_2023_102395
crossref_primary_10_1016_j_optlaseng_2025_108913
crossref_primary_10_1017_jfm_2023_621
crossref_primary_10_1016_j_expthermflusci_2022_110819
crossref_primary_10_1038_s42003_023_04914_y
crossref_primary_10_1016_j_eswa_2025_127500
crossref_primary_10_1109_LGRS_2022_3176867
crossref_primary_10_1016_j_cma_2025_117889
crossref_primary_10_1016_j_jcp_2023_112263
crossref_primary_10_1137_22M1518189
crossref_primary_10_1016_j_watres_2025_123779
crossref_primary_10_1016_j_engappai_2022_105176
crossref_primary_10_1007_s00348_024_03943_5
crossref_primary_10_1063_5_0200384
crossref_primary_10_12677_app_2025_155039
crossref_primary_10_1016_j_jocs_2023_102120
crossref_primary_10_1002_fld_5217
crossref_primary_10_3389_arc_2025_14842
crossref_primary_10_1016_j_ces_2024_120950
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125480
crossref_primary_10_1186_s40323_024_00272_4
crossref_primary_10_1007_s00158_025_04064_1
crossref_primary_10_1063_5_0284930
crossref_primary_10_1515_nanoph_2021_0713
crossref_primary_10_1016_j_engappai_2025_111098
crossref_primary_10_1016_j_jcp_2025_114370
crossref_primary_10_1016_j_est_2023_109244
crossref_primary_10_1242_jeb_244983
crossref_primary_10_1109_ACCESS_2024_3399094
crossref_primary_10_1007_s10346_023_02072_0
crossref_primary_10_1016_j_ijheatfluidflow_2023_109232
crossref_primary_10_1016_j_fuel_2025_136475
crossref_primary_10_1016_j_jcp_2023_112016
crossref_primary_10_1016_j_cma_2024_117116
crossref_primary_10_1088_1361_6501_ac9991
crossref_primary_10_1016_j_cma_2025_118348
crossref_primary_10_3390_jmse11112045
crossref_primary_10_1063_5_0217991
crossref_primary_10_1007_s00521_023_08876_4
crossref_primary_10_1063_5_0138504
crossref_primary_10_1016_j_aitf_2025_100005
crossref_primary_10_1016_j_cma_2024_117355
crossref_primary_10_1063_5_0289786
crossref_primary_10_1016_j_proci_2024_105246
crossref_primary_10_1063_5_0097496
crossref_primary_10_1038_s42005_024_01832_1
crossref_primary_10_1016_j_engappai_2022_105724
crossref_primary_10_1063_5_0286676
crossref_primary_10_1017_dce_2025_15
crossref_primary_10_1007_s00419_024_02622_5
crossref_primary_10_1016_j_ijheatmasstransfer_2025_127580
crossref_primary_10_1016_j_proci_2024_105649
crossref_primary_10_1016_j_actaastro_2023_07_039
crossref_primary_10_1016_j_jcp_2025_113837
crossref_primary_10_1016_j_engappai_2025_110617
crossref_primary_10_1016_j_jcp_2021_110683
crossref_primary_10_3390_en16052343
crossref_primary_10_1186_s40537_023_00727_2
crossref_primary_10_1007_s00366_023_01822_x
Cites_doi 10.1088/1361-6501/aac55b
10.1088/0957-0233/23/11/115302
10.1088/1361-6501/aa8b87
10.1007/s003480050408
10.1007/s00348-020-02974-y
10.1007/s00348-008-0572-7
10.1007/s00348-008-0496-2
10.1073/pnas.1718942115
10.1016/j.jcp.2020.109951
10.1109/TIM.2019.2932649
10.1016/j.jcp.2018.10.045
10.1088/1361-6501/aa7827
10.1007/s00348-004-0807-1
10.1007/s00348-016-2189-6
10.1016/j.jcp.2018.08.029
10.1126/science.aaw4741
10.1007/s00348-015-1927-5
10.1146/annurev-fluid-010719-060214
10.1016/j.combustflame.2018.06.022
10.1146/annurev-fluid-010518-040547
10.1088/0957-0233/12/9/325
10.1007/s00348-011-1058-6
10.1016/j.jcp.2020.109913
10.1007/s00348-020-2928-6
10.1038/nature14539
10.1007/s00348-007-0331-1
10.1007/s00348-015-2100-x
10.1016/j.cma.2019.112732
10.1007/978-3-319-68852-7
10.1007/s00348-019-2793-3
ContentType Journal Article
Copyright The Author(s), 2021. Published by Cambridge University Press
Copyright_xml – notice: The Author(s), 2021. Published by Cambridge University Press
CorporateAuthor Brown Univ., Providence, RI (United States)
CorporateAuthor_xml – name: Brown Univ., Providence, RI (United States)
DBID AAYXX
CITATION
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
OIOZB
OTOTI
DOI 10.1017/jfm.2021.135
DatabaseName CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest SciTech Premium Collection‎ Natural Science Collection Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Research Library Prep

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1469-7645
ExternalDocumentID 2282981
10_1017_jfm_2021_135
GroupedDBID -DZ
-E.
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
4.4
5GY
5VS
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABZCX
ACBEA
ACBMC
ACCHT
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADGEJ
ADKIL
ADOCW
ADVJH
AEBAK
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFRAH
AFUTZ
AGABE
AGBYD
AGJUD
AGOOT
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BMAJL
BPHCQ
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
CS3
D-I
DC4
DOHLZ
DU5
DWQXO
E.L
EBS
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
I.6
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WXY
WYP
ZYDXJ
~02
AAYXX
ABUFD
ABVKB
ABVZP
ABXAU
ABXHF
ACDLN
ADMLS
AEUYN
AFFHD
AFZFC
AKMAY
CITATION
PHGZM
PHGZT
PQGLB
3V.
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ABTRL
OIOZB
OTOTI
ID FETCH-LOGICAL-c395t-88e2502af3cebad315c888afdfe7f628179da35fdfe9e11aaf40e9ffec636e8b3
IEDL.DBID M7S
ISICitedReferencesCount 244
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000632510000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1120
IngestDate Mon Feb 26 05:26:18 EST 2024
Sat Aug 16 15:20:56 EDT 2025
Sat Nov 29 04:24:46 EST 2025
Tue Nov 18 20:46:45 EST 2025
Wed Mar 13 06:05:30 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords computational methods
convection
machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-88e2502af3cebad315c888afdfe7f628179da35fdfe9e11aaf40e9ffec636e8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
SC0019453
ORCID 0000-0003-0122-6864
0000-0002-5856-6459
0000000258566459
0000000301226864
OpenAccessLink https://www.osti.gov/servlets/purl/2282981
PQID 2504695890
PQPubID 34769
PageCount 17
ParticipantIDs osti_scitechconnect_2282981
proquest_journals_2504695890
crossref_primary_10_1017_jfm_2021_135
crossref_citationtrail_10_1017_jfm_2021_135
cambridge_journals_10_1017_jfm_2021_135
PublicationCentury 2000
PublicationDate 2021-03-25
PublicationDateYYYYMMDD 2021-03-25
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-25
  day: 25
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
– name: United States
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2021
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2015; 56
2018; 29
2009; 46
2019; 51
2000; 28
2020; 361
2015; 521
2017; 28
2020; 61
2021; 425
2021; 426
2020; 367
2016; 57
2018; 196
2018; 375
2019; 60
2020; 52
2004; 37
2018; 115
2011; 51
2019; 69
2019; 378
2017; 18
2008; 44
2007; 43
2001; 12
2012; 23
Grauer (S002211202100135X_ref9) 2018; 196
Brunton (S002211202100135X_ref3) 2020; 52
Sirignano (S002211202100135X_ref27) 2018; 375
Raissi (S002211202100135X_ref24) 2020; 367
Raffel (S002211202100135X_ref20) 2011; 51
Jin (S002211202100135X_ref11) 2021; 426
Rajendran (S002211202100135X_ref25) 2019; 60
Tokgoz (S002211202100135X_ref29) 2012; 23
Goldhahn (S002211202100135X_ref8) 2007; 43
Baydin (S002211202100135X_ref2) 2017; 18
S002211202100135X_ref4
Pan (S002211202100135X_ref17) 2018; 29
Raissi (S002211202100135X_ref23) 2019; 378
Duraisamy (S002211202100135X_ref7) 2019; 51
Raffel (S002211202100135X_ref21) 2000; 28
Venkatakrishnan (S002211202100135X_ref30) 2004; 37
Cai (S002211202100135X_ref5) 2019; 69
Yang (S002211202100135X_ref32) 2021; 425
Zhang (S002211202100135X_ref33) 2020; 61
Atcheson (S002211202100135X_ref1) 2009; 46
Sun (S002211202100135X_ref28) 2020; 361
Crimaldi (S002211202100135X_ref6) 2008; 44
Han (S002211202100135X_ref10) 2018; 115
LeCun (S002211202100135X_ref14) 2015; 521
Nicolas (S002211202100135X_ref15) 2017; 28
S002211202100135X_ref13
Richard (S002211202100135X_ref26) 2001; 12
Rabault (S002211202100135X_ref18) 2017; 28
Raffel (S002211202100135X_ref22) 2018
Raffel (S002211202100135X_ref19) 2015; 56
Wang (S002211202100135X_ref31) 2016; 57
Jin (S002211202100135X_ref12) 2020; 61
Nicolas (S002211202100135X_ref16) 2016; 57
References_xml – volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– volume: 28
  start-page: 085302
  issue: 8
  year: 2017
  article-title: Experimental study of a co-flowing jet in ONERA's F2 research wind tunnel by 3D background oriented Schlieren
  publication-title: Meas. Sci. Technol.
– volume: 57
  start-page: 104
  issue: 6
  year: 2016
  article-title: An irrotation correction on pressure gradient and orthogonal-path integration for PIV-based pressure reconstruction
  publication-title: Exp. Fluids
– volume: 37
  start-page: 237
  issue: 2
  year: 2004
  end-page: 247
  article-title: Density measurements using the background oriented Schlieren technique
  publication-title: Exp. Fluids
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– volume: 115
  start-page: 8505
  issue: 34
  year: 2018
  end-page: 8510
  article-title: Solving high-dimensional partial differential equations using deep learning
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 375
  start-page: 1339
  year: 2018
  end-page: 1364
  article-title: DGM: a deep learning algorithm for solving partial differential equations
  publication-title: J. Comput. Phys.
– volume: 28
  start-page: 125301
  issue: 12
  year: 2017
  article-title: Performing particle image velocimetry using artificial neural networks: a proof-of-concept
  publication-title: Meas. Sci. Technol.
– volume: 56
  start-page: 60
  issue: 3
  year: 2015
  article-title: Background-oriented Schlieren (BOS) techniques
  publication-title: Exp. Fluids
– volume: 18
  start-page: 5595
  issue: 1
  year: 2017
  end-page: 5637
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J. Mach. Learn. Res.
– volume: 69
  start-page: 3538
  issue: 6
  year: 2019
  end-page: 3554
  article-title: Particle image velocimetry based on a deep learning motion estimator
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 367
  start-page: 1026
  issue: 6481
  year: 2020
  end-page: 1030
  article-title: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations
  publication-title: Science
– volume: 361
  start-page: 112732
  year: 2020
  article-title: Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data
  publication-title: Comput. Meth. Appl. Mech. Engng
– volume: 61
  issue: 6
  year: 2020
  article-title: Using uncertainty to improve pressure field reconstruction from PIV/PTV flow measurements
  publication-title: Exp. Fluids
– volume: 51
  start-page: 357
  year: 2019
  end-page: 377
  article-title: Turbulence modeling in the age of data
  publication-title: Annu. Rev. Fluid Mech.
– volume: 43
  start-page: 241
  issue: 2–3
  year: 2007
  end-page: 249
  article-title: The background oriented Schlieren technique: sensitivity, accuracy, resolution and application to a three-dimensional density field
  publication-title: Exp. Fluids
– volume: 60
  start-page: 162
  issue: 11
  year: 2019
  article-title: Dot tracking methodology for background-oriented Schlieren (BOS)
  publication-title: Exp. Fluids
– volume: 196
  start-page: 284
  year: 2018
  end-page: 299
  article-title: Instantaneous 3D flame imaging by background-oriented Schlieren tomography
  publication-title: Combust. Flame
– volume: 29
  start-page: 082001
  issue: 8
  year: 2018
  article-title: Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals
  publication-title: Meas. Sci. Technol.
– volume: 52
  start-page: 477
  year: 2020
  end-page: 508
  article-title: Machine learning for fluid mechanics
  publication-title: Annu. Rev. Fluid Mech.
– volume: 51
  start-page: 573
  issue: 2
  year: 2011
  end-page: 578
  article-title: Density tagging velocimetry
  publication-title: Exp. Fluids
– volume: 44
  start-page: 851
  issue: 6
  year: 2008
  end-page: 863
  article-title: Planar laser induced fluorescence in aqueous flows
  publication-title: Exp. Fluids
– volume: 425
  start-page: 109913
  year: 2021
  article-title: B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data
  publication-title: J. Comput. Phys.
– volume: 46
  start-page: 467
  issue: 3
  year: 2009
  end-page: 476
  article-title: An evaluation of optical flow algorithms for background oriented Schlieren imaging
  publication-title: Exp. Fluids
– volume: 61
  start-page: 1
  issue: 4
  year: 2020
  end-page: 23
  article-title: Time-resolved reconstruction of flow field around a circular cylinder by recurrent neural networks based on non-time-resolved particle image velocimetry measurements
  publication-title: Exp. Fluids
– volume: 12
  start-page: 1576
  issue: 9
  year: 2001
  article-title: Principle and applications of the background oriented Schlieren (BOS) method
  publication-title: Meas. Sci. Technol.
– volume: 426
  start-page: 109951
  year: 2021
  article-title: NSFnets (Navier–Stokes flow nets): physics-informed neural networks for the incompressible Navier–Stokes equations
  publication-title: J. Comput. Phys.
– volume: 57
  start-page: 13
  issue: 1
  year: 2016
  article-title: A direct approach for instantaneous 3D density field reconstruction from background-oriented Schlieren (BOS) measurements
  publication-title: Exp. Fluids
– volume: 23
  start-page: 115302
  issue: 11
  year: 2012
  article-title: Temperature and velocity measurements in a fluid layer using background-oriented Schlieren and PIV methods
  publication-title: Meas. Sci. Technol.
– volume: 28
  start-page: 477
  issue: 5
  year: 2000
  end-page: 481
  article-title: On the applicability of background oriented optical tomography for large scale aerodynamic investigations
  publication-title: Exp. Fluids
– volume: 29
  start-page: 082001
  year: 2018
  ident: S002211202100135X_ref17
  article-title: Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aac55b
– volume: 23
  start-page: 115302
  year: 2012
  ident: S002211202100135X_ref29
  article-title: Temperature and velocity measurements in a fluid layer using background-oriented Schlieren and PIV methods
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/23/11/115302
– volume: 28
  start-page: 125301
  year: 2017
  ident: S002211202100135X_ref18
  article-title: Performing particle image velocimetry using artificial neural networks: a proof-of-concept
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aa8b87
– ident: S002211202100135X_ref13
– volume: 28
  start-page: 477
  year: 2000
  ident: S002211202100135X_ref21
  article-title: On the applicability of background oriented optical tomography for large scale aerodynamic investigations
  publication-title: Exp. Fluids
  doi: 10.1007/s003480050408
– volume: 61
  year: 2020
  ident: S002211202100135X_ref33
  article-title: Using uncertainty to improve pressure field reconstruction from PIV/PTV flow measurements
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-020-02974-y
– volume: 46
  start-page: 467
  year: 2009
  ident: S002211202100135X_ref1
  article-title: An evaluation of optical flow algorithms for background oriented Schlieren imaging
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-008-0572-7
– volume: 44
  start-page: 851
  year: 2008
  ident: S002211202100135X_ref6
  article-title: Planar laser induced fluorescence in aqueous flows
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-008-0496-2
– volume: 115
  start-page: 8505
  year: 2018
  ident: S002211202100135X_ref10
  article-title: Solving high-dimensional partial differential equations using deep learning
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1718942115
– volume: 426
  start-page: 109951
  year: 2021
  ident: S002211202100135X_ref11
  article-title: NSFnets (Navier–Stokes flow nets): physics-informed neural networks for the incompressible Navier–Stokes equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109951
– volume: 69
  start-page: 3538
  year: 2019
  ident: S002211202100135X_ref5
  article-title: Particle image velocimetry based on a deep learning motion estimator
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2019.2932649
– ident: S002211202100135X_ref4
– volume: 378
  start-page: 686
  year: 2019
  ident: S002211202100135X_ref23
  article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 28
  start-page: 085302
  year: 2017
  ident: S002211202100135X_ref15
  article-title: Experimental study of a co-flowing jet in ONERA's F2 research wind tunnel by 3D background oriented Schlieren
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aa7827
– volume: 37
  start-page: 237
  year: 2004
  ident: S002211202100135X_ref30
  article-title: Density measurements using the background oriented Schlieren technique
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-004-0807-1
– volume: 57
  start-page: 104
  year: 2016
  ident: S002211202100135X_ref31
  article-title: An irrotation correction on pressure gradient and orthogonal-path integration for PIV-based pressure reconstruction
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-016-2189-6
– volume: 375
  start-page: 1339
  year: 2018
  ident: S002211202100135X_ref27
  article-title: DGM: a deep learning algorithm for solving partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.08.029
– volume: 367
  start-page: 1026
  year: 2020
  ident: S002211202100135X_ref24
  article-title: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations
  publication-title: Science
  doi: 10.1126/science.aaw4741
– volume: 56
  start-page: 60
  year: 2015
  ident: S002211202100135X_ref19
  article-title: Background-oriented Schlieren (BOS) techniques
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-015-1927-5
– volume: 52
  start-page: 477
  year: 2020
  ident: S002211202100135X_ref3
  article-title: Machine learning for fluid mechanics
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-010719-060214
– volume: 196
  start-page: 284
  year: 2018
  ident: S002211202100135X_ref9
  article-title: Instantaneous 3D flame imaging by background-oriented Schlieren tomography
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2018.06.022
– volume: 51
  start-page: 357
  year: 2019
  ident: S002211202100135X_ref7
  article-title: Turbulence modeling in the age of data
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-010518-040547
– volume: 12
  start-page: 1576
  year: 2001
  ident: S002211202100135X_ref26
  article-title: Principle and applications of the background oriented Schlieren (BOS) method
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/12/9/325
– volume: 51
  start-page: 573
  year: 2011
  ident: S002211202100135X_ref20
  article-title: Density tagging velocimetry
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-011-1058-6
– volume: 425
  start-page: 109913
  year: 2021
  ident: S002211202100135X_ref32
  article-title: B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109913
– volume: 61
  start-page: 1
  year: 2020
  ident: S002211202100135X_ref12
  article-title: Time-resolved reconstruction of flow field around a circular cylinder by recurrent neural networks based on non-time-resolved particle image velocimetry measurements
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-020-2928-6
– volume: 521
  start-page: 436
  year: 2015
  ident: S002211202100135X_ref14
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 43
  start-page: 241
  year: 2007
  ident: S002211202100135X_ref8
  article-title: The background oriented Schlieren technique: sensitivity, accuracy, resolution and application to a three-dimensional density field
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-007-0331-1
– volume: 57
  start-page: 13
  year: 2016
  ident: S002211202100135X_ref16
  article-title: A direct approach for instantaneous 3D density field reconstruction from background-oriented Schlieren (BOS) measurements
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-015-2100-x
– volume: 361
  start-page: 112732
  year: 2020
  ident: S002211202100135X_ref28
  article-title: Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data
  publication-title: Comput. Meth. Appl. Mech. Engng
  doi: 10.1016/j.cma.2019.112732
– volume: 18
  start-page: 5595
  year: 2017
  ident: S002211202100135X_ref2
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J. Mach. Learn. Res.
– volume-title: Particle Image Velocimetry: A Practical Guide
  year: 2018
  ident: S002211202100135X_ref22
  doi: 10.1007/978-3-319-68852-7
– volume: 60
  start-page: 162
  year: 2019
  ident: S002211202100135X_ref25
  article-title: Dot tracking methodology for background-oriented Schlieren (BOS)
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-019-2793-3
SSID ssj0013097
Score 2.710387
Snippet Tomographic background oriented Schlieren (Tomo-BOS) imaging measures density or temperature fields in three dimensions using multiple camera BOS projections,...
SourceID osti
proquest
crossref
cambridge
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Coffee
computational methods
convection
Data
Datasets
Deep learning
Dimensions
Experiments
Fluid dynamics
Fluid flow
Fluid mechanics
Heat transfer
Hydrodynamics
Imaging
Imaging techniques
Inference
JFM Papers
machine learning
MATHEMATICS AND COMPUTING
Neural networks
Partial differential equations
Physics
Pressure
Temperature distribution
Temperature fields
Velocity
Velocity distribution
Visualization
Title Flow over an espresso cup: inferring 3-D velocity and pressure fields from tomographic background oriented Schlieren via physics-informed neural networks
URI https://www.cambridge.org/core/product/identifier/S002211202100135X/type/journal_article
https://www.proquest.com/docview/2504695890
https://www.osti.gov/servlets/purl/2282981
Volume 915
WOSCitedRecordID wos000632510000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: P5Z
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: PCBAR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M7S
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Research Library
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M2O
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M2P
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BFiQ4UFhALC0rH0AckEVi52H3UvHoigNaVjykikvk2I7YtiRLki2_hX-Lx_F2i1C5cIkUeaJMMp7x2P78DcBTZUoRCZ3QLBElxY0iqhIVUWZsUkYWhxTPrv8-n8_F8bFchAW3LsAqNzHRB2rTaFwjf4lUW5lMhYwOVz8oVo3C3dVQQuM67CBLAvPQvU_bXYRI5hu2cJdXRAH4jpTRJxUeQ2cx1n24TKvwx_A0apyb_RWk_cgz2_1fne_CnZBzkldDJ7kH12w9ht2Qf5Lg3d0Ybl8iJxzDTQ8O1d19-DU7a34SxHoSVRPbeexsQ_R6dUAQzNXiA4TTtwQBSNrl9U7OEC-2bi3xKLmO4EkW0jffB5LspSal0qd4qsTJNki33HttvjmtWluT86Uiw7pLRwd6V9eM9JvuU-oBvN49gC-zo89v3tFQ0oFqLtOeCmHdT2Gq4tqWyvA41W4KripT2bzKmHDhwSie4r20caxUlURWIrIl45kVJX8Io7qp7SMgTOJcUWV5lfBE8KyU1mQsqbS03GhuJ_D8wqpFcMyuGEBteeHsX6D9C2f_CbzY2LzQgRkdC3ScXSH97EJ6NTCCXCG3h92ncJkM0vFqxC3pvmC4dS3iCexvusxWuW1_efzv5j24ha9BLBxL92HUt2v7BG7o837ZtVPYeX00X3ycOmdgH_x1MfWO4a6L9OtvoSUXcA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VBQQcKGxBLC3gAxUHZJHY-bCREEKUVasuKySK1FtwHEfdtiRLkm3FT-mf6G_E4yTdIlRuPXCMMnEc53nssZ_fALxUWSo8oQMaBSKluFFEVaA8yjITpJ7BIcWp60_i6VTs78svK3Den4VBWmXvE52jzkqNa-RvUGorkqGQ3vv5T4pZo3B3tU-h0cJi1_w6tSFb_W5ny_7fTcbGn_Y-btMuqwDVXIYNFcLYspjKuTapyrgfahsFqjzLTZxHTFiEZoqHeC2N7yuVB56RSK6IeGREym25N-BmgN7fUQW_LnctPBn36uR2HuN1RHuUqD7M8dg78zHPxGUZhz-Gw0Fpu_Vfg4Ib6car_1sbPYD73ZyafGg7wUNYMcUQVrv5Nem8Vz2Ee5fEF4dw25Ffdb0GZ-Pj8pQgl5WogpjacYNLohfztwTJahU-QDjdIkiw0jZusXYZcWaLyhDHAqwJntQhTfmjFQGfaZIqfYSnZqxtiXLSjavNga1VZQpyMlOkXVeqaStfa2-jvKj9lKIl59eP4Nu1NNxjGBRlYZ4AYRJjYRXFecADwaNUmixiQa6l4ZnmZgSvLlCUdI6nTlrSXpxYvCWIt8TibQSve4wlulN-xwQkx1dYb15Yz1vFkyvs1hGuiZ2podywRl6WbhKGW_PCH8FGD9Fl5Zb4fPrv2y_gzvbe50ky2ZnursNdfCXy_li4AYOmWphncEufNLO6eu46IIHv143m3ym1dGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flow+over+an+espresso+cup%3A+inferring+3-D+velocity+and+pressure+fields+from+tomographic+background+oriented+Schlieren+via+physics-informed+neural+networks&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Cai%2C+Shengze&rft.au=Wang%2C+Zhicheng&rft.au=Fuest%2C+Frederik&rft.au=Young+Jin+Jeon&rft.date=2021-03-25&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=915&rft_id=info:doi/10.1017%2Fjfm.2021.135
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon