Educational Stakeholders’ Independent Evaluation of an Artificial Intelligence-Enabled Adaptive Learning System Using Bayesian Network Predictive Simulations
Artificial intelligence-enabled adaptive learning systems (AI-ALS) are increasingly being deployed in education to enhance the learning needs of students. However, educational stakeholders are required by policy-makers to conduct an independent evaluation of the AI-ALS using a small sample size in a...
Saved in:
| Published in: | Education sciences Vol. 9; no. 2; pp. 110 - 141 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.06.2019
|
| Subjects: | |
| ISSN: | 2227-7102, 2227-7102 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Artificial intelligence-enabled adaptive learning systems (AI-ALS) are increasingly being deployed in education to enhance the learning needs of students. However, educational stakeholders are required by policy-makers to conduct an independent evaluation of the AI-ALS using a small sample size in a pilot study, before that AI-ALS can be approved for large-scale deployment. Beyond simply believing in the information provided by the AI-ALS supplier, there arises a need for educational stakeholders to independently understand the motif of the pedagogical characteristics that underlie the AI-ALS. Laudable efforts were made by researchers to engender frameworks for the evaluation of AI-ALS. Nevertheless, those highly technical techniques often require advanced mathematical knowledge or computer programming skills. There remains a dearth in the extant literature for a more intuitive way for educational stakeholders—rather than computer scientists—to carry out the independent evaluation of an AI-ALS to understand how it could provide opportunities to educe the problem-solving abilities of the students so that they can successfully learn the subject matter. This paper proffers an approach for educational stakeholders to employ Bayesian networks to simulate predictive hypothetical scenarios with controllable parameters to better inform them about the suitability of the AI-ALS for the students. |
|---|---|
| AbstractList | Artificial intelligence-enabled adaptive learning systems (AI-ALS) are increasingly being deployed in education to enhance the learning needs of students. However, educational stakeholders are required by policy-makers to conduct an independent evaluation of the AI-ALS using a small sample size in a pilot study, before that AI-ALS can be approved for large-scale deployment. Beyond simply believing in the information provided by the AI-ALS supplier, there arises a need for educational stakeholders to independently understand the motif of the pedagogical characteristics that underlie the AI-ALS. Laudable efforts were made by researchers to engender frameworks for the evaluation of AI-ALS. Nevertheless, those highly technical techniques often require advanced mathematical knowledge or computer programming skills. There remains a dearth in the extant literature for a more intuitive way for educational stakeholders--rather than computer scientists--to carry out the independent evaluation of an AI-ALS to understand how it could provide opportunities to educe the problem-solving abilities of the students so that they can successfully learn the subject matter. This paper proffers an approach for educational stakeholders to employ Bayesian networks to simulate predictive hypothetical scenarios with controllable parameters to better inform them about the suitability of the AI-ALS for the students. |
| Author | HOW, Meng-Leong HUNG, Wei Loong David |
| Author_xml | – sequence: 1 givenname: Meng-Leong orcidid: 0000-0003-2845-0292 surname: HOW fullname: HOW, Meng-Leong – sequence: 2 givenname: Wei Loong David surname: HUNG fullname: HUNG, Wei Loong David |
| BackLink | http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1220412$$DView record in ERIC |
| BookMark | eNp1kctuUzEURa9QkSilU2ZIlhin-HGfw1ClEBQBUujYOjk-Dk5v7GA7RZ3xG4z4N74ENwEESHjg19lr-7EfVyc-eKqqp4JfKDXwF2T2mNANXHIh-IPqVErZTTrB5ckf80fVeUobXtogVC-H0-rbrICQXfAwsmWGG_oYRkMxff_ylc29oR2Vzmc2u4VxfxCyYBl4No3ZWYeucHOfaRzdmjzSZOZhNZJhUwO77G6JLQiid37Nlncp05Zdp_vFS7ij5IrPW8qfQ7xh7yMZhwdi6bb78XBWelI9tDAmOv85nlXXV7MPl68ni3ev5pfTxQTV0ORJ13bUNq3Epu1MB9zyvgcreEOrQdgBOCq0BntDkhoyEqSqO2Fw1VnDAUGdVfOjrwmw0bvothDvdACnDxshrjWUB-NIGqUQiltq2n5VD41a1UgouOFWDoh1W7yeHb0oOvztNXsjpOS1kKX-_FjfxfBpTynrTdjHEkDSUgnVyaFvVVHVRxXGkFIkq9Hlw6fkCG7Uguv75PXfyRfs4h_s1wX-A_wAnL-3iw |
| CitedBy_id | crossref_primary_10_1007_s40692_023_00283_x crossref_primary_10_3390_bdcc3030046 crossref_primary_10_3389_fnbot_2022_819784 crossref_primary_10_3390_educsci14091019 crossref_primary_10_3390_educsci9020158 crossref_primary_10_3390_educsci9030184 crossref_primary_10_3390_su12156272 crossref_primary_10_1177_07356331241240459 crossref_primary_10_3390_app10196638 crossref_primary_10_3390_info11010039 crossref_primary_10_1016_j_compedu_2024_105184 crossref_primary_10_3390_bdcc4020008 crossref_primary_10_1177_21582440241242180 crossref_primary_10_4018_IJPADA_368245 crossref_primary_10_3390_ai1010004 crossref_primary_10_1155_2022_6731781 crossref_primary_10_1186_s40561_024_00350_5 crossref_primary_10_1057_s41599_023_02376_5 |
| Cites_doi | 10.1007/978-3-7091-2670-7_24 10.1101/lm.041780.116 10.1007/978-3-319-07221-0_18 10.1108/IJILT-09-2016-0040 10.1016/0004-3702(86)90072-X 10.1111/j.1467-8535.2009.01042.x 10.1080/00461520.2011.611369 10.1177/0049124114562614 10.1201/b10391 10.1109/18.910572 10.1098/rstl.1763.0044 10.1111/cdev.12169 10.1093/oxfordhb/9780199796304.013.0033 10.1080/00220973.2016.1277338 10.1007/BF01126111 10.1037/a0026802 10.1007/3-540-68716-5_49 10.3390/educ2010022 10.1038/nrn3475 10.3389/fnhum.2011.00039 10.1016/j.cherd.2011.12.012 10.1177/0165025407077764 10.1109/TIT.1953.1188572 10.1111/j.2517-6161.1988.tb01721.x 10.1111/bjep.12157 10.1080/00461520.2016.1207540 10.1145/956804.956838 10.1016/j.jspi.2008.10.002 10.1007/3-540-61327-7_156 10.5539/ies.v11n2p97 10.1017/CBO9780511803161 10.1177/0165025407077763 10.1111/1467-8535.00347 10.1207/s15327906mbr3904_4 10.1080/0266476042000184019 10.1177/1365480215616313 10.1007/978-3-642-14363-2 10.1186/s40536-016-0022-6 |
| ContentType | Journal Article |
| Copyright | 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 0-V 3V. 4U- 7XB 88B 8FK ABUWG AFKRA ALSLI AZQEC BENPR CCPQU CJNVE DWQXO GNUQQ M0P PHGZM PHGZT PIMPY PKEHL PQEDU PQEST PQQKQ PQUKI PRINS Q9U ERI GA5 DOA |
| DOI | 10.3390/educsci9020110 |
| DatabaseName | CrossRef ProQuest Social Sciences Premium Collection ProQuest Central (Corporate) University Readers ProQuest Central (purchase pre-March 2016) Education Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection ProQuest Central Essentials ProQuest Central ProQuest One Community College Education Collection ProQuest Central ProQuest Central Student Education Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Education ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic ERIC ERIC - Full Text Only (Discovery) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Education Social Science Premium Collection University Readers Education Collection ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Education Journals ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest Education Journals (Alumni Edition) ProQuest One Academic (New) ProQuest Central (Alumni) ERIC |
| DatabaseTitleList | ERIC CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Education |
| EISSN | 2227-7102 |
| ERIC | EJ1220412 |
| ExternalDocumentID | oai_doaj_org_article_c21130fe568b4953b4cec10d0f29cc46 EJ1220412 10_3390_educsci9020110 |
| GeographicLocations | United States--US Germany Singapore |
| GeographicLocations_xml | – name: Singapore – name: United States--US – name: Germany |
| GroupedDBID | -W8 0-V 5VS AADQD AAHSB AAYXX ABOPQ ABUWG ADBBV AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ALSLI ARALO AZQEC BCNDV BENPR BPHCQ CCPQU CITATION CJNVE DWQXO GNUQQ GROUPED_DOAJ IAO KQ8 M0P MODMG OK1 PHGZM PHGZT PIMPY PQEDU PQQKQ PROAC 3V. 4U- 7XB 8FK PKEHL PQEST PQUKI PRINS Q9U ERI GA5 IER IPNFZ ITC RDL RIG |
| ID | FETCH-LOGICAL-c395t-767e6562c567d7a0f088af105eb91f9a0c3cfdc8de2e5ed2a23471dcb7fd0aca3 |
| IEDL.DBID | M0P |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000475301900044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2227-7102 |
| IngestDate | Fri Oct 03 12:45:54 EDT 2025 Tue Dec 02 16:48:20 EST 2025 Sat Nov 01 15:14:47 EDT 2025 Tue Nov 18 22:02:23 EST 2025 Sat Nov 29 07:15:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c395t-767e6562c567d7a0f088af105eb91f9a0c3cfdc8de2e5ed2a23471dcb7fd0aca3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2845-0292 |
| OpenAccessLink | https://www.proquest.com/docview/2313729863?pq-origsite=%requestingapplication% |
| PQID | 2313729863 |
| PQPubID | 2032405 |
| PageCount | 32 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c21130fe568b4953b4cec10d0f29cc46 eric_primary_EJ1220412 proquest_journals_2313729863 crossref_citationtrail_10_3390_educsci9020110 crossref_primary_10_3390_educsci9020110 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-06-01 |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Education sciences |
| PublicationYear | 2019 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Mathys (ref_23) 2011; 5 Egalite (ref_46) 2016; 19 Kaplan (ref_21) 2016; 4 Shannon (ref_27) 1953; 1 Bekele (ref_25) 2011; 42 ref_36 ref_13 ref_35 Guoyi (ref_32) 2012; 90 Button (ref_17) 2013; 14 Pezzulo (ref_43) 2016; 23 Zhang (ref_20) 2007; 31 ref_31 ref_30 Lauritzen (ref_41) 1988; 50 Lee (ref_16) 2004; 39 Brusilovsky (ref_9) 2004; 14 ref_18 Fox (ref_33) 2009; 139 ref_39 Kschischang (ref_42) 2001; 47 Chamberlin (ref_45) 2017; 87 Levy (ref_22) 2016; 51 ref_37 Pearl (ref_15) 1986; 29 Garrido (ref_3) 2012; 2 VanLehn (ref_6) 2006; 16 Wilson (ref_1) 2017; 34 Hox (ref_10) 2012; 6 ref_47 Peterson (ref_34) 2004; 31 Boyer (ref_7) 2014; Volume 8474 Mantzicopoulos (ref_48) 2018; 86 Walker (ref_19) 2007; 31 Agosta (ref_26) 2002; 32 Jameson (ref_38) 1996; 5 ref_40 ref_2 ref_29 ref_28 Fateel (ref_44) 2018; 11 Asparouhov (ref_24) 2012; 17 Cen (ref_5) 2007; 158 Kaplan (ref_12) 2014; 85 VanLehn (ref_4) 2011; 46 Bayes (ref_11) 1763; 53 Magoulas (ref_8) 2003; 34 Pearl (ref_14) 2015; 44 |
| References_xml | – ident: ref_28 – ident: ref_37 doi: 10.1007/978-3-7091-2670-7_24 – volume: 23 start-page: 322 year: 2016 ident: ref_43 article-title: Active inference, epistemic value, and vicarious trial and error publication-title: Learn. Mem. doi: 10.1101/lm.041780.116 – volume: Volume 8474 start-page: 150 year: 2014 ident: ref_7 article-title: Learning Bayesian Knowledge Tracing Parameters with a Knowledge Heuristic and Empirical Probabilities publication-title: Intelligent Tutoring Systems doi: 10.1007/978-3-319-07221-0_18 – volume: 16 start-page: 227 year: 2006 ident: ref_6 article-title: The behavior of tutoring systems publication-title: Int. J. Artif. Intell. Educ. – volume: 32 start-page: 171 year: 2002 ident: ref_26 article-title: Pérez de la Bayesian student modeling and the problem of parameter specification publication-title: Br. J. Educ. Technol. – volume: 34 start-page: 2 year: 2017 ident: ref_1 article-title: Adaptive systems in education: A review and conceptual unification publication-title: Int. J. Inf. Learn. Technol. doi: 10.1108/IJILT-09-2016-0040 – volume: 29 start-page: 241 year: 1986 ident: ref_15 article-title: Fusion, propagation, and structuring in belief networks publication-title: Artif. Intell. doi: 10.1016/0004-3702(86)90072-X – volume: 42 start-page: 395 year: 2011 ident: ref_25 article-title: A Bayesian performance prediction model for mathematics education: A prototypical approach for effective group composition publication-title: Br. J. Educ. Technol. doi: 10.1111/j.1467-8535.2009.01042.x – volume: 46 start-page: 197 year: 2011 ident: ref_4 article-title: The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems publication-title: Educ. Psychol. doi: 10.1080/00461520.2011.611369 – volume: 44 start-page: 149 year: 2015 ident: ref_14 article-title: Causes of Effects and Effects of Causes publication-title: Sociol. Methods Res. doi: 10.1177/0049124114562614 – ident: ref_30 doi: 10.1201/b10391 – volume: 14 start-page: 402 year: 2004 ident: ref_9 article-title: Layered evaluation of adaptive learning systems publication-title: Int. J. Contin. Eng. Educ. Lifelong Learn. – volume: 47 start-page: 498 year: 2001 ident: ref_42 article-title: Factor graphs and the sum product algorithm publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.910572 – ident: ref_40 – volume: 53 start-page: 269 year: 1763 ident: ref_11 article-title: A Letter from the Late Reverend Mr. Thomas Bayes, F.R.S. to John Canton, M.A. and F. R. S publication-title: R. Soc. Philos. Trans. doi: 10.1098/rstl.1763.0044 – volume: 85 start-page: 842 year: 2014 ident: ref_12 article-title: A Gentle Introduction to Bayesian Analysis: Applications to Developmental Research publication-title: Child Dev. doi: 10.1111/cdev.12169 – ident: ref_18 – ident: ref_35 – ident: ref_47 doi: 10.1093/oxfordhb/9780199796304.013.0033 – volume: 86 start-page: 214 year: 2018 ident: ref_48 article-title: Predicting Kindergarteners’ Achievement and Motivation from Observational Measures of Teaching Effectiveness publication-title: J. Exp. Educ. doi: 10.1080/00220973.2016.1277338 – volume: 5 start-page: 193 year: 1996 ident: ref_38 article-title: Numerical uncertainty management in user and student modeling: An overview of systems and issues publication-title: User Modeling User-Adapt. Interact. doi: 10.1007/BF01126111 – volume: 17 start-page: 313 year: 2012 ident: ref_24 article-title: Bayesian structural equation modeling: A more flexible representation of substantive theory publication-title: Psychol. Methods doi: 10.1037/a0026802 – ident: ref_39 doi: 10.1007/3-540-68716-5_49 – volume: 2 start-page: 22 year: 2012 ident: ref_3 article-title: AI and Mathematical Education publication-title: Educ. Sci. doi: 10.3390/educ2010022 – volume: 14 start-page: 365 year: 2013 ident: ref_17 article-title: Power failure: Why small sample size undermines the reliability of neuroscience publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3475 – volume: 5 start-page: 39 year: 2011 ident: ref_23 article-title: A Bayesian foundation for individual learning under uncertainty publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2011.00039 – volume: 90 start-page: 1235 year: 2012 ident: ref_32 article-title: Response surface methodology with prediction uncertainty: A multi-objective optimisation approach publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2011.12.012 – volume: 31 start-page: 374 year: 2007 ident: ref_20 article-title: Bayesian analysis of longitudinal data using growth curve models publication-title: Int. J. Behav. Dev. doi: 10.1177/0165025407077764 – ident: ref_29 – volume: 158 start-page: 511 year: 2007 ident: ref_5 article-title: Is Over Practice Necessary?—Improving learning efficiency with the cognitive tutor through Educational Data Mining publication-title: Front. Artif. Intell. Appl. – volume: 1 start-page: 105 year: 1953 ident: ref_27 article-title: The lattice theory of information publication-title: IRE Prof. Group Inf. Theory doi: 10.1109/TIT.1953.1188572 – volume: 50 start-page: 157 year: 1988 ident: ref_41 article-title: Local computations with probabilities on graphical structures and their application to expert systems publication-title: J. R. Stat. Soc. doi: 10.1111/j.2517-6161.1988.tb01721.x – volume: 87 start-page: 422 year: 2017 ident: ref_45 article-title: Using confirmatory factor analysis to validate the Chamberlin affective instrument for mathematical problem solving with academically advanced students publication-title: Br. J. Educ. Psychol. doi: 10.1111/bjep.12157 – volume: 51 start-page: 368 year: 2016 ident: ref_22 article-title: Advances in Bayesian Modeling in Educational Research publication-title: Educ. Psychol. doi: 10.1080/00461520.2016.1207540 – ident: ref_31 doi: 10.1145/956804.956838 – volume: 139 start-page: 2498 year: 2009 ident: ref_33 article-title: Bayesian credible intervals for response surface optima publication-title: J. Stat. Plan. Inference doi: 10.1016/j.jspi.2008.10.002 – ident: ref_36 doi: 10.1007/3-540-61327-7_156 – volume: 11 start-page: 97 year: 2018 ident: ref_44 article-title: Students’ Achievement in Math and Science: How Grit and Attitudes Influence? publication-title: Int. Educ. Stud. doi: 10.5539/ies.v11n2p97 – ident: ref_13 doi: 10.1017/CBO9780511803161 – volume: 31 start-page: 366 year: 2007 ident: ref_19 article-title: The application of Bayesian analysis to issues in developmental research publication-title: Int. J. Behav. Dev. doi: 10.1177/0165025407077763 – volume: 6 start-page: 87 year: 2012 ident: ref_10 article-title: How few countries will do? Comparative survey analysis from a Bayesian perspective publication-title: Surv. Res. Methods – volume: 34 start-page: 511 year: 2003 ident: ref_8 article-title: Adaptive web-based learning: Accommodating individual differences through system’s adaptation publication-title: Br. J. Educ. Technol. doi: 10.1111/1467-8535.00347 – volume: 39 start-page: 653 year: 2004 ident: ref_16 article-title: Evaluation of the Bayesian and maximum likelihood approaches in analyzing structural equation models with small sample sizes publication-title: Multivar. Behav. Res. doi: 10.1207/s15327906mbr3904_4 – volume: 31 start-page: 251 year: 2004 ident: ref_34 article-title: A Bayesian approach for multiple response surface optimization in the presence of noise variables publication-title: J. Appl. Stat. doi: 10.1080/0266476042000184019 – volume: 19 start-page: 27 year: 2016 ident: ref_46 article-title: The softer side of learning: Measuring students’ non-cognitive skills publication-title: Improv. Sch. doi: 10.1177/1365480215616313 – ident: ref_2 doi: 10.1007/978-3-642-14363-2 – volume: 4 start-page: 7 year: 2016 ident: ref_21 article-title: Causal inference with large-scale assessments in education from a Bayesian perspective: A review and synthesis publication-title: Large-Scale Assess. Educ. doi: 10.1186/s40536-016-0022-6 |
| SSID | ssj0000913829 |
| Score | 2.2479615 |
| Snippet | Artificial intelligence-enabled adaptive learning systems (AI-ALS) are increasingly being deployed in education to enhance the learning needs of students.... |
| SourceID | doaj eric proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 110 |
| SubjectTerms | Adaptive learning Artificial Intelligence Bayesian Bayesian analysis Bayesian Statistics Cognition & reasoning Cognitive ability Control Groups Education policy Educational Environment Educational Policy Educational technology Evaluation Methods evaluation of artificial intelligence educational systems Hypotheses Hypothesis Testing intelligent adaptive learning Intelligent Tutoring Systems Interactive learning Mathematical problems Mathematics education Mathematics teachers nonparametric data Nonparametric statistics Pedagogy Prediction Pretests Posttests Probability Problem Solving Researchers Simulation Stakeholders Students Teaching Teaching Methods |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LSwMxEICDiAcv4hPrixwET8Ft9pHN0UqLihRBBW9LMklE1FraKnjzb3jyv_lLzCTbpQrixduyzL6S2XmQyTeE7CsldeaEYxwyzTKQBZOOKwYl9riyUmgT6Prnot8vb27kxUyrL6wJi3jgOHCH4DOUNHE2L0qNtZA6AwvtxCSOS4AswLYTIWeSqWCDJbL1ZKQ0pj6vP0QQqncqMgke75sXCrD-n_XOU5Mc_ExvmSzVASI9ii-2QubsYBV7K9d1GGvkozn2Yj5WvLe4guSjuM-3d3radLWd0G4D8qZPjqpBuGcERtDTGRIn64b9U4YeGTVE60dr6OotjTxzGuoKaEe9WtxySfuxdJxejHCVJ1xxefdY9wEbr5PrXvfq-ITVbRYYpDKfMFEI66M6DnkhjFCJ84ZHOR93WS3bTqoEUnAGSmO5za3hiqfeoxnQwplEgUo3yPzgaWA3CTUChI8JuFDWZtq4MpOQi0wXotBCc2gRNh32CmoGObbCeKh8LoLTVH2fphY5aOSHkb7xq2QHZ7GRQmp2OOF1qap1qfpLl1pkA3WguUn3rM05AslaZGeqFVX9j48rHxnjmmdZpFv_8fBtsui_RMYytB0yPxk9212yAC-Tu_FoL6j3F7DaBWw priority: 102 providerName: Directory of Open Access Journals |
| Title | Educational Stakeholders’ Independent Evaluation of an Artificial Intelligence-Enabled Adaptive Learning System Using Bayesian Network Predictive Simulations |
| URI | https://www.proquest.com/docview/2313729863 http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1220412 https://doaj.org/article/c21130fe568b4953b4cec10d0f29cc46 |
| Volume | 9 |
| WOSCitedRecordID | wos000475301900044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2227-7102 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913829 issn: 2227-7102 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Education Database customDbUrl: eissn: 2227-7102 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913829 issn: 2227-7102 databaseCode: M0P dateStart: 20120601 isFulltext: true titleUrlDefault: https://search.proquest.com/education providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2227-7102 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913829 issn: 2227-7102 databaseCode: BENPR dateStart: 20120601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2227-7102 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913829 issn: 2227-7102 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NThsxELYo9NALlLaItDTyAakni433x-tTRapFTQXRqj8SPa3ssY0QkKRJWqm3vgYn3o0nqcfrbEsleuG28s5aK3k8M54Zfx8h-0pJnTnhGIdMswxkwaTjikGJHFdWCm0Cuv6xGI_L01NZx4TbIrZVrmxiMNRmCpgjP_BxCFaYyiJ9O_vGkDUKq6uRQuMR2fCBskQNP0nqLseCmJclly1WY-pP9wcIh-pdi0yC37vjiwJk_79dzyvDHLzN0dZD__Mp2YxxJj1sFWObrNnJM6Roju0cz8lN9-zFfMh5YbEQ5YPB21_XdNSR4y5p1eGB06mjahLmbHEn6OgvQE9WhWtYhh4aNUMjSiN26xltYdFpaE-gQ_XT4s1NOm470Gk9x2JR-OLT-VWkE1u8IF-Oqs_v3rPI1sAglfmSiUJYHxxyyAthhEqct1_K-fDNajlwUiWQgjNQGsttbg1XPPWO0YAWziQKVLpD1ifTid0l1AgQPrTgQlmbaePKTEIuMl2IQgvNoUfYat0aiFDmyKhx2fgjDa5zc3ede-RNJz9rQTzulRyiGnRSCL4dBqbzsybu5Qb8oTlNnM2LUmN7rs7AwiAxieMSICt6ZAeVqJuk-jDgHHHNemRvpTNNNBWL5o_CvPz_61fkif9H2fap7ZH15fy7fU0ew4_l-WLeJxvDalx_7IekQj_sAz9Wj07qr78BmhkXww |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VLRJc-K9YKOADiFPUrPPj-IBQC1s1dLtaiSKVU7DHdlUBu8vuAuqN1-DEG_BQPAke5weKBLceuEWJY0XO55mxZ_x9AA-Vkjp1wkUcUx2lKPNIOq4iLEjjykqhTWDXH4nxuDg6kpM1-N6ehaGyytYmBkNtZkh75Fs-DqEMU5EnT-cfIlKNouxqK6FRw2Lfnn72S7blk_K5_7-PON8dHj7bixpVgQgTma0ikQvrgxiOWS6MULHz80w5H2ZYLQdOqhgTdAYLY7nNrOGKJ96AG9TCmVihSny_F2A9JbD3YH1SHkxed7s6xLJZcFmzQyaJjLeIgNU7MxkHT3vG-wWRgD_rrFtXEPzb7tX_bWSuwZUmkmbbNfSvw5qd3iAR6qZg5SZ86659Mx9Uv7WUavPh7o8vX1nZyf-u2LBjPGczx9Q09Fkza7DyN8rSaBgOmhm2bdSc3ARr2GmPWU38zkIBBttRp5bOprJxXWPPJgtKh4U3Xp68bwTTlrfg1bmMzwb0prOpvQ3MCBQ-eOJCWZtq44pUYiZSnYtcC82xD1GLkwobsnbSDHlX-UUb4ao6i6s-PO7az2uakr-23CHYda2IXjzcmC2Oq8ZaVcgHPrZxNssLTQXIOkWLg9jEjkvENO_DBoG262T4YsA5Mbf1YbPFaNUYw2X1C6B3_v34AVzaOzwYVaNyvH8XLvvvlXVV3ib0VouP9h5cxE-rk-XifjPvGLw5b0D_BNZTdQA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qU4TY8K4YKOAFiJU1GefheIFQS2fE0DKKBEhlFexru6qAmWFmAHXHb7DiP_gcvgTbcQJFgl0X7KLEsaLk-N4T-_ocgPtSCpVZbinDTNEMRUGFZZJi6T2ujOBKB3X9Az6dloeHotqA7-1eGF9W2cbEEKj1HP0c-cDxEL_CVBbpwMayiGpv_HjxgXoHKb_S2tppNBDZNyef3e_b6tFkz33rB4yNRy-fPKXRYYBiKvI15QU3jtAwzAuuuUysG3PSOsphlBhaIRNM0WostWEmN5pJlrpgrlFxqxOJMnX9noNNR8kz1oPNavK8et3N8HjFzZKJRikyTUUy8GKsLrGJJGTdU5kwGAb8WXPdpoWQ68aX_-e3dAUuRYZNdpohcRU2zOyaN6eOhSzX4Vt37Jo5sv3W-CU4R4N_fPlKJp0t8JqMOiV0MrdEzkKfjeIGmfwmZUpHYQOaJjtaLnz6IFG19og0gvAkFGaQXXli_J5VMm1q70m19Mtk4Y4Xx--jkdrqBrw6k_ezBb3ZfGZuAtEcuSNVjEtjMqVtmQnMeaYKXiiuGPaBtpipMYq4ey-Rd7X7mfMYq09jrA8Pu_aLRr7kry13PQS7Vl52PJyYL4_qGMVqZEPHeazJi1L5wmSVocFhohPLBGJW9GHLA7jrZPRsyJhXdOvDdovXOgbJVf0LrLf-ffkeXHAorg8m0_3bcNE9rmiK9baht15-NHfgPH5aH6-Wd-MQJPDmrPH8E3P_fcA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Educational+Stakeholders%E2%80%99+Independent+Evaluation+of+an+Artificial+Intelligence-Enabled+Adaptive+Learning+System+Using+Bayesian+Network+Predictive+Simulations&rft.jtitle=Education+sciences&rft.au=HOW%2C+Meng-Leong&rft.au=HUNG%2C+Wei+Loong+David&rft.date=2019-06-01&rft.issn=2227-7102&rft.eissn=2227-7102&rft.volume=9&rft.issue=2&rft.spage=110&rft_id=info:doi/10.3390%2Feducsci9020110&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_educsci9020110 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7102&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7102&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7102&client=summon |