Flow over an espresso cup: inferring 3-D velocity and pressure fields from tomographic background oriented Schlieren via physics-informed neural networks
Tomographic background oriented Schlieren (Tomo-BOS) imaging measures density or temperature fields in three dimensions using multiple camera BOS projections, and is particularly useful for instantaneous flow visualizations of complex fluid dynamics problems. We propose a new method based on physics...
Uloženo v:
| Vydáno v: | Journal of fluid mechanics Ročník 915 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cambridge, UK
Cambridge University Press
25.03.2021
|
| Témata: | |
| ISSN: | 0022-1120, 1469-7645 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Tomographic background oriented Schlieren (Tomo-BOS) imaging measures density or temperature fields in three dimensions using multiple camera BOS projections, and is particularly useful for instantaneous flow visualizations of complex fluid dynamics problems. We propose a new method based on physics-informed neural networks (PINNs) to infer the full continuous three-dimensional (3-D) velocity and pressure fields from snapshots of 3-D temperature fields obtained by Tomo-BOS imaging. The PINNs seamlessly integrate the underlying physics of the observed fluid flow and the visualization data, hence enabling the inference of latent quantities using limited experimental data. In this hidden fluid mechanics paradigm, we train the neural network by minimizing a loss function composed of a data mismatch term and residual terms associated with the coupled Navier–Stokes and heat transfer equations. We first quantify the accuracy of the proposed method based on a two-dimensional synthetic data set for buoyancy-driven flow, and subsequently apply it to the Tomo-BOS data set, where we are able to infer the instantaneous velocity and pressure fields of the flow over an espresso cup based only on the temperature field provided by the Tomo-BOS imaging. Moreover, we conduct an independent PIV experiment to validate the PINN inference for the unsteady velocity field at a centre plane. To explain the observed flow physics, we also perform systematic PINN simulations at different Reynolds and Richardson numbers and quantify the variations in velocity and pressure fields. The results in this paper indicate that the proposed deep learning technique can become a promising direction in experimental fluid mechanics. |
|---|---|
| AbstractList | Tomographic background oriented Schlieren (Tomo-BOS) imaging measures density or temperature fields in three dimensions using multiple camera BOS projections, and is particularly useful for instantaneous flow visualizations of complex fluid dynamics problems. We propose a new method based on physics-informed neural networks (PINNs) to infer the full continuous three-dimensional (3-D) velocity and pressure fields from snapshots of 3-D temperature fields obtained by Tomo-BOS imaging. The PINNs seamlessly integrate the underlying physics of the observed fluid flow and the visualization data, hence enabling the inference of latent quantities using limited experimental data. In this hidden fluid mechanics paradigm, we train the neural network by minimizing a loss function composed of a data mismatch term and residual terms associated with the coupled Navier–Stokes and heat transfer equations. We first quantify the accuracy of the proposed method based on a two-dimensional synthetic data set for buoyancy-driven flow, and subsequently apply it to the Tomo-BOS data set, where we are able to infer the instantaneous velocity and pressure fields of the flow over an espresso cup based only on the temperature field provided by the Tomo-BOS imaging. Moreover, we conduct an independent PIV experiment to validate the PINN inference for the unsteady velocity field at a centre plane. To explain the observed flow physics, we also perform systematic PINN simulations at different Reynolds and Richardson numbers and quantify the variations in velocity and pressure fields. The results in this paper indicate that the proposed deep learning technique can become a promising direction in experimental fluid mechanics. Tomographic background oriented Schlieren (Tomo-BOS) imaging measures density or temperature fields in three dimensions using multiple camera BOS projections, and is particularly useful for instantaneous flow visualizations of complex fluid dynamics problems. We propose a new method based on physics-informed neural networks (PINNs) to infer the full continuous three-dimensional (3-D) velocity and pressure fields from snapshots of 3-D temperature fields obtained by Tomo-BOS imaging. The PINNs seamlessly integrate the underlying physics of the observed fluid flow and the visualization data, hence enabling the inference of latent quantities using limited experimental data. In this hidden fluid mechanics paradigm, we train the neural network by minimizing a loss function composed of a data mismatch term and residual terms associated with the coupled Navier–Stokes and heat transfer equations. We first quantify the accuracy of the proposed method based on a two-dimensional synthetic data set for buoyancy-driven flow, and subsequently apply it to the Tomo-BOS data set, where we are able to infer the instantaneous velocity and pressure fields of the flow over an espresso cup based only on the temperature field provided by the Tomo-BOS imaging. Moreover, we conduct an independent PIV experiment to validate the PINN inference for the unsteady velocity field at a centre plane. To explain the observed flow physics, we also perform systematic PINN simulations at different Reynolds and Richardson numbers and quantify the variations in velocity and pressure fields. Furthermore, the results in this paper indicate that the proposed deep learning technique can become a promising direction in experimental fluid mechanics. |
| ArticleNumber | A102 |
| Author | Wang, Zhicheng Fuest, Frederik Karniadakis, George Em Cai, Shengze Jeon, Young Jin Gray, Callum |
| Author_xml | – sequence: 1 givenname: Shengze orcidid: 0000-0003-0122-6864 surname: Cai fullname: Cai, Shengze organization: 1Division of Applied Mathematics, Brown University, Providence, RI 02912, USA – sequence: 2 givenname: Zhicheng orcidid: 0000-0002-5856-6459 surname: Wang fullname: Wang, Zhicheng organization: 1Division of Applied Mathematics, Brown University, Providence, RI 02912, USA – sequence: 3 givenname: Frederik surname: Fuest fullname: Fuest, Frederik organization: 2LaVision GmbH, Anna-Vandenhoeck-Ring 19, D-37081 Goettingen, Germany – sequence: 4 givenname: Young Jin surname: Jeon fullname: Jeon, Young Jin organization: 2LaVision GmbH, Anna-Vandenhoeck-Ring 19, D-37081 Goettingen, Germany – sequence: 5 givenname: Callum surname: Gray fullname: Gray, Callum organization: 3LaVision Inc., 211 W. Michigan Ave., Ypsilanti, MI 48197, USA – sequence: 6 givenname: George Em surname: Karniadakis fullname: Karniadakis, George Em email: george_karniadakis@brown.edu organization: 1Division of Applied Mathematics, Brown University, Providence, RI 02912, USA |
| BackLink | https://www.osti.gov/servlets/purl/2282981$$D View this record in Osti.gov |
| BookMark | eNp1kc9uEzEQxi3USqQtNx7Agisb_Ce76-WGWgpIlTi0nC3HO06c7trL2Jsqj8Lb4pBKSAhOo5F_n7-Z-S7IWYgBCHnN2ZIz3r7fuXEpmOBLLusXZMFXTVe1zao-IwvGhKg4F-wluUhpxxiXrGsX5OftEJ9o3ANSEyikCSGlSO08faA-OED0YUNldUP3METr86FwPf2NzQjUeRj6RB3GkeY4xg2aaestXRv7uME4Fzaih5Chp_d2O3hACHTvDZ22h-RtqopLxLE8B5jRDKXkp4iP6YqcOzMkePVcL8n3208P11-qu2-fv15_vKus7OpcKQWiZsI4aWFteslrq5QyrnfQukYo3na9kfWx74BzY9yKQecc2EY2oNbykrw5_RtT9jqVFcFubQwBbNZCKNEpXqC3J2jC-GOGlPUuzhjKXLq4lzvXqmOFeneiLMaUEJye0I8GD5ozfUxIl4T0MSFdEiq4-Asv5ib7GDIaP_xPtHwWmXGNvt_An1H-KfgFDFmqEg |
| CitedBy_id | crossref_primary_10_1038_s41524_024_01223_8 crossref_primary_10_1016_j_rineng_2024_101931 crossref_primary_10_1016_j_jcp_2024_113494 crossref_primary_10_1063_5_0218499 crossref_primary_10_1016_j_combustflame_2025_114454 crossref_primary_10_1038_s43247_024_01942_2 crossref_primary_10_1063_5_0228610 crossref_primary_10_3390_buildings15111876 crossref_primary_10_1002_nme_6828 crossref_primary_10_1088_1361_6501_adee38 crossref_primary_10_1103_PhysRevResearch_5_033079 crossref_primary_10_1088_1361_6501_ac5437 crossref_primary_10_1007_s00348_023_03629_4 crossref_primary_10_1063_5_0275335 crossref_primary_10_1016_j_advengsoft_2023_103525 crossref_primary_10_1016_j_jcp_2023_112435 crossref_primary_10_1016_j_optlastec_2022_108948 crossref_primary_10_1007_s10444_023_10065_9 crossref_primary_10_1016_j_apor_2024_104193 crossref_primary_10_1016_j_enconman_2024_119474 crossref_primary_10_1016_j_jcp_2025_114338 crossref_primary_10_1063_5_0274621 crossref_primary_10_1088_1742_6596_2509_1_012023 crossref_primary_10_1016_j_cma_2022_114740 crossref_primary_10_1007_s42154_022_00200_5 crossref_primary_10_1515_revce_2024_0055 crossref_primary_10_1007_s10494_022_00385_z crossref_primary_10_1016_j_oceaneng_2023_113693 crossref_primary_10_1063_5_0211508 crossref_primary_10_1016_j_compfluid_2024_106419 crossref_primary_10_1016_j_jweia_2023_105534 crossref_primary_10_1134_S0021364024602203 crossref_primary_10_1016_j_expthermflusci_2025_111562 crossref_primary_10_1016_j_isatra_2024_01_001 crossref_primary_10_1007_s10494_023_00417_2 crossref_primary_10_1016_j_combustflame_2023_113094 crossref_primary_10_1088_1361_6501_ad3fd3 crossref_primary_10_1016_j_cma_2023_116278 crossref_primary_10_5194_gchron_6_227_2024 crossref_primary_10_1063_5_0269183 crossref_primary_10_1137_21M1447039 crossref_primary_10_1016_j_neucom_2021_10_036 crossref_primary_10_1029_2020WR029479 crossref_primary_10_1088_2399_6528_ace416 crossref_primary_10_1016_j_engstruct_2024_118918 crossref_primary_10_1063_5_0281347 crossref_primary_10_1140_epje_s10189_023_00268_9 crossref_primary_10_1007_s00521_024_09791_y crossref_primary_10_1016_j_euromechflu_2024_08_007 crossref_primary_10_1109_TEC_2022_3180295 crossref_primary_10_1016_j_jcp_2022_111402 crossref_primary_10_3390_fluids10090226 crossref_primary_10_3390_ijms26104911 crossref_primary_10_1016_j_applthermaleng_2022_118962 crossref_primary_10_1007_s00348_022_03554_y crossref_primary_10_1038_s41598_022_19157_w crossref_primary_10_1016_j_engstruct_2025_119801 crossref_primary_10_1088_1674_1056_acc1d5 crossref_primary_10_1007_s10409_021_01148_1 crossref_primary_10_1016_j_jclepro_2024_140891 crossref_primary_10_1063_5_0208040 crossref_primary_10_1016_j_ijheatmasstransfer_2025_126680 crossref_primary_10_3390_jmse10091285 crossref_primary_10_1007_s00348_023_03698_5 crossref_primary_10_1016_j_pecs_2022_101024 crossref_primary_10_3390_aerospace11020137 crossref_primary_10_1007_s00348_023_03618_7 crossref_primary_10_1016_j_oceaneng_2022_110775 crossref_primary_10_1016_j_oceaneng_2023_114759 crossref_primary_10_1016_j_optlaseng_2022_107104 crossref_primary_10_1021_acs_macromol_5c00720 crossref_primary_10_1016_j_paerosci_2022_100849 crossref_primary_10_1007_s00348_025_04052_7 crossref_primary_10_3390_electronics14173503 crossref_primary_10_1109_LGRS_2024_3485686 crossref_primary_10_1007_s11663_025_03766_7 crossref_primary_10_1016_j_ast_2023_108740 crossref_primary_10_1145_3689037 crossref_primary_10_1016_j_cma_2023_116290 crossref_primary_10_1115_1_4068396 crossref_primary_10_1016_j_engappai_2023_107258 crossref_primary_10_1121_10_0026025 crossref_primary_10_1186_s13636_024_00376_0 crossref_primary_10_1007_s00348_023_03672_1 crossref_primary_10_1186_s42774_024_00197_x crossref_primary_10_1016_j_ijheatmasstransfer_2022_123809 crossref_primary_10_1016_j_engappai_2025_112044 crossref_primary_10_1016_j_euromechsol_2022_104639 crossref_primary_10_1016_j_ceja_2025_100775 crossref_primary_10_1063_5_0251167 crossref_primary_10_1103_PhysRevResearch_4_043090 crossref_primary_10_1126_sciadv_ads5236 crossref_primary_10_1016_j_ijthermalsci_2025_109694 crossref_primary_10_1016_j_cep_2023_109540 crossref_primary_10_1016_j_applthermaleng_2022_119633 crossref_primary_10_1016_j_expthermflusci_2022_110824 crossref_primary_10_1017_jfm_2025_91 crossref_primary_10_1515_nanoph_2023_0852 crossref_primary_10_1016_j_jcp_2024_113285 crossref_primary_10_1007_s10409_022_22302_x crossref_primary_10_1615_HeatTransRes_2024055270 crossref_primary_10_1016_j_ynexs_2024_100016 crossref_primary_10_1007_s00466_023_02434_4 crossref_primary_10_1007_s44379_025_00015_1 crossref_primary_10_1063_5_0289122 crossref_primary_10_1016_j_engappai_2023_107307 crossref_primary_10_1007_s10845_025_02641_1 crossref_primary_10_1016_j_ijheatmasstransfer_2025_127430 crossref_primary_10_1007_s00348_024_03849_2 crossref_primary_10_1016_j_icheatmasstransfer_2025_109085 crossref_primary_10_1140_epje_s10189_023_00276_9 crossref_primary_10_1017_jfm_2024_49 crossref_primary_10_1016_j_flowmeasinst_2023_102395 crossref_primary_10_1016_j_optlaseng_2025_108913 crossref_primary_10_1017_jfm_2023_621 crossref_primary_10_1016_j_expthermflusci_2022_110819 crossref_primary_10_1038_s42003_023_04914_y crossref_primary_10_1016_j_eswa_2025_127500 crossref_primary_10_1109_LGRS_2022_3176867 crossref_primary_10_1016_j_cma_2025_117889 crossref_primary_10_1016_j_jcp_2023_112263 crossref_primary_10_1137_22M1518189 crossref_primary_10_1016_j_watres_2025_123779 crossref_primary_10_1016_j_engappai_2022_105176 crossref_primary_10_1007_s00348_024_03943_5 crossref_primary_10_1063_5_0200384 crossref_primary_10_12677_app_2025_155039 crossref_primary_10_1016_j_jocs_2023_102120 crossref_primary_10_1002_fld_5217 crossref_primary_10_3389_arc_2025_14842 crossref_primary_10_1016_j_ces_2024_120950 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125480 crossref_primary_10_1186_s40323_024_00272_4 crossref_primary_10_1007_s00158_025_04064_1 crossref_primary_10_1063_5_0284930 crossref_primary_10_1515_nanoph_2021_0713 crossref_primary_10_1016_j_engappai_2025_111098 crossref_primary_10_1016_j_jcp_2025_114370 crossref_primary_10_1016_j_est_2023_109244 crossref_primary_10_1242_jeb_244983 crossref_primary_10_1109_ACCESS_2024_3399094 crossref_primary_10_1007_s10346_023_02072_0 crossref_primary_10_1016_j_ijheatfluidflow_2023_109232 crossref_primary_10_1016_j_fuel_2025_136475 crossref_primary_10_1016_j_jcp_2023_112016 crossref_primary_10_1016_j_cma_2024_117116 crossref_primary_10_1088_1361_6501_ac9991 crossref_primary_10_1016_j_cma_2025_118348 crossref_primary_10_3390_jmse11112045 crossref_primary_10_1063_5_0217991 crossref_primary_10_1007_s00521_023_08876_4 crossref_primary_10_1063_5_0138504 crossref_primary_10_1016_j_aitf_2025_100005 crossref_primary_10_1016_j_cma_2024_117355 crossref_primary_10_1063_5_0289786 crossref_primary_10_1016_j_proci_2024_105246 crossref_primary_10_1063_5_0097496 crossref_primary_10_1038_s42005_024_01832_1 crossref_primary_10_1016_j_engappai_2022_105724 crossref_primary_10_1063_5_0286676 crossref_primary_10_1017_dce_2025_15 crossref_primary_10_1007_s00419_024_02622_5 crossref_primary_10_1016_j_ijheatmasstransfer_2025_127580 crossref_primary_10_1016_j_proci_2024_105649 crossref_primary_10_1016_j_actaastro_2023_07_039 crossref_primary_10_1016_j_jcp_2025_113837 crossref_primary_10_1016_j_engappai_2025_110617 crossref_primary_10_1016_j_jcp_2021_110683 crossref_primary_10_3390_en16052343 crossref_primary_10_1186_s40537_023_00727_2 crossref_primary_10_1007_s00366_023_01822_x |
| Cites_doi | 10.1088/1361-6501/aac55b 10.1088/0957-0233/23/11/115302 10.1088/1361-6501/aa8b87 10.1007/s003480050408 10.1007/s00348-020-02974-y 10.1007/s00348-008-0572-7 10.1007/s00348-008-0496-2 10.1073/pnas.1718942115 10.1016/j.jcp.2020.109951 10.1109/TIM.2019.2932649 10.1016/j.jcp.2018.10.045 10.1088/1361-6501/aa7827 10.1007/s00348-004-0807-1 10.1007/s00348-016-2189-6 10.1016/j.jcp.2018.08.029 10.1126/science.aaw4741 10.1007/s00348-015-1927-5 10.1146/annurev-fluid-010719-060214 10.1016/j.combustflame.2018.06.022 10.1146/annurev-fluid-010518-040547 10.1088/0957-0233/12/9/325 10.1007/s00348-011-1058-6 10.1016/j.jcp.2020.109913 10.1007/s00348-020-2928-6 10.1038/nature14539 10.1007/s00348-007-0331-1 10.1007/s00348-015-2100-x 10.1016/j.cma.2019.112732 10.1007/978-3-319-68852-7 10.1007/s00348-019-2793-3 |
| ContentType | Journal Article |
| Copyright | The Author(s), 2021. Published by Cambridge University Press |
| Copyright_xml | – notice: The Author(s), 2021. Published by Cambridge University Press |
| CorporateAuthor | Brown Univ., Providence, RI (United States) |
| CorporateAuthor_xml | – name: Brown Univ., Providence, RI (United States) |
| DBID | AAYXX CITATION 3V. 7TB 7U5 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W OIOZB OTOTI |
| DOI | 10.1017/jfm.2021.135 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student ProQuest Research Library Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Earth, Atmospheric & Aquatic Science Database (NC LIVE) ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) |
| DatabaseTitleList | Research Library Prep CrossRef |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Physics |
| EISSN | 1469-7645 |
| ExternalDocumentID | 2282981 10_1017_jfm_2021_135 |
| GroupedDBID | -DZ -E. -~X .DC .FH 09C 09E 0E1 0R~ 29K 4.4 5GY 5VS 74X 74Y 7~V 88I 8FE 8FG 8FH 8G5 8R4 8R5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AANRG AARAB AASVR AAUIS AAUKB ABBXD ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABUWG ABZCX ACBEA ACBMC ACCHT ACGFO ACGFS ACGOD ACIMK ACIWK ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADGEJ ADKIL ADOCW ADVJH AEBAK AEMTW AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFRAH AFUTZ AGABE AGBYD AGJUD AGOOT AHQXX AHRGI AIDUJ AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV AZQEC BBLKV BENPR BGHMG BGLVJ BHPHI BKSAR BLZWO BMAJL BPHCQ C0O CBIIA CCPQU CCQAD CFAFE CHEAL CJCSC CS3 D-I DC4 DOHLZ DU5 DWQXO E.L EBS F5P GNUQQ GUQSH HCIFZ HG- HST HZ~ I.6 IH6 IOEEP IS6 I~P J36 J38 J3A JHPGK JQKCU KCGVB KFECR L6V L98 LK5 LW7 M-V M2O M2P M7R M7S NIKVX O9- OYBOY P2P P62 PCBAR PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RNS ROL RR0 S0W S6- S6U SAAAG SC5 T9M TAE TN5 UT1 WFFJZ WH7 WQ3 WXU WXY WYP ZYDXJ ~02 AAYXX ABUFD ABVKB ABVZP ABXAU ABXHF ACDLN ADMLS AEUYN AFFHD AFZFC AKMAY CITATION PHGZM PHGZT PQGLB 3V. 7TB 7U5 7UA 7XB 8FD 8FK C1K F1W FR3 H8D H96 KR7 L.G L7M MBDVC PKEHL PQEST PQUKI PRINS Q9U ABTRL OIOZB OTOTI |
| ID | FETCH-LOGICAL-c395t-88e2502af3cebad315c888afdfe7f628179da35fdfe9e11aaf40e9ffec636e8b3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 241 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000632510000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-1120 |
| IngestDate | Mon Feb 26 05:26:18 EST 2024 Sat Aug 16 15:20:56 EDT 2025 Sat Nov 29 04:24:46 EST 2025 Tue Nov 18 20:46:45 EST 2025 Wed Mar 13 06:05:30 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | computational methods convection machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c395t-88e2502af3cebad315c888afdfe7f628179da35fdfe9e11aaf40e9ffec636e8b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE SC0019453 |
| ORCID | 0000-0003-0122-6864 0000-0002-5856-6459 0000000258566459 0000000301226864 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/2282981 |
| PQID | 2504695890 |
| PQPubID | 34769 |
| PageCount | 17 |
| ParticipantIDs | osti_scitechconnect_2282981 proquest_journals_2504695890 crossref_primary_10_1017_jfm_2021_135 crossref_citationtrail_10_1017_jfm_2021_135 cambridge_journals_10_1017_jfm_2021_135 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-25 |
| PublicationDateYYYYMMDD | 2021-03-25 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Cambridge, UK |
| PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge – name: United States |
| PublicationTitle | Journal of fluid mechanics |
| PublicationTitleAlternate | J. Fluid Mech |
| PublicationYear | 2021 |
| Publisher | Cambridge University Press |
| Publisher_xml | – name: Cambridge University Press |
| References | 2015; 56 2018; 29 2009; 46 2019; 51 2000; 28 2020; 361 2015; 521 2017; 28 2020; 61 2021; 425 2021; 426 2020; 367 2016; 57 2018; 196 2018; 375 2019; 60 2020; 52 2004; 37 2018; 115 2011; 51 2019; 69 2019; 378 2017; 18 2008; 44 2007; 43 2001; 12 2012; 23 Grauer (S002211202100135X_ref9) 2018; 196 Brunton (S002211202100135X_ref3) 2020; 52 Sirignano (S002211202100135X_ref27) 2018; 375 Raissi (S002211202100135X_ref24) 2020; 367 Raffel (S002211202100135X_ref20) 2011; 51 Jin (S002211202100135X_ref11) 2021; 426 Rajendran (S002211202100135X_ref25) 2019; 60 Tokgoz (S002211202100135X_ref29) 2012; 23 Goldhahn (S002211202100135X_ref8) 2007; 43 Baydin (S002211202100135X_ref2) 2017; 18 S002211202100135X_ref4 Pan (S002211202100135X_ref17) 2018; 29 Raissi (S002211202100135X_ref23) 2019; 378 Duraisamy (S002211202100135X_ref7) 2019; 51 Raffel (S002211202100135X_ref21) 2000; 28 Venkatakrishnan (S002211202100135X_ref30) 2004; 37 Cai (S002211202100135X_ref5) 2019; 69 Yang (S002211202100135X_ref32) 2021; 425 Zhang (S002211202100135X_ref33) 2020; 61 Atcheson (S002211202100135X_ref1) 2009; 46 Sun (S002211202100135X_ref28) 2020; 361 Crimaldi (S002211202100135X_ref6) 2008; 44 Han (S002211202100135X_ref10) 2018; 115 LeCun (S002211202100135X_ref14) 2015; 521 Nicolas (S002211202100135X_ref15) 2017; 28 S002211202100135X_ref13 Richard (S002211202100135X_ref26) 2001; 12 Rabault (S002211202100135X_ref18) 2017; 28 Raffel (S002211202100135X_ref22) 2018 Raffel (S002211202100135X_ref19) 2015; 56 Wang (S002211202100135X_ref31) 2016; 57 Jin (S002211202100135X_ref12) 2020; 61 Nicolas (S002211202100135X_ref16) 2016; 57 |
| References_xml | – volume: 378 start-page: 686 year: 2019 end-page: 707 article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. – volume: 28 start-page: 085302 issue: 8 year: 2017 article-title: Experimental study of a co-flowing jet in ONERA's F2 research wind tunnel by 3D background oriented Schlieren publication-title: Meas. Sci. Technol. – volume: 57 start-page: 104 issue: 6 year: 2016 article-title: An irrotation correction on pressure gradient and orthogonal-path integration for PIV-based pressure reconstruction publication-title: Exp. Fluids – volume: 37 start-page: 237 issue: 2 year: 2004 end-page: 247 article-title: Density measurements using the background oriented Schlieren technique publication-title: Exp. Fluids – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 article-title: Deep learning publication-title: Nature – volume: 115 start-page: 8505 issue: 34 year: 2018 end-page: 8510 article-title: Solving high-dimensional partial differential equations using deep learning publication-title: Proc. Natl Acad. Sci. USA – volume: 375 start-page: 1339 year: 2018 end-page: 1364 article-title: DGM: a deep learning algorithm for solving partial differential equations publication-title: J. Comput. Phys. – volume: 28 start-page: 125301 issue: 12 year: 2017 article-title: Performing particle image velocimetry using artificial neural networks: a proof-of-concept publication-title: Meas. Sci. Technol. – volume: 56 start-page: 60 issue: 3 year: 2015 article-title: Background-oriented Schlieren (BOS) techniques publication-title: Exp. Fluids – volume: 18 start-page: 5595 issue: 1 year: 2017 end-page: 5637 article-title: Automatic differentiation in machine learning: a survey publication-title: J. Mach. Learn. Res. – volume: 69 start-page: 3538 issue: 6 year: 2019 end-page: 3554 article-title: Particle image velocimetry based on a deep learning motion estimator publication-title: IEEE Trans. Instrum. Meas. – volume: 367 start-page: 1026 issue: 6481 year: 2020 end-page: 1030 article-title: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations publication-title: Science – volume: 361 start-page: 112732 year: 2020 article-title: Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data publication-title: Comput. Meth. Appl. Mech. Engng – volume: 61 issue: 6 year: 2020 article-title: Using uncertainty to improve pressure field reconstruction from PIV/PTV flow measurements publication-title: Exp. Fluids – volume: 51 start-page: 357 year: 2019 end-page: 377 article-title: Turbulence modeling in the age of data publication-title: Annu. Rev. Fluid Mech. – volume: 43 start-page: 241 issue: 2–3 year: 2007 end-page: 249 article-title: The background oriented Schlieren technique: sensitivity, accuracy, resolution and application to a three-dimensional density field publication-title: Exp. Fluids – volume: 60 start-page: 162 issue: 11 year: 2019 article-title: Dot tracking methodology for background-oriented Schlieren (BOS) publication-title: Exp. Fluids – volume: 196 start-page: 284 year: 2018 end-page: 299 article-title: Instantaneous 3D flame imaging by background-oriented Schlieren tomography publication-title: Combust. Flame – volume: 29 start-page: 082001 issue: 8 year: 2018 article-title: Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals publication-title: Meas. Sci. Technol. – volume: 52 start-page: 477 year: 2020 end-page: 508 article-title: Machine learning for fluid mechanics publication-title: Annu. Rev. Fluid Mech. – volume: 51 start-page: 573 issue: 2 year: 2011 end-page: 578 article-title: Density tagging velocimetry publication-title: Exp. Fluids – volume: 44 start-page: 851 issue: 6 year: 2008 end-page: 863 article-title: Planar laser induced fluorescence in aqueous flows publication-title: Exp. Fluids – volume: 425 start-page: 109913 year: 2021 article-title: B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data publication-title: J. Comput. Phys. – volume: 46 start-page: 467 issue: 3 year: 2009 end-page: 476 article-title: An evaluation of optical flow algorithms for background oriented Schlieren imaging publication-title: Exp. Fluids – volume: 61 start-page: 1 issue: 4 year: 2020 end-page: 23 article-title: Time-resolved reconstruction of flow field around a circular cylinder by recurrent neural networks based on non-time-resolved particle image velocimetry measurements publication-title: Exp. Fluids – volume: 12 start-page: 1576 issue: 9 year: 2001 article-title: Principle and applications of the background oriented Schlieren (BOS) method publication-title: Meas. Sci. Technol. – volume: 426 start-page: 109951 year: 2021 article-title: NSFnets (Navier–Stokes flow nets): physics-informed neural networks for the incompressible Navier–Stokes equations publication-title: J. Comput. Phys. – volume: 57 start-page: 13 issue: 1 year: 2016 article-title: A direct approach for instantaneous 3D density field reconstruction from background-oriented Schlieren (BOS) measurements publication-title: Exp. Fluids – volume: 23 start-page: 115302 issue: 11 year: 2012 article-title: Temperature and velocity measurements in a fluid layer using background-oriented Schlieren and PIV methods publication-title: Meas. Sci. Technol. – volume: 28 start-page: 477 issue: 5 year: 2000 end-page: 481 article-title: On the applicability of background oriented optical tomography for large scale aerodynamic investigations publication-title: Exp. Fluids – volume: 29 start-page: 082001 year: 2018 ident: S002211202100135X_ref17 article-title: Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/aac55b – volume: 23 start-page: 115302 year: 2012 ident: S002211202100135X_ref29 article-title: Temperature and velocity measurements in a fluid layer using background-oriented Schlieren and PIV methods publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/23/11/115302 – volume: 28 start-page: 125301 year: 2017 ident: S002211202100135X_ref18 article-title: Performing particle image velocimetry using artificial neural networks: a proof-of-concept publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/aa8b87 – ident: S002211202100135X_ref13 – volume: 28 start-page: 477 year: 2000 ident: S002211202100135X_ref21 article-title: On the applicability of background oriented optical tomography for large scale aerodynamic investigations publication-title: Exp. Fluids doi: 10.1007/s003480050408 – volume: 61 year: 2020 ident: S002211202100135X_ref33 article-title: Using uncertainty to improve pressure field reconstruction from PIV/PTV flow measurements publication-title: Exp. Fluids doi: 10.1007/s00348-020-02974-y – volume: 46 start-page: 467 year: 2009 ident: S002211202100135X_ref1 article-title: An evaluation of optical flow algorithms for background oriented Schlieren imaging publication-title: Exp. Fluids doi: 10.1007/s00348-008-0572-7 – volume: 44 start-page: 851 year: 2008 ident: S002211202100135X_ref6 article-title: Planar laser induced fluorescence in aqueous flows publication-title: Exp. Fluids doi: 10.1007/s00348-008-0496-2 – volume: 115 start-page: 8505 year: 2018 ident: S002211202100135X_ref10 article-title: Solving high-dimensional partial differential equations using deep learning publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1718942115 – volume: 426 start-page: 109951 year: 2021 ident: S002211202100135X_ref11 article-title: NSFnets (Navier–Stokes flow nets): physics-informed neural networks for the incompressible Navier–Stokes equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109951 – volume: 69 start-page: 3538 year: 2019 ident: S002211202100135X_ref5 article-title: Particle image velocimetry based on a deep learning motion estimator publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2019.2932649 – ident: S002211202100135X_ref4 – volume: 378 start-page: 686 year: 2019 ident: S002211202100135X_ref23 article-title: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 28 start-page: 085302 year: 2017 ident: S002211202100135X_ref15 article-title: Experimental study of a co-flowing jet in ONERA's F2 research wind tunnel by 3D background oriented Schlieren publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/aa7827 – volume: 37 start-page: 237 year: 2004 ident: S002211202100135X_ref30 article-title: Density measurements using the background oriented Schlieren technique publication-title: Exp. Fluids doi: 10.1007/s00348-004-0807-1 – volume: 57 start-page: 104 year: 2016 ident: S002211202100135X_ref31 article-title: An irrotation correction on pressure gradient and orthogonal-path integration for PIV-based pressure reconstruction publication-title: Exp. Fluids doi: 10.1007/s00348-016-2189-6 – volume: 375 start-page: 1339 year: 2018 ident: S002211202100135X_ref27 article-title: DGM: a deep learning algorithm for solving partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.08.029 – volume: 367 start-page: 1026 year: 2020 ident: S002211202100135X_ref24 article-title: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations publication-title: Science doi: 10.1126/science.aaw4741 – volume: 56 start-page: 60 year: 2015 ident: S002211202100135X_ref19 article-title: Background-oriented Schlieren (BOS) techniques publication-title: Exp. Fluids doi: 10.1007/s00348-015-1927-5 – volume: 52 start-page: 477 year: 2020 ident: S002211202100135X_ref3 article-title: Machine learning for fluid mechanics publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-010719-060214 – volume: 196 start-page: 284 year: 2018 ident: S002211202100135X_ref9 article-title: Instantaneous 3D flame imaging by background-oriented Schlieren tomography publication-title: Combust. Flame doi: 10.1016/j.combustflame.2018.06.022 – volume: 51 start-page: 357 year: 2019 ident: S002211202100135X_ref7 article-title: Turbulence modeling in the age of data publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-010518-040547 – volume: 12 start-page: 1576 year: 2001 ident: S002211202100135X_ref26 article-title: Principle and applications of the background oriented Schlieren (BOS) method publication-title: Meas. Sci. Technol. doi: 10.1088/0957-0233/12/9/325 – volume: 51 start-page: 573 year: 2011 ident: S002211202100135X_ref20 article-title: Density tagging velocimetry publication-title: Exp. Fluids doi: 10.1007/s00348-011-1058-6 – volume: 425 start-page: 109913 year: 2021 ident: S002211202100135X_ref32 article-title: B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109913 – volume: 61 start-page: 1 year: 2020 ident: S002211202100135X_ref12 article-title: Time-resolved reconstruction of flow field around a circular cylinder by recurrent neural networks based on non-time-resolved particle image velocimetry measurements publication-title: Exp. Fluids doi: 10.1007/s00348-020-2928-6 – volume: 521 start-page: 436 year: 2015 ident: S002211202100135X_ref14 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 43 start-page: 241 year: 2007 ident: S002211202100135X_ref8 article-title: The background oriented Schlieren technique: sensitivity, accuracy, resolution and application to a three-dimensional density field publication-title: Exp. Fluids doi: 10.1007/s00348-007-0331-1 – volume: 57 start-page: 13 year: 2016 ident: S002211202100135X_ref16 article-title: A direct approach for instantaneous 3D density field reconstruction from background-oriented Schlieren (BOS) measurements publication-title: Exp. Fluids doi: 10.1007/s00348-015-2100-x – volume: 361 start-page: 112732 year: 2020 ident: S002211202100135X_ref28 article-title: Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data publication-title: Comput. Meth. Appl. Mech. Engng doi: 10.1016/j.cma.2019.112732 – volume: 18 start-page: 5595 year: 2017 ident: S002211202100135X_ref2 article-title: Automatic differentiation in machine learning: a survey publication-title: J. Mach. Learn. Res. – volume-title: Particle Image Velocimetry: A Practical Guide year: 2018 ident: S002211202100135X_ref22 doi: 10.1007/978-3-319-68852-7 – volume: 60 start-page: 162 year: 2019 ident: S002211202100135X_ref25 article-title: Dot tracking methodology for background-oriented Schlieren (BOS) publication-title: Exp. Fluids doi: 10.1007/s00348-019-2793-3 |
| SSID | ssj0013097 |
| Score | 2.7109754 |
| Snippet | Tomographic background oriented Schlieren (Tomo-BOS) imaging measures density or temperature fields in three dimensions using multiple camera BOS projections,... |
| SourceID | osti proquest crossref cambridge |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Coffee computational methods convection Data Datasets Deep learning Dimensions Experiments Fluid dynamics Fluid flow Fluid mechanics Heat transfer Hydrodynamics Imaging Imaging techniques Inference JFM Papers machine learning MATHEMATICS AND COMPUTING Neural networks Partial differential equations Physics Pressure Temperature distribution Temperature fields Velocity Velocity distribution Visualization |
| Title | Flow over an espresso cup: inferring 3-D velocity and pressure fields from tomographic background oriented Schlieren via physics-informed neural networks |
| URI | https://www.cambridge.org/core/product/identifier/S002211202100135X/type/journal_article https://www.proquest.com/docview/2504695890 https://www.osti.gov/servlets/purl/2282981 |
| Volume | 915 |
| WOSCitedRecordID | wos000632510000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1469-7645 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: P5Z dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1469-7645 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: PCBAR dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1469-7645 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: M7S dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Database Suite (ProQuest) customDbUrl: eissn: 1469-7645 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1469-7645 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: M2O dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 1469-7645 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: M2P dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9BBxJ7YFCG1m1UfgDxgCwSp2lsXhAfq3hApeJLEy-R6ziiMJIuTre_Zf8td467DqHxwkskyxfFyd3ZF9_PvwN4HJfxXJZWcDVKLSdGKo5BrOImlrZIbWRjn8H_-j6bTuXxsZqFDTcXYJXrOdFP1EVtaI_8OVFtjVUqVfRyecqpahRlV0MJjZuwRSwJwkP3Pm2yCJHK1mzhGFdEAfhOlNE_SjqGLmKq-3CVVuGP5alXo5v9NUn7lWey879jvgd3Q8zJXnVGch9u2KoPOyH-ZMG7XR-2r5AT9uG2B4ca9wAuJif1OSOsJ9MVs85jZ2tmVssXjMBcDd3AEv6WEQDJYFyPcgXzYqvGMo-Sc4xOsrC2_tWRZC8Mm2vzk06VoGxNdMutH813HFVjK3a20Kzbd3G8o3fFbqLfxFepOvC624Uvk6PPb97xUNKBm0SlLZfS4kcRukyMnesiiVODv-C6LEqblWMhcXoodJJSW9k41rocRVYRsgWtyMp58hB6VV3ZPWAjabCNMjYqMArMtJCpxvB0VEo1FioawNNLrebBMV3egdqyHPWfk_5z1P8Anq11npvAjE4FOk6ukX5yKb3sGEGukTsg88kxkiE6XkO4JdPmglLXMh7A4dpkNoPb2Mv-v7sP4A49hrBwIj2EXtus7CO4Zc7ahWuGsPX6aDr7OERnEB_8dTb0joHXWfrtN5TWFrI |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3BbtQwEB2VBUQ5UFhAXVrAByoOyCJxko2NhBCirFp1WSFRUG-p13HEQptsk2wrPoWf4BuZcZJuESq3HjhGmSS28zwe289vAJ75mT-VmRVchZHlpEjFMYhV3PjSppH1rO928L-M48lEHhyojyvwqzsLQ7TKzic6R50WhtbIX5LU1lBFUnlv5iecskbR7mqXQqOBxZ79cYZTtur17jb-3y0hRu_33-3wNqsAN4GKai6lxXcJnQXGTnUa-JHBWaDO0szG2VBIRGiqg4iulfV9rbPQs4rIFVgRK6cBvvcaXA_J-zuq4KflroWn4k6dHOMYryXak0T1t4yOvQuf8kxclHH4YzjsFdit_xoU3Eg3Wvvf2ugu3Gljava26QT3YMXmfVhr42vWeq-qD7cviC_24aYjv5rqPvwcHRVnjLisTOfMVo4bXDCzmL9iRFYr6QEW8G1GBCuD8xa0S5kzW5SWORZgxeikDquL40YEfGbYVJvvdGoGbQuSk65dab5iqUqbs9OZZs26UsUb-Vq8TfKiWJW8IedXD-DzlTTcQ-jlRW7XgYXS4DXaWC_FKDfWQkYaw-8wk2oolDeA5-coSlrHUyUNaS9OEG8J4S1BvA3gRYexxLTK75SA5OgS661z63mjeHKJ3QbBNcFIjeSGDfGyTJ0I2pqX_gA2O4guC7fE56N_334Kt3b2P4yT8e5kbwNW6ZPE-xPRJvTqcmEfww1zWs-q8onrgAwOrxrNvwHIYXOq |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flow+over+an+espresso+cup%3A+inferring+3-D+velocity+and+pressure+fields+from+tomographic+background+oriented+Schlieren+via+physics-informed+neural+networks&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Cai%2C+Shengze&rft.au=Wang%2C+Zhicheng&rft.au=Fuest%2C+Frederik&rft.au=Jeon%2C+Young+Jin&rft.date=2021-03-25&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=915&rft_id=info:doi/10.1017%2Fjfm.2021.135&rft.externalDocID=10_1017_jfm_2021_135 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon |