Graph Regularized Autoencoder and its Application in Unsupervised Anomaly Detection

Dimensionality reduction is a crucial first step for many unsupervised learning tasks including anomaly detection and clustering. Autoencoder is a popular mechanism to accomplish dimensionality reduction. In order to make dimensionality reduction effective for high-dimensional data embedding nonline...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence Jg. 44; H. 8; S. 4110 - 4124
Hauptverfasser: Ahmed, Imtiaz, Galoppo, Travis, Hu, Xia, Ding, Yu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.08.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0162-8828, 1939-3539, 2160-9292, 1939-3539
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Dimensionality reduction is a crucial first step for many unsupervised learning tasks including anomaly detection and clustering. Autoencoder is a popular mechanism to accomplish dimensionality reduction. In order to make dimensionality reduction effective for high-dimensional data embedding nonlinear low-dimensional manifold, it is understood that some sort of geodesic distance metric should be used to discriminate the data samples. Inspired by the success of geodesic distance approximators such as ISOMAP, we propose to use a minimum spanning tree (MST), a graph-based algorithm, to approximate the local neighborhood structure and generate structure-preserving distances among data points. We use this MST-based distance metric to replace the euclidean distance metric in the embedding function of autoencoders and develop a new graph regularized autoencoder, which outperforms a wide range of alternative methods over 20 benchmark anomaly detection datasets. We further incorporate the MST regularizer into two generative adversarial networks and find that using the MST regularizer improves the performance of anomaly detection substantially for both generative adversarial networks. We also test our MST regularized autoencoder on two datasets in a clustering application and witness its superior performance as well.
AbstractList Dimensionality reduction is a crucial first step for many unsupervised learning tasks including anomaly detection and clustering. Autoencoder is a popular mechanism to accomplish dimensionality reduction. In order to make dimensionality reduction effective for high-dimensional data embedding nonlinear low-dimensional manifold, it is understood that some sort of geodesic distance metric should be used to discriminate the data samples. Inspired by the success of geodesic distance approximators such as ISOMAP, we propose to use a minimum spanning tree (MST), a graph-based algorithm, to approximate the local neighborhood structure and generate structure-preserving distances among data points. We use this MST-based distance metric to replace the euclidean distance metric in the embedding function of autoencoders and develop a new graph regularized autoencoder, which outperforms a wide range of alternative methods over 20 benchmark anomaly detection datasets. We further incorporate the MST regularizer into two generative adversarial networks and find that using the MST regularizer improves the performance of anomaly detection substantially for both generative adversarial networks. We also test our MST regularized autoencoder on two datasets in a clustering application and witness its superior performance as well.
Dimensionality reduction is a crucial first step for many unsupervised learning tasks including anomaly detection and clustering. Autoencoder is a popular mechanism to accomplish dimensionality reduction. In order to make dimensionality reduction effective for high-dimensional data embedding nonlinear low-dimensional manifold, it is understood that some sort of geodesic distance metric should be used to discriminate the data samples. Inspired by the success of geodesic distance approximators such as ISOMAP, we propose to use a minimum spanning tree (MST), a graph-based algorithm, to approximate the local neighborhood structure and generate structure-preserving distances among data points. We use this MST-based distance metric to replace the euclidean distance metric in the embedding function of autoencoders and develop a new graph regularized autoencoder, which outperforms a wide range of alternative methods over 20 benchmark anomaly detection datasets. We further incorporate the MST regularizer into two generative adversarial networks and find that using the MST regularizer improves the performance of anomaly detection substantially for both generative adversarial networks. We also test our MST regularized autoencoder on two datasets in a clustering application and witness its superior performance as well.Dimensionality reduction is a crucial first step for many unsupervised learning tasks including anomaly detection and clustering. Autoencoder is a popular mechanism to accomplish dimensionality reduction. In order to make dimensionality reduction effective for high-dimensional data embedding nonlinear low-dimensional manifold, it is understood that some sort of geodesic distance metric should be used to discriminate the data samples. Inspired by the success of geodesic distance approximators such as ISOMAP, we propose to use a minimum spanning tree (MST), a graph-based algorithm, to approximate the local neighborhood structure and generate structure-preserving distances among data points. We use this MST-based distance metric to replace the euclidean distance metric in the embedding function of autoencoders and develop a new graph regularized autoencoder, which outperforms a wide range of alternative methods over 20 benchmark anomaly detection datasets. We further incorporate the MST regularizer into two generative adversarial networks and find that using the MST regularizer improves the performance of anomaly detection substantially for both generative adversarial networks. We also test our MST regularized autoencoder on two datasets in a clustering application and witness its superior performance as well.
Author Galoppo, Travis
Ahmed, Imtiaz
Hu, Xia
Ding, Yu
Author_xml – sequence: 1
  givenname: Imtiaz
  orcidid: 0000-0003-1577-7384
  surname: Ahmed
  fullname: Ahmed, Imtiaz
  email: imtiazavi@tamu.edu
  organization: Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX, USA
– sequence: 2
  givenname: Travis
  surname: Galoppo
  fullname: Galoppo, Travis
  email: travis.galoppo@baesystems.com
  organization: BAE Systems, Inc., Charlotte, NC, USA
– sequence: 3
  givenname: Xia
  orcidid: 0000-0003-2234-3226
  surname: Hu
  fullname: Hu, Xia
  email: hu@cse.tamu.edu
  organization: Department of Computer Science & Engineering, Texas A&M University, College Station, TX, USA
– sequence: 4
  givenname: Yu
  orcidid: 0000-0001-6936-074X
  surname: Ding
  fullname: Ding, Yu
  email: yuding@tamu.edu
  organization: Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33729925$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFO3DAQhi0EKgv0BUBCkXrpJdsZe5PYxxWlgARqVeBsOd5Ja5S1UztBgqcnYRcOHHoaafR9v0bzH7BdHzwxdowwRwT17e7X8uZqzoHjXEBZIuIOm3EsIVdc8V02Ayx5LiWX--wgpQcAXBQgPrF9ISquFC9m7PYimu5v9pv-DK2J7plW2XLoA3kbVhQz41eZ61O27LrWWdO74DPns3ufho7io0sT78PatE_Zd-rJTsQR22tMm-jzdh6y-x_nd2eX-fXPi6uz5XVuhSr6vKpqgEJUpiRYNGiEbSqishC2qsXCCJRWjccLC00z7gpZy9oI0yBywLpuxCH7usntYvg3UOr12iVLbWs8hSFpXgCXUJVcjuiXD-hDGKIfr9O8lFyhkjBRp1tqqNe00l10axOf9Nu7RkBuABtDSpEabV3_-pU-GtdqBD01o1-b0VMzetvMqPIP6lv6f6WTjeSI6F1QQsJCFeIFoBuYiQ
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3544260
crossref_primary_10_1109_TPAMI_2025_3528738
crossref_primary_10_1109_JIOT_2022_3181737
crossref_primary_10_3389_fenrg_2022_904622
crossref_primary_10_1109_TIFS_2024_3354412
crossref_primary_10_1080_0951192X_2024_2397821
crossref_primary_10_1109_TNNLS_2024_3465446
crossref_primary_10_1007_s12008_025_02407_2
crossref_primary_10_1080_24725854_2021_2024925
crossref_primary_10_1109_TIP_2024_3490894
crossref_primary_10_1109_TPAMI_2025_3566620
crossref_primary_10_1007_s10618_023_00952_6
Cites_doi 10.1002/aic.690370209
10.1109/CVPR.2013.17
10.1126/science.290.5500–2323
10.1109/ICPR.2014.272
10.1007/s10618-015-0444-8
10.1371/journal.pone.0146672
10.1109/SPW.2019.00014
10.1126/science.290.5500.2319
10.1145/2487575.2487629
10.1109/SMC.2015.513
10.1007/978-3-642-01307-2_86
10.1109/ICDM.2018.00088
10.1016/S0012-365X(00)00224-7
10.1145/342009.335388
10.1109/WACV.2012.6163005
10.1090/jams/852
10.1007/3-540-47887-6_53
10.1109/TPAMI.2010.231
10.7551/mitpress/7503.003.0147
10.1007/978-3-642-23783-6_41
10.1109/TSP.2004.831130
10.7551/mitpress/9780262033589.001.0001
10.7551/mitpress/1120.003.0080
10.1145/3097983.3098052
10.1109/ICDM.2008.17
10.1126/science.1127647
10.4135/9781412985130
10.1136/bmj.310.6973.170
10.1162/089976601750264965
10.1007/978-3-642-40994-3_14
10.1090/S0002-9939-1956-0078686-7
10.1002/j.1538-7305.1957.tb01515.x
10.1007/978-3-319-59050-9_12
10.1109/TASE.2018.2848198
10.1038/s41598-017-11873-y
10.1016/j.neucom.2015.02.023
10.1109/TIP.2016.2605010
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TPAMI.2021.3066111
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2160-9292
1939-3539
EndPage 4124
ExternalDocumentID 33729925
10_1109_TPAMI_2021_3066111
9380495
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: IIS-1750074; IIS-1718840
  funderid: 10.13039/501100008982
– fundername: ABB project
  grantid: M1801386
– fundername: National Science Foundation
  grantid: IIS-1849085
  funderid: 10.13039/501100008982
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
ESBDL
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
~02
5VS
9M8
AAYXX
ABFSI
ADRHT
AETEA
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
FA8
H~9
IBMZZ
ICLAB
IFJZH
RNI
RZB
VH1
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c395t-77b00537a6e04f1a3cf7ee653c7b34a318c98823c0ff3c758b8ba3af11201bbf3
IEDL.DBID RIE
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000820521900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0162-8828
1939-3539
IngestDate Sat Sep 27 19:24:08 EDT 2025
Sun Nov 30 04:28:29 EST 2025
Mon Jul 21 06:03:28 EDT 2025
Tue Nov 18 22:17:44 EST 2025
Sat Nov 29 05:16:00 EST 2025
Wed Aug 27 02:23:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-77b00537a6e04f1a3cf7ee653c7b34a318c98823c0ff3c758b8ba3af11201bbf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6936-074X
0000-0003-2234-3226
0000-0003-1577-7384
OpenAccessLink https://ieeexplore.ieee.org/document/9380495
PMID 33729925
PQID 2682919808
PQPubID 85458
PageCount 15
ParticipantIDs ieee_primary_9380495
crossref_citationtrail_10_1109_TPAMI_2021_3066111
proquest_miscellaneous_2502807628
proquest_journals_2682919808
pubmed_primary_33729925
crossref_primary_10_1109_TPAMI_2021_3066111
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationTitleAlternate IEEE Trans Pattern Anal Mach Intell
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
Demšar (ref40) 2006; 7
Goodfellow (ref49)
ref15
ref14
ref52
ref11
Ji (ref17)
Levina (ref33)
ref10
ref16
Kruskal (ref18) 1978
ref19
Ioffe (ref35)
Rijsbergen (ref39) 1979
ref51
ref50
Srivastava (ref36) 2014; 15
ref48
ref47
ref44
ref43
ref8
ref7
Zong (ref45)
ref9
ref4
Vincent (ref37) 2010; 11
ref6
ref34
ref31
Goodfellow (ref3) 2016
ref32
ref2
ref1
Conover (ref41) 1999
ref38
Zhai (ref46)
Schreyer (ref5) 2017
ref24
ref23
ref26
ref25
Papernot (ref20) 2018
ref22
ref21
ref28
ref27
ref29
Ahmed (ref30) 2021; 22
Bland (ref42) 1995; 310
References_xml – volume: 7
  start-page: 1
  year: 2006
  ident: ref40
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– ident: ref1
  doi: 10.1002/aic.690370209
– start-page: 2672
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref49
  article-title: Generative adversarial nets
– ident: ref23
  doi: 10.1109/CVPR.2013.17
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: ref36
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref45
  article-title: Deep autoencoding Gaussian mixture model for unsupervised anomaly detection
– ident: ref6
  doi: 10.1126/science.290.5500–2323
– start-page: 1100
  ident: ref46
  article-title: Deep structured energy based models for anomaly detection
– ident: ref13
  doi: 10.1109/ICPR.2014.272
– ident: ref38
  doi: 10.1007/s10618-015-0444-8
– ident: ref16
  doi: 10.1371/journal.pone.0146672
– ident: ref19
  doi: 10.1109/SPW.2019.00014
– ident: ref7
  doi: 10.1126/science.290.5500.2319
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref37
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– ident: ref52
  doi: 10.1145/2487575.2487629
– ident: ref14
  doi: 10.1109/SMC.2015.513
– volume: 22
  start-page: 1
  issue: 34
  year: 2021
  ident: ref30
  article-title: Neighborhood structure assisted non-negative matrix factorization and its application in unsupervised point-wise anomaly detection
  publication-title: J. Mach. Learn. Res.
– ident: ref48
  doi: 10.1007/978-3-642-01307-2_86
– ident: ref27
  doi: 10.1109/ICDM.2018.00088
– ident: ref29
  doi: 10.1016/S0012-365X(00)00224-7
– ident: ref43
  doi: 10.1145/342009.335388
– ident: ref22
  doi: 10.1109/WACV.2012.6163005
– ident: ref11
  doi: 10.1090/jams/852
– start-page: 777
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref33
  article-title: Maximum likelihood estimation of intrinsic dimension
– ident: ref32
  doi: 10.1007/3-540-47887-6_53
– volume-title: Information Retrieval
  year: 1979
  ident: ref39
– ident: ref9
  doi: 10.1109/TPAMI.2010.231
– ident: ref50
  doi: 10.7551/mitpress/7503.003.0147
– ident: ref51
  doi: 10.1007/978-3-642-23783-6_41
– ident: ref25
  doi: 10.1109/TSP.2004.831130
– volume-title: Deep Learning
  year: 2016
  ident: ref3
– year: 2017
  ident: ref5
  article-title: Detection of anomalies in large scale accounting data using deep autoencoder networks
– ident: ref10
  doi: 10.7551/mitpress/9780262033589.001.0001
– ident: ref8
  doi: 10.7551/mitpress/1120.003.0080
– start-page: 448
  ident: ref35
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– ident: ref4
  doi: 10.1145/3097983.3098052
– ident: ref47
  doi: 10.1109/ICDM.2008.17
– start-page: 24
  volume-title: Proc. Int. Conf. Neural Inf. Process. Syst.
  ident: ref17
  article-title: Deep subspace clustering networks
– volume-title: Practical Nonparametric Statistics
  year: 1999
  ident: ref41
– ident: ref2
  doi: 10.1126/science.1127647
– volume-title: Multidimensional Scaling
  year: 1978
  ident: ref18
  doi: 10.4135/9781412985130
– volume: 310
  year: 1995
  ident: ref42
  article-title: Multiple significance tests: The Bonferroni method
  publication-title: Brit. Med. J.
  doi: 10.1136/bmj.310.6973.170
– ident: ref44
  doi: 10.1162/089976601750264965
– ident: ref12
  doi: 10.1007/978-3-642-40994-3_14
– ident: ref28
  doi: 10.1090/S0002-9939-1956-0078686-7
– ident: ref24
  doi: 10.1002/j.1538-7305.1957.tb01515.x
– year: 2018
  ident: ref20
  article-title: Deep k-nearest neighbors: Towards confident, interpretable and robust deep learning
– ident: ref26
  doi: 10.1007/978-3-319-59050-9_12
– ident: ref31
  doi: 10.1109/TASE.2018.2848198
– ident: ref34
  doi: 10.1038/s41598-017-11873-y
– ident: ref15
  doi: 10.1016/j.neucom.2015.02.023
– ident: ref21
  doi: 10.1109/TIP.2016.2605010
SSID ssj0014503
Score 2.5809362
Snippet Dimensionality reduction is a crucial first step for many unsupervised learning tasks including anomaly detection and clustering. Autoencoder is a popular...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4110
SubjectTerms Algorithms
Anomalies
Anomaly detection
Autoencoder
Clustering
Cognitive tasks
Data points
Datasets
Decoding
Dimensionality reduction
Embedding
Euclidean geometry
Generative adversarial networks
Graph theory
Laplace equations
Manifolds
Measurement
minimum spanning tree
Neural networks
nonlinear embedding
Performance enhancement
Reduction
unsupervised learning
Title Graph Regularized Autoencoder and its Application in Unsupervised Anomaly Detection
URI https://ieeexplore.ieee.org/document/9380495
https://www.ncbi.nlm.nih.gov/pubmed/33729925
https://www.proquest.com/docview/2682919808
https://www.proquest.com/docview/2502807628
Volume 44
WOSCitedRecordID wos000820521900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2160-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014503
  issn: 0162-8828
  databaseCode: RIE
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB21FULtgUIL7ZZSGYkbbGtv4tg-roACB6oKWmlvkeMPaaXiVJukEvx6xt4k7QGQuEXJOIk88-KZjGcewBvPpaiYYVNhEeS5V3Sqq9jwklknjS4wKKGJbEJcXMjFQl1uwLuxFsY5lzafudN4mHL5tjZd_FV2pjKJDi3fhE0hxLpWa8wY5DyxIKMHgwjHMGIokKHq7Opy_vULhoIzdooOcoHo3obHWcxXqciQ_WA9SgQrf_c105pzvvt_b_sUnvS-JZmvjeEZbLiwB7sDbwPpYbwHOw-aEO7D90-xZzX5lkjpV8tfzpJ519axwaXFUTpYsmwbMr_PdJNlINeh6W7jd6aJ8qH-oW9-kg-uTTu7wnO4Pv949f7ztKdamJpM8RZ97ARHoQtHc890ZrxwruCZEVWWawS-UTirmaHe4zkuK1npTHv01iirKp-9gK1QB3cIBEE9k9LkhkmbW48RZE6d85a7QjjO-QTYMOGl6fuQRzqMmzLFI1SVSV9l1FfZ62sCb8cxt-suHP-U3o_aGCV7RUzgeNBr2QO1KWdojYopSeUEXo-XEWIxb6KDqzuU4TH_jKsGyhys7WG892BGR39-5kvYnsV6ibRj8Bi22lXnXsEjc9cum9UJ2vFCniQ7_g1umetR
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VgqAcKLQ8FgoYiRvdNo7jxD6ugNKKdlXBVuotcvyQVipOtUmQ4Ncz9iahB0DiFiXjJPLMF89kPPMBvHVcFBXVdFoYBHnmZDJVVWh4SY0VWuUYlCSRbKKYz8XlpTzfgP2xFsZaGzef2YNwGHP5ptZd-FV2KJlAh5bfgts8y1K6rtYacwYZjzzI6MMgxjGQGEpkEnm4OJ-dnWAwmNIDdJFzxPcW3GUhYyUDR_aNFSlSrPzd24yrztH2_73vQ3jQe5dktjaHR7Bh_Q5sD8wNpAfyDty_0YZwF75-Cl2ryZdIS79a_rSGzLq2Di0uDY5S3pBl25DZ71w3WXpy4ZvuOnxpmiDv62_q6gf5YNu4t8s_houjj4v3x9OebGGqmeQtetkRkIXKbZI5qph2hbU5Z7qoWKYQ-lrirDKdOIfnuKhEpZhy6K8ltKocewKbvvb2GRCEdSqEzjQVJjMOY8gssdYZbvPCcs4nQIcJL3XfiTwQYlyVMSJJZBn1VQZ9lb2-JvBuHHO97sPxT-ndoI1RslfEBPYGvZY9VJsyRXuUVIpETODNeBlBFjInytu6QxkeMtC4bqDM07U9jPcezOj5n5_5Gu4dL85Oy9OT-ecXsJWG6om4f3APNttVZ1_CHf29XTarV9GafwFF9e2w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graph+Regularized+Autoencoder+and+its+Application+in+Unsupervised+Anomaly+Detection&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Ahmed%2C+Imtiaz&rft.au=Galoppo%2C+Travis&rft.au=Hu%2C+Xia&rft.au=Ding%2C+Yu&rft.date=2022-08-01&rft.eissn=1939-3539&rft.volume=PP&rft_id=info:doi/10.1109%2FTPAMI.2021.3066111&rft_id=info%3Apmid%2F33729925&rft.externalDocID=33729925
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon