Detecting Arabic Offensive Language in Microblogs Using Domain-Specific Word Embeddings and Deep Learning
In recent years, social media networks are emerging as a key player by providing platforms for opinions expression, communication, and content distribution. However, users often take advantage of perceived anonymity on social media platforms to share offensive or hateful content. Thus, offensive lan...
Saved in:
| Published in: | Tehnički glasnik Vol. 16; no. 3; pp. 394 - 400 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
University North
21.06.2022
|
| Subjects: | |
| ISSN: | 1846-6168, 1848-5588 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In recent years, social media networks are emerging as a key player by providing platforms for opinions expression, communication, and content distribution. However, users often take advantage of perceived anonymity on social media platforms to share offensive or hateful content. Thus, offensive language has grown as a significant issue with the increase in online communication and the popularity of social media platforms. This problem has attracted significant attention for devising methods for detecting offensive content and preventing its spread on online social networks. Therefore, this paper aims to develop an effective Arabic offensive language detection model by employing deep learning and semantic and contextual features. This paper proposes a deep learning approach that utilizes the bidirectional long short-term memory (BiLSTM) model and domain-specific word embeddings extracted from an Arabic offensive dataset. The detection approach was evaluated on an Arabic dataset collected from Twitter. The results showed the highest performance accuracy of 0.93% with the BiLSTM model trained using a combination of domain-specific and agnostic-domain word embeddings. |
|---|---|
| AbstractList | In recent years, social media networks are emerging as a key player by providing platforms for opinions expression, communication, and content distribution. However, users often take advantage of perceived anonymity on social media platforms to share offensive or hateful content. Thus, offensive language has grown as a significant issue with the increase in online communication and the popularity of social media platforms. This problem has attracted significant attention for devising methods for detecting offensive content and preventing its spread on online social networks. Therefore, this paper aims to develop an effective Arabic offensive language detection model by employing deep learning and semantic and contextual features. This paper proposes a deep learning approach that utilizes the bidirectional long short-term memory (BiLSTM) model and domain-specific word embeddings extracted from an Arabic offensive dataset. The detection approach was evaluated on an Arabic dataset collected from Twitter. The results showed the highest performance accuracy of 0.93% with the BiLSTM model trained using a combination of domain-specific and agnostic-domain word embeddings. |
| Author | O. Aljuhani, Khulood S. Alotaibi, Fahd H. Alyoubi, Khaled |
| Author_xml | – sequence: 1 givenname: Khulood surname: O. Aljuhani fullname: O. Aljuhani, Khulood organization: Information Systems Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia – sequence: 2 givenname: Khaled surname: H. Alyoubi fullname: H. Alyoubi, Khaled organization: Information Systems Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia – sequence: 3 givenname: Fahd surname: S. Alotaibi fullname: S. Alotaibi, Fahd organization: Information Systems Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia |
| BookMark | eNp9kM1OHDEQhC1EJH7CC-TkFxho_4zHPiIWyEqLOCQox1HbY4-Mdu2VbSLx9gxLFCk5cOpWddcnVZ2R45STJ-Qbg0vBNIirNnccOAcBPeMATB-RU6al7vpe6-PDrjrFlD4hF7U-AwDXQw9qOCVx5Zt3LaaZXhe00dHHEHyq8benG0zzC86exkQfoivZbvNc6VN9_17lHcbU_dh7F8Ni-5XLRG931k_Tcq4U00RX3u_pxmNJi_SVfAm4rf7izzwnT3e3P2--d5vH-_XN9aZzwvStG4yUjks7YFBOCKMkTGZSWjNnmAcMS2JjTGDCOq-D5cC46-1kEHoULIhzsv7gThmfx32JOyyvY8Y4HoRc5hFLi27rR1QySLsU5oFLZdHaYA1zg4TBDGp4Z_EP1hK-1uLDXx6D8dD92Obx3-4Xk_7P5GLDFnNqBeP2M-sb8RmKYg |
| CitedBy_id | crossref_primary_10_7717_peerj_cs_1966 crossref_primary_10_1515_lpp_2024_0034 crossref_primary_10_1371_journal_pone_0319900 crossref_primary_10_7717_peerj_cs_1221 crossref_primary_10_1155_acis_5565888 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.31803/tg-20220305120018 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1848-5588 |
| EndPage | 400 |
| ExternalDocumentID | oai_doaj_org_article_a64f4b001e0246babbfb91c74079767f 10_31803_tg_20220305120018 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ VP8 |
| ID | FETCH-LOGICAL-c395t-7944c24b7af6c339640d9d6881c91e0af180999f13bce8fb2012c5bd9a05a31f3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000818884700015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1846-6168 |
| IngestDate | Fri Oct 03 12:35:51 EDT 2025 Tue Nov 18 21:24:55 EST 2025 Sat Nov 29 02:52:37 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c395t-7944c24b7af6c339640d9d6881c91e0af180999f13bce8fb2012c5bd9a05a31f3 |
| OpenAccessLink | https://doaj.org/article/a64f4b001e0246babbfb91c74079767f |
| PageCount | 7 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a64f4b001e0246babbfb91c74079767f crossref_primary_10_31803_tg_20220305120018 crossref_citationtrail_10_31803_tg_20220305120018 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-21 |
| PublicationDateYYYYMMDD | 2022-06-21 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationTitle | Tehnički glasnik |
| PublicationYear | 2022 |
| Publisher | University North |
| Publisher_xml | – name: University North |
| SSID | ssj0002875067 ssib044762717 ssib025702364 ssib046624977 ssib053799675 |
| Score | 2.2410061 |
| SecondaryResourceType | review_article |
| Snippet | In recent years, social media networks are emerging as a key player by providing platforms for opinions expression, communication, and content distribution.... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 394 |
| SubjectTerms | Arabic Natural Language Processing Arabic Tweets Offensive Language Offensive Language Detection Word Embeddings |
| Title | Detecting Arabic Offensive Language in Microblogs Using Domain-Specific Word Embeddings and Deep Learning |
| URI | https://doaj.org/article/a64f4b001e0246babbfb91c74079767f |
| Volume | 16 |
| WOSCitedRecordID | wos000818884700015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1848-5588 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002875067 issn: 1846-6168 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1848-5588 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044762717 issn: 1846-6168 databaseCode: M~E dateStart: 20070101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8UwDI4QYoABcYpbGdhQRdMcbUbggRi4Bq6tStLkqYhXEBR-P3ZaoCywsLVVUjWuHftLnM-E7AaZG-XwRI90JgH8xRObcZmowJFgTgQea0benuUXF8X9vb4alPrCnLCOHrgT3L5RIgh07R68ibLG2mA1czkAEfCkecDZF6KeAZgCTcLSbMiM_nkvBNj8ALgIpQB2fJ_AlDyHuL93pA9xyQk8aSw_CwhIAb5SRXfiBkwg5fvtGLQry9BYGCYlFT-82oD8P3qpkwUy34eX9KAb1iKZ8s0SmRuQDi6TeuRx4wCuoZmxtaOXIXRp7PSsX72kdUPPMVXPwtT4SmNeAR09TUzdJLFifYBud4Bb6fHE-iruX1HTVHTk_TPtOVvHK-Tm5Pj66DTpCy4kjmvZJmCbwmXC5iYox7lWIq10pYqCOQ3yNwHJvrQOjFvni2AheMictJU2qTScBb5Kppunxq8RqrLUB6ny1AUrmJbW5xCaWadYlSmuqnXCPgVWup6NHItiPJaASqKQy3Zc_hTyOtn76vPccXH82voQ_8NXS-TRjg9Au8peu8q_tGvjP16ySWbx0zDBLGNbZLp9efPbZMa9t_Xry05U3A9fUuXN |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+Arabic+Offensive+Language+in+Microblogs+Using+Domain-Specific+Word+Embeddings+and+Deep+Learning&rft.jtitle=Tehni%C4%8Dki+glasnik&rft.au=Khulood+O.+Aljuhani&rft.au=Khaled+H.+Alyoubi&rft.au=Fahd+S.+Alotaibi&rft.date=2022-06-21&rft.pub=University+North&rft.issn=1846-6168&rft.eissn=1848-5588&rft.volume=16&rft.issue=3&rft.spage=394&rft.epage=400&rft_id=info:doi/10.31803%2Ftg-20220305120018&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a64f4b001e0246babbfb91c74079767f |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1846-6168&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1846-6168&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1846-6168&client=summon |