Agreeing to disagree: active learning with noisy labels without crowdsourcing

We propose a new active learning method for classification, which handles label noise without relying on multiple oracles (i.e., crowdsourcing). We propose a strategy that selects (for labeling) instances with a high influence on the learned model. An instance x is said to have a high influence on t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of machine learning and cybernetics Ročník 9; číslo 8; s. 1307 - 1319
Hlavní autori: Bouguelia, Mohamed-Rafik, Nowaczyk, Slawomir, Santosh, K. C., Verikas, Antanas
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2018
Springer Nature B.V
Predmet:
ISSN:1868-8071, 1868-808X, 1868-808X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We propose a new active learning method for classification, which handles label noise without relying on multiple oracles (i.e., crowdsourcing). We propose a strategy that selects (for labeling) instances with a high influence on the learned model. An instance x is said to have a high influence on the model h , if training h on x (with label y = h ( x ) ) would result in a model that greatly disagrees with h on labeling other instances. Then, we propose another strategy that selects (for labeling) instances that are highly influenced by changes in the learned model. An instance x is said to be highly influenced, if training h with a set of instances would result in a committee of models that agree on a common label for x but disagree with h ( x ). We compare the two strategies and we show, on different publicly available datasets, that selecting instances according to the first strategy while eliminating noisy labels according to the second strategy, greatly improves the accuracy compared to several benchmarking methods, even when a significant amount of instances are mislabeled.
AbstractList We propose a new active learning method for classification, which handles label noise without relying on multiple oracles (i.e., crowdsourcing). We propose a strategy that selects (for labeling) instances with a high influence on the learned model. An instance x is said to have a high influence on the model h , if training h on x (with label y = h ( x )) would result in a model that greatly disagrees with h on labeling other instances. Then, we propose another strategy that selects (for labeling) instances that are highly influenced by changes in the learned model. An instance x is said to be highly influenced, if training h with a set of instances would result in a committee of models that agree on a common label for x but disagree with h ( x ). We compare the two strategies and we show, on different publicly available datasets, that selecting instances according to the first strategy while eliminating noisy labels according to the second strategy, greatly improves the accuracy compared to several benchmarking methods, even when a significant amount of instances are mislabeled. © Springer-Verlag Berlin Heidelberg 2017
We propose a new active learning method for classification, which handles label noise without relying on multiple oracles (i.e., crowdsourcing). We propose a strategy that selects (for labeling) instances with a high influence on the learned model. An instance x is said to have a high influence on the model h, if training h on x (with label y=h(x)) would result in a model that greatly disagrees with h on labeling other instances. Then, we propose another strategy that selects (for labeling) instances that are highly influenced by changes in the learned model. An instance x is said to be highly influenced, if training h with a set of instances would result in a committee of models that agree on a common label for x but disagree with h(x). We compare the two strategies and we show, on different publicly available datasets, that selecting instances according to the first strategy while eliminating noisy labels according to the second strategy, greatly improves the accuracy compared to several benchmarking methods, even when a significant amount of instances are mislabeled.
We propose a new active learning method for classification, which handles label noise without relying on multiple oracles (i.e., crowdsourcing). We propose a strategy that selects (for labeling) instances with a high influence on the learned model. An instance x is said to have a high influence on the model h , if training h on x (with label y = h ( x ) ) would result in a model that greatly disagrees with h on labeling other instances. Then, we propose another strategy that selects (for labeling) instances that are highly influenced by changes in the learned model. An instance x is said to be highly influenced, if training h with a set of instances would result in a committee of models that agree on a common label for x but disagree with h ( x ). We compare the two strategies and we show, on different publicly available datasets, that selecting instances according to the first strategy while eliminating noisy labels according to the second strategy, greatly improves the accuracy compared to several benchmarking methods, even when a significant amount of instances are mislabeled.
Author Verikas, Antanas
Nowaczyk, Slawomir
Bouguelia, Mohamed-Rafik
Santosh, K. C.
Author_xml – sequence: 1
  givenname: Mohamed-Rafik
  surname: Bouguelia
  fullname: Bouguelia, Mohamed-Rafik
  organization: Center for Applied Intelligent Systems Research, Halmstad University
– sequence: 2
  givenname: Slawomir
  surname: Nowaczyk
  fullname: Nowaczyk, Slawomir
  organization: Center for Applied Intelligent Systems Research, Halmstad University
– sequence: 3
  givenname: K. C.
  orcidid: 0000-0003-4176-0236
  surname: Santosh
  fullname: Santosh, K. C.
  email: santosh.kc@usd.edu
  organization: Department of Computer Science, The University of South Dakota
– sequence: 4
  givenname: Antanas
  surname: Verikas
  fullname: Verikas, Antanas
  organization: Center for Applied Intelligent Systems Research, Halmstad University
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-33365$$DView record from Swedish Publication Index (Högskolan i Halmstad)
BookMark eNp9UMtOwzAQtFCRKKUfwC0SRxTwI3FsblV5SkVcAHGzHNdpXYW42A5V_x6HVEVCAh_sXe_M7uwcg0FjGw3AKYIXCMLi0iMCM5xCVKSQZnkKD8AQMcpSBtnbYB8X6AiMvV_BeCgkBOIheJwsnNamWSTBJnPjZZdeJVIF86mTWkvXdMWNCcukscZvk1qWuvbfP7YNiXJ2M_e2dSriTsBhJWuvx7t3BF5ub56n9-ns6e5hOpmlivA8pCznWUYzjWhZIVZKpDjEuERzklNaqVjCUGOUl1JnTCnOOKo4xxjmCpXxIiNw3vf1G71uS7F25l26rbDSiGvzOhHWLcRyKQghNI_osx69dvaj1T6IVdTbRIECc8QJzSgtIgr1qLiR905X-64Iis5m0dssos2is1nAyCl-cZQJMhjbBCdN_S8T7zaIU5qFdj-a_iZ9AU1Ekoo
CitedBy_id crossref_primary_10_1145_3473910
crossref_primary_10_1109_ACCESS_2020_3034032
crossref_primary_10_1007_s13042_019_00928_3
crossref_primary_10_1007_s11277_023_10802_9
crossref_primary_10_1007_s13042_024_02135_1
crossref_primary_10_1007_s00371_021_02094_6
crossref_primary_10_1109_TPAMI_2021_3120012
crossref_primary_10_3390_ijerph18062842
crossref_primary_10_1109_JBHI_2020_3008601
crossref_primary_10_1038_s41598_025_10942_x
crossref_primary_10_1007_s10772_018_09559_5
crossref_primary_10_1007_s10994_020_05897_1
crossref_primary_10_1007_s11277_023_10371_x
crossref_primary_10_1007_s13042_019_00991_w
crossref_primary_10_3389_fcomp_2019_00004
crossref_primary_10_1007_s10772_018_09560_y
crossref_primary_10_1007_s10772_018_09562_w
crossref_primary_10_1145_3519311
crossref_primary_10_1007_s10772_018_09582_6
crossref_primary_10_1007_s10772_018_9542_5
crossref_primary_10_1007_s10772_018_9544_3
crossref_primary_10_1007_s10772_018_9545_2
crossref_primary_10_1007_s10772_018_9525_6
crossref_primary_10_1007_s11042_019_08286_6
crossref_primary_10_3390_chemosensors9040078
crossref_primary_10_1007_s10916_020_01562_1
crossref_primary_10_1145_3551385
crossref_primary_10_1007_s11277_021_08736_1
crossref_primary_10_1007_s13042_018_0883_9
crossref_primary_10_1016_j_comnet_2021_108227
crossref_primary_10_1007_s00521_019_04468_3
crossref_primary_10_1109_JTEHM_2020_3012926
crossref_primary_10_1016_j_psep_2020_11_007
crossref_primary_10_3390_jimaging5010002
crossref_primary_10_1007_s13042_019_00932_7
crossref_primary_10_1109_ACCESS_2021_3088901
crossref_primary_10_1007_s10772_018_9550_5
crossref_primary_10_1007_s10772_018_9552_3
crossref_primary_10_1016_j_procs_2020_03_268
crossref_primary_10_1007_s10772_018_09578_2
crossref_primary_10_1016_j_procs_2020_03_327
crossref_primary_10_1007_s10772_019_09603_y
crossref_primary_10_1007_s10772_018_9534_5
crossref_primary_10_1007_s10772_018_9536_3
crossref_primary_10_1016_j_patcog_2018_10_006
crossref_primary_10_1007_s10462_021_10021_3
crossref_primary_10_1007_s10772_018_9556_z
Cites_doi 10.1109/TNNLS.2013.2292894
10.1007/s10618-013-0306-1
10.1016/j.patrec.2015.11.010
10.1147/JRD.2015.2390017
10.1109/TCYB.2014.2344674
10.1007/s13042-010-0003-y
10.1109/TNNLS.2015.2401595
10.2200/S00429ED1V01Y201207AIM018
10.1016/j.patrec.2013.10.011
10.1007/s13042-014-0239-z
10.1007/s10618-016-0469-7
10.1002/widm.1132
10.1109/TGRS.2012.2203605
10.1109/ICDM.2012.162
10.1007/s13042-015-0458-y
10.1109/ICDAR.2013.171
10.1109/IJCNN.2014.6889572
10.1007/978-3-319-27677-9_3
10.1109/ICDM.2013.15
10.21437/Interspeech.2012-131
10.1007/978-3-642-33715-4_36
10.1007/s13042-014-0275-8
10.1109/ICDAR.2015.7333767
10.1007/978-3-540-78646-7_34
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2017
Springer-Verlag Berlin Heidelberg 2017.
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2017
– notice: Springer-Verlag Berlin Heidelberg 2017.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AAXBQ
ADTPV
AOWAS
D8T
D8Z
ZZAVC
DOI 10.1007/s13042-017-0645-0
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Engineering Collection
Engineering Database (subscription)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
SWEPUB Högskolan i Halmstad full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Högskolan i Halmstad
SwePub Articles full text
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 1868-808X
EndPage 1319
ExternalDocumentID oai_DiVA_org_hh_33365
10_1007_s13042_017_0645_0
GroupedDBID -EM
06D
0R~
0VY
1N0
203
29~
2JY
2VQ
30V
4.4
406
408
409
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
AUKKA
AXYYD
AYJHY
BENPR
BGLVJ
BGNMA
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
H13
HCIFZ
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9P
PT4
PTHSS
QOS
R89
R9I
RLLFE
ROL
RSV
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7X
Z83
Z88
ZMTXR
~A9
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
AAXBQ
ADTPV
AOWAS
D8T
D8Z
ZZAVC
ID FETCH-LOGICAL-c395t-8594464e16bf18ba1c9022b1d3566fc46420e215bae48cc9891f992205c1b05c3
IEDL.DBID RSV
ISICitedReferencesCount 61
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000438855100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1868-8071
1868-808X
IngestDate Tue Nov 04 15:45:39 EST 2025
Wed Nov 05 06:26:05 EST 2025
Tue Nov 18 21:42:23 EST 2025
Sat Nov 29 05:59:38 EST 2025
Fri Feb 21 02:41:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Mislabeling
Active learning
Label noise
Classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-8594464e16bf18ba1c9022b1d3566fc46420e215bae48cc9891f992205c1b05c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4176-0236
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-33365
PQID 2919364667
PQPubID 2043904
PageCount 13
ParticipantIDs swepub_primary_oai_DiVA_org_hh_33365
proquest_journals_2919364667
crossref_primary_10_1007_s13042_017_0645_0
crossref_citationtrail_10_1007_s13042_017_0645_0
springer_journals_10_1007_s13042_017_0645_0
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal of machine learning and cybernetics
PublicationTitleAbbrev Int. J. Mach. Learn. & Cyber
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Gilad-Bachrach, Navot, Tishby (CR10) 2005; 5
Ipeirotis, Provost, Sheng, Wang (CR13) 2014; 28
Bouguelia, Belaid, Belaid (CR5) 2016; 70
Zhang, Wang, Yun (CR33) 2015; 26
Abedini, Codella, Connell, Garnavi, Merler, Pankanti, Smith, Syeda-Mahmood (CR1) 2015; 59
CR17
CR16
Wu, Lin, Weng (CR31) 2004; 5
CR15
CR12
Tuia, Munoz-Mari (CR28) 2013; 51
CR30
Settles, Craven, Ray (CR25) 2008; 20
Hamidzadeh, Monsefi, Yazdi (CR11) 2016; 7
Ramirez-Loaiza, Sharma, Kumar, Bilgic (CR19) 2016; 31
Ren, Li (CR21) 2015
CR2
Zhang, Wu, Shengs (CR32) 2015; 45
CR4
CR3
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (CR18) 2011; 12
CR7
CR29
Settles (CR24) 2012; 6
CR26
CR23
CR22
CR20
Small, Roth (CR27) 2010; 1
Fang, Zhu (CR8) 2014; 43
Kremer, Steenstrup Pedersen, Igel (CR14) 2014; 4
Frnay, Verleysen (CR9) 2014; 25
Bouneffouf, Laroche, Urvoy, Fraud, Allesiardo (CR6) 2014; 26
645_CR7
D Tuia (645_CR28) 2013; 51
MR Bouguelia (645_CR5) 2016; 70
J Kremer (645_CR14) 2014; 4
ME Ramirez-Loaiza (645_CR19) 2016; 31
B Frnay (645_CR9) 2014; 25
W Ren (645_CR21) 2015
645_CR16
645_CR17
645_CR15
645_CR12
J Hamidzadeh (645_CR11) 2016; 7
645_CR30
M Abedini (645_CR1) 2015; 59
PG Ipeirotis (645_CR13) 2014; 28
XY Zhang (645_CR33) 2015; 26
TF Wu (645_CR31) 2004; 5
B Settles (645_CR25) 2008; 20
645_CR29
D Bouneffouf (645_CR6) 2014; 26
B Settles (645_CR24) 2012; 6
645_CR26
M Fang (645_CR8) 2014; 43
645_CR23
645_CR2
645_CR22
645_CR20
F Pedregosa (645_CR18) 2011; 12
J Zhang (645_CR32) 2015; 45
R Gilad-Bachrach (645_CR10) 2005; 5
K Small (645_CR27) 2010; 1
645_CR4
645_CR3
References_xml – ident: CR22
– volume: 25
  start-page: 845
  issue: 5
  year: 2014
  end-page: 869
  ident: CR9
  article-title: Classification in the presence of label noise: a survey
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2292894
– volume: 28
  start-page: 402
  issue: 2
  year: 2014
  end-page: 441
  ident: CR13
  article-title: Repeated labeling using multiple noisy labelers
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-013-0306-1
– ident: CR4
– ident: CR2
– ident: CR16
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: CR18
  article-title: Scikit-learn: machine learning in python
  publication-title: J Mach Learn Res
– ident: CR12
– ident: CR30
– volume: 70
  start-page: 38
  year: 2016
  end-page: 44
  ident: CR5
  article-title: An adaptive streaming active learning strategy based on instance weighting
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2015.11.010
– ident: CR29
– volume: 59
  start-page: 1
  issue: 2/3
  year: 2015
  end-page: 18
  ident: CR1
  article-title: A generalized framework for medical image classification and recognition
  publication-title: IBM J Res Dev
  doi: 10.1147/JRD.2015.2390017
– volume: 45
  start-page: 1095
  issue: 5
  year: 2015
  end-page: 1107
  ident: CR32
  article-title: Active learning with imbalanced multiple noisy labeling
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2014.2344674
– volume: 1
  start-page: 3
  issue: 1–4
  year: 2010
  end-page: 25
  ident: CR27
  article-title: Margin-based active learning for structured predictions
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-010-0003-y
– volume: 26
  start-page: 3034
  issue: 12
  year: 2015
  end-page: 3044
  ident: CR33
  article-title: Bidirectional active learning: a two-way exploration into unlabeled and labeled data set
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2015.2401595
– volume: 5
  start-page: 443
  year: 2005
  end-page: 450
  ident: CR10
  article-title: Query by committee made real
  publication-title: Adv Neural Inf Process Syst
– ident: CR23
– volume: 6
  start-page: 1
  issue: 1
  year: 2012
  end-page: 114
  ident: CR24
  article-title: Active learning
  publication-title: Synth Lect Artif Intell Mach Learn
  doi: 10.2200/S00429ED1V01Y201207AIM018
– volume: 43
  start-page: 98
  year: 2014
  end-page: 108
  ident: CR8
  article-title: Active learning with uncertain labeling knowledge
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2013.10.011
– volume: 7
  start-page: 25
  issue: 1
  year: 2016
  end-page: 45
  ident: CR11
  article-title: Large symmetric margin instance selection algorithm
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-014-0239-z
– volume: 20
  start-page: 1289
  year: 2008
  end-page: 1296
  ident: CR25
  article-title: Multiple-instance active learning
  publication-title: Adv Neural Inf Process Syst
– ident: CR3
– ident: CR15
– volume: 26
  start-page: 405
  issue: 12
  year: 2014
  end-page: 412
  ident: CR6
  article-title: Contextual bandit for active learning: active thompson sampling
  publication-title: Int Conf Neural Inf Process
– ident: CR17
– year: 2015
  ident: CR21
  article-title: Graph based semi-supervised learning via label fitting
  publication-title: Int J Mach Learn Cybern
– volume: 31
  start-page: 287
  year: 2016
  end-page: 313
  ident: CR19
  article-title: Active learning: an empirical study of common baselines
  publication-title: Data Min Knowl Discove
  doi: 10.1007/s10618-016-0469-7
– ident: CR7
– volume: 5
  start-page: 975
  year: 2004
  end-page: 1005
  ident: CR31
  article-title: Probability estimates for multi-class classification by pairwise coupling
  publication-title: J Mach Learn Res
– volume: 4
  start-page: 313
  issue: 4
  year: 2014
  end-page: 326
  ident: CR14
  article-title: Active learning with support vector machines
  publication-title: Wiley Interdiscip Rev Data Min Knowl Discov
  doi: 10.1002/widm.1132
– ident: CR26
– volume: 51
  start-page: 872
  issue: 2
  year: 2013
  end-page: 880
  ident: CR28
  article-title: Learning user’s confidence for active learning
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2012.2203605
– ident: CR20
– ident: 645_CR20
  doi: 10.1109/ICDM.2012.162
– ident: 645_CR23
– volume: 12
  start-page: 2825
  year: 2011
  ident: 645_CR18
  publication-title: J Mach Learn Res
– volume: 51
  start-page: 872
  issue: 2
  year: 2013
  ident: 645_CR28
  publication-title: IEEE Trans Geosci Remote Sens
  doi: 10.1109/TGRS.2012.2203605
– volume: 45
  start-page: 1095
  issue: 5
  year: 2015
  ident: 645_CR32
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2014.2344674
– volume: 28
  start-page: 402
  issue: 2
  year: 2014
  ident: 645_CR13
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-013-0306-1
– volume: 26
  start-page: 3034
  issue: 12
  year: 2015
  ident: 645_CR33
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2015.2401595
– ident: 645_CR3
– volume: 4
  start-page: 313
  issue: 4
  year: 2014
  ident: 645_CR14
  publication-title: Wiley Interdiscip Rev Data Min Knowl Discov
  doi: 10.1002/widm.1132
– ident: 645_CR17
– year: 2015
  ident: 645_CR21
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-015-0458-y
– ident: 645_CR2
  doi: 10.1109/ICDAR.2013.171
– ident: 645_CR30
  doi: 10.1109/IJCNN.2014.6889572
– volume: 59
  start-page: 1
  issue: 2/3
  year: 2015
  ident: 645_CR1
  publication-title: IBM J Res Dev
  doi: 10.1147/JRD.2015.2390017
– volume: 70
  start-page: 38
  year: 2016
  ident: 645_CR5
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2015.11.010
– volume: 25
  start-page: 845
  issue: 5
  year: 2014
  ident: 645_CR9
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2292894
– ident: 645_CR4
  doi: 10.1007/978-3-319-27677-9_3
– ident: 645_CR26
  doi: 10.1109/ICDM.2013.15
– ident: 645_CR22
  doi: 10.21437/Interspeech.2012-131
– volume: 1
  start-page: 3
  issue: 1–4
  year: 2010
  ident: 645_CR27
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-010-0003-y
– ident: 645_CR29
  doi: 10.1007/978-3-642-33715-4_36
– ident: 645_CR7
  doi: 10.1007/s13042-014-0275-8
– volume: 5
  start-page: 975
  year: 2004
  ident: 645_CR31
  publication-title: J Mach Learn Res
– volume: 20
  start-page: 1289
  year: 2008
  ident: 645_CR25
  publication-title: Adv Neural Inf Process Syst
– volume: 5
  start-page: 443
  year: 2005
  ident: 645_CR10
  publication-title: Adv Neural Inf Process Syst
– volume: 43
  start-page: 98
  year: 2014
  ident: 645_CR8
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2013.10.011
– volume: 7
  start-page: 25
  issue: 1
  year: 2016
  ident: 645_CR11
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-014-0239-z
– ident: 645_CR12
  doi: 10.1109/ICDAR.2015.7333767
– volume: 31
  start-page: 287
  year: 2016
  ident: 645_CR19
  publication-title: Data Min Knowl Discove
  doi: 10.1007/s10618-016-0469-7
– ident: 645_CR16
– volume: 26
  start-page: 405
  issue: 12
  year: 2014
  ident: 645_CR6
  publication-title: Int Conf Neural Inf Process
– volume: 6
  start-page: 1
  issue: 1
  year: 2012
  ident: 645_CR24
  publication-title: Synth Lect Artif Intell Mach Learn
  doi: 10.2200/S00429ED1V01Y201207AIM018
– ident: 645_CR15
  doi: 10.1007/978-3-540-78646-7_34
SSID ssj0000603302
ssib031263576
ssib033405570
Score 2.44115
Snippet We propose a new active learning method for classification, which handles label noise without relying on multiple oracles (i.e., crowdsourcing). We propose a...
SourceID swepub
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1307
SubjectTerms Active learning
Algorithms
Artificial Intelligence
Classification
Complex Systems
Computational Intelligence
Control
Crowdsourcing
Data mining
Datasets
Engineering
Interactive learning
Label noise
Labeling
Labels
Learning
Machine learning
Mechatronics
Mislabeling
Original Article
Pattern Recognition
Robotics
Systems Biology
Teaching methods
Training
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZK2wMXoDzUhYJ86AGoLOzY8dpc0EJb9dJVhaDqzYodp10JbcomBfHvmUmcjcphL1wiJXbiODOep_MNIYech0rbSjNYDYopWWbMWp8z43mpQznNouddsYnpfG6uruxFCrg1aVvlIBM7QV3WAWPkHzILpoZWWk8_3f5kWDUKs6uphMYDsoNIZcDnO59P5hdfB46SArFWRoUrpeowp9ZRGK7hWr8x0WiDyLxiSH12_9ehs89QkCOsG-P3lddoka6TqP8AjnZK6vTx_07vCXmUzFM66_lpj2zF5VOylwRAQ98mlOp3z8j5DDz1CK9D25qWi6bA04-06OQnTcUorinGeemyXjR_KPAbKOLuSn3XUpji77LLHUC_5-T76cm3L2cs1WZgQdq8ZSa34EiqKLSvhPGFCBasAS9KCfZhFaAp4xHMCV9EZUKwxooKIXB5HoSHg3xBtpf1Mu4TqkWV2VhFkCy5KsEdw9RdoRSP3meBhwnhw0d3IQGXY_2MH26EXEY6OaCTQzo5PiHv17fc9qgdmzofDCRxaQE3bqTHhBwN1B2bNzzssGeA9biI3328uJy5enXtbm6clFLnLzeP-Yo8BMPM9BsND8h2u7qLr8lu-NUumtWbxOR_Ac9C_RM
  priority: 102
  providerName: ProQuest
Title Agreeing to disagree: active learning with noisy labels without crowdsourcing
URI https://link.springer.com/article/10.1007/s13042-017-0645-0
https://www.proquest.com/docview/2919364667
https://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-33365
Volume 9
WOSCitedRecordID wos000438855100006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1868-808X
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0000603302
  issn: 1868-808X
  databaseCode: P5Z
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 1868-808X
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0000603302
  issn: 1868-808X
  databaseCode: K7-
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database (subscription)
  customDbUrl:
  eissn: 1868-808X
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0000603302
  issn: 1868-808X
  databaseCode: M7S
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1868-808X
  dateEnd: 20241214
  omitProxy: false
  ssIdentifier: ssj0000603302
  issn: 1868-808X
  databaseCode: BENPR
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLink Contemporary
  customDbUrl:
  eissn: 1868-808X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000603302
  issn: 1868-808X
  databaseCode: RSV
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbxQhEJ9o64M-VFs1ntYLD33wIySwsBz07dQ2JsbLxdam8YUsLNteYm7N7VbT_77DftzWpmmiLyQLLASYGWYY-A3AHmO-UKZQFLlBUinyhBrjUqody5XPJ0lwrAk2MZnN9OmpmXfvuKv-tnvvkmwk9fDYLVreNErViLFG0U7fTCPYTDTRj056IhI8wqsMe6wQsoGZWh-8MIV57V1ErXQE4-W9t_O2Xv7erwYldO03vYEx2uxLh4__a0RPYKtTQ8m0pZttuBeWO_DoGjjhDmx3bF-RNx029dun8HWK9nnAclKXJF9UWfzcJ1kjNUkXguKMxNNdsiwX1SVBKsPtt8kpL2qCo_yTNx4DrPcMvh8eHH_8TLuIDNQLk9ZUpwbNRxm4cgXXLuPeoA7geC5QKyw8FiUsoBLhsiC190YbXkTgW5Z67jARz2FjWS7DCyCKF4kJRUB5ksocjbDosMukZMG5xDM_AtbPu_UdXHmMmvHTDkDLcfosTp-N02fZCN6tf_nVYnXcVXm3X0zbsW1lE4P6rJJKTUbwvl-zofiOxvZaGlj3G1G7Py1OprZcndnzcyuEUOnLf2r0FTxE7Uy3tw13YaNeXYTX8MD_rhfVagybHw5m829juP9lQsfxyuoRpvP0x7hhhysxu_nX
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXSoGKhQI-FImHrDqx47UrIbSiVK22XXEoqDc3dpztSmhTNilV_xS_kXEeG8Fhbz1wiRTHiRX7m4c99jcAO4y5XOpcUpQGQQXPYqq1TaiyLJMuG8besjrZxHAyUWdn-usa_O7OwoRtlZ1OrBV1VriwRr4ba3Q1pJBy-OnyJw1Zo0J0tUuh0cBi7G-uccpWfjzax_F9E8cHX04_H9I2qwB1XCcVVYnGKZDwkbR5pGwaOY12zEYZR88md_goZh4NoU29UM5ppaM8kLeyxEUWLxy_ewfuCq5kkKjxkHb45VFgdunNO-eiZrharvkwiWXNNkglVeABjrpAa32aLywt0GA2AokcZX-byt7_XYZs_6E3rU3iwcb_1pmP4GHrfJNRIy2bsObnj2GzVW8ledtycL97Aiej6cJ7_H1SFSSblWm43SNpbR1Im2pjSsIqNpkXs_KGoDShm1GXFFcVwS69zurICNZ7Ct9u5be2YH1ezP0zIDLKY-1zj3ozERlONkNgMhWCeWtjx9wAWDfIxrW07CE7yA_TE0oHXBjEhQm4MGwA75evXDacJKsqb3cQMK16Kk0__gP40KGpf7ziYzsN4JbtBnby_dn3kSkWU3NxYTjnMnm-us3XcP_w9OTYHB9Nxi_gAbqgqtlSuQ3r1eLKv4R77lc1KxevavEicH7bEPwDsHVV7A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hghAcgBYqlrbgQw88ZNWOHa_d24qyAgGrikfVmxU7TrsSSqpNCuLfM85jQxGqhLhEiu3Esj2eh2f8DcA-Y75QplAUd4OkUuQJNcalVDuWK59Pk-BYm2xiuljo01Nz3Oc5rYdo98El2d1piChNZXNwkRcH48W3aIXTyGEj3hpFm_2mREMmxnR9-nwyEJTgEWpllLdCyBZyan0IwxSWdXGJWukIzMsHz-fferkqu0aFdO1D_QNvtJVR8_v_PboHcK9XT8mso6dNuBHKLbj7G2jhFmz27KAmz3vM6hcP4eMM7faA9aSpSL6ss_h6SLKWm5I-NcUZiae-pKyW9U-C1IdiuS2pLhuCI_6Rt54EbPcIvs7ffHn9lvaZGqgXJm2oTg2alTJw5QquXca9Qd3A8Vygtlh4rEpYQOXCZUFq7402vIiAuCz13OFDbMNGWZXhMRDFi8SEIiCfSWWOxll05GVSsuBc4pmfABvWwPoexjxm0_hmRwDmOH0Wp8_G6bNsAi_Xn1x0GB7XNd4dFtb227m2iUE9V0mlphN4NazfWH3Nz_Y7elj3G9G8j5YnM1utzuz5uRVCqPTJP_30Gdw-PprbD-8W73fgDipwugtI3IWNZnUZ9uCW_94s69XTdi_8As3tAUw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Agreeing+to+disagree%3A+active+learning+with+noisy+labels+without+crowdsourcing&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Bouguelia%2C+Mohamed-Rafik&rft.au=Nowaczyk%2C+Slawomir&rft.au=Santosh%2C+K.+C.&rft.au=Verikas%2C+Antanas&rft.date=2018-08-01&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=9&rft.issue=8&rft.spage=1307&rft.epage=1319&rft_id=info:doi/10.1007%2Fs13042-017-0645-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13042_017_0645_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon