Educational Stakeholders’ Independent Evaluation of an Artificial Intelligence-Enabled Adaptive Learning System Using Bayesian Network Predictive Simulations

Artificial intelligence-enabled adaptive learning systems (AI-ALS) are increasingly being deployed in education to enhance the learning needs of students. However, educational stakeholders are required by policy-makers to conduct an independent evaluation of the AI-ALS using a small sample size in a...

Full description

Saved in:
Bibliographic Details
Published in:Education sciences Vol. 9; no. 2; pp. 110 - 141
Main Authors: HOW, Meng-Leong, HUNG, Wei Loong David
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.06.2019
Subjects:
ISSN:2227-7102, 2227-7102
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Artificial intelligence-enabled adaptive learning systems (AI-ALS) are increasingly being deployed in education to enhance the learning needs of students. However, educational stakeholders are required by policy-makers to conduct an independent evaluation of the AI-ALS using a small sample size in a pilot study, before that AI-ALS can be approved for large-scale deployment. Beyond simply believing in the information provided by the AI-ALS supplier, there arises a need for educational stakeholders to independently understand the motif of the pedagogical characteristics that underlie the AI-ALS. Laudable efforts were made by researchers to engender frameworks for the evaluation of AI-ALS. Nevertheless, those highly technical techniques often require advanced mathematical knowledge or computer programming skills. There remains a dearth in the extant literature for a more intuitive way for educational stakeholders—rather than computer scientists—to carry out the independent evaluation of an AI-ALS to understand how it could provide opportunities to educe the problem-solving abilities of the students so that they can successfully learn the subject matter. This paper proffers an approach for educational stakeholders to employ Bayesian networks to simulate predictive hypothetical scenarios with controllable parameters to better inform them about the suitability of the AI-ALS for the students.
AbstractList Artificial intelligence-enabled adaptive learning systems (AI-ALS) are increasingly being deployed in education to enhance the learning needs of students. However, educational stakeholders are required by policy-makers to conduct an independent evaluation of the AI-ALS using a small sample size in a pilot study, before that AI-ALS can be approved for large-scale deployment. Beyond simply believing in the information provided by the AI-ALS supplier, there arises a need for educational stakeholders to independently understand the motif of the pedagogical characteristics that underlie the AI-ALS. Laudable efforts were made by researchers to engender frameworks for the evaluation of AI-ALS. Nevertheless, those highly technical techniques often require advanced mathematical knowledge or computer programming skills. There remains a dearth in the extant literature for a more intuitive way for educational stakeholders--rather than computer scientists--to carry out the independent evaluation of an AI-ALS to understand how it could provide opportunities to educe the problem-solving abilities of the students so that they can successfully learn the subject matter. This paper proffers an approach for educational stakeholders to employ Bayesian networks to simulate predictive hypothetical scenarios with controllable parameters to better inform them about the suitability of the AI-ALS for the students.
Author HOW, Meng-Leong
HUNG, Wei Loong David
Author_xml – sequence: 1
  givenname: Meng-Leong
  orcidid: 0000-0003-2845-0292
  surname: HOW
  fullname: HOW, Meng-Leong
– sequence: 2
  givenname: Wei Loong David
  surname: HUNG
  fullname: HUNG, Wei Loong David
BackLink http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1220412$$DView record in ERIC
BookMark eNp1kctuUzEURa9QkSilU2ZIlhin-HGfw1ClEBQBUujYOjk-Dk5v7GA7RZ3xG4z4N74ENwEESHjg19lr-7EfVyc-eKqqp4JfKDXwF2T2mNANXHIh-IPqVErZTTrB5ckf80fVeUobXtogVC-H0-rbrICQXfAwsmWGG_oYRkMxff_ylc29oR2Vzmc2u4VxfxCyYBl4No3ZWYeucHOfaRzdmjzSZOZhNZJhUwO77G6JLQiid37Nlncp05Zdp_vFS7ij5IrPW8qfQ7xh7yMZhwdi6bb78XBWelI9tDAmOv85nlXXV7MPl68ni3ev5pfTxQTV0ORJ13bUNq3Epu1MB9zyvgcreEOrQdgBOCq0BntDkhoyEqSqO2Fw1VnDAUGdVfOjrwmw0bvothDvdACnDxshrjWUB-NIGqUQiltq2n5VD41a1UgouOFWDoh1W7yeHb0oOvztNXsjpOS1kKX-_FjfxfBpTynrTdjHEkDSUgnVyaFvVVHVRxXGkFIkq9Hlw6fkCG7Uguv75PXfyRfs4h_s1wX-A_wAnL-3iw
CitedBy_id crossref_primary_10_1007_s40692_023_00283_x
crossref_primary_10_3390_bdcc3030046
crossref_primary_10_3389_fnbot_2022_819784
crossref_primary_10_3390_educsci14091019
crossref_primary_10_3390_educsci9020158
crossref_primary_10_3390_educsci9030184
crossref_primary_10_3390_su12156272
crossref_primary_10_1177_07356331241240459
crossref_primary_10_3390_app10196638
crossref_primary_10_3390_info11010039
crossref_primary_10_1016_j_compedu_2024_105184
crossref_primary_10_3390_bdcc4020008
crossref_primary_10_1177_21582440241242180
crossref_primary_10_4018_IJPADA_368245
crossref_primary_10_3390_ai1010004
crossref_primary_10_1155_2022_6731781
crossref_primary_10_1186_s40561_024_00350_5
crossref_primary_10_1057_s41599_023_02376_5
Cites_doi 10.1007/978-3-7091-2670-7_24
10.1101/lm.041780.116
10.1007/978-3-319-07221-0_18
10.1108/IJILT-09-2016-0040
10.1016/0004-3702(86)90072-X
10.1111/j.1467-8535.2009.01042.x
10.1080/00461520.2011.611369
10.1177/0049124114562614
10.1201/b10391
10.1109/18.910572
10.1098/rstl.1763.0044
10.1111/cdev.12169
10.1093/oxfordhb/9780199796304.013.0033
10.1080/00220973.2016.1277338
10.1007/BF01126111
10.1037/a0026802
10.1007/3-540-68716-5_49
10.3390/educ2010022
10.1038/nrn3475
10.3389/fnhum.2011.00039
10.1016/j.cherd.2011.12.012
10.1177/0165025407077764
10.1109/TIT.1953.1188572
10.1111/j.2517-6161.1988.tb01721.x
10.1111/bjep.12157
10.1080/00461520.2016.1207540
10.1145/956804.956838
10.1016/j.jspi.2008.10.002
10.1007/3-540-61327-7_156
10.5539/ies.v11n2p97
10.1017/CBO9780511803161
10.1177/0165025407077763
10.1111/1467-8535.00347
10.1207/s15327906mbr3904_4
10.1080/0266476042000184019
10.1177/1365480215616313
10.1007/978-3-642-14363-2
10.1186/s40536-016-0022-6
ContentType Journal Article
Copyright 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
0-V
3V.
4U-
7XB
88B
8FK
ABUWG
AFKRA
ALSLI
AZQEC
BENPR
CCPQU
CJNVE
DWQXO
GNUQQ
M0P
PHGZM
PHGZT
PIMPY
PKEHL
PQEDU
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ERI
GA5
DOA
DOI 10.3390/educsci9020110
DatabaseName CrossRef
ProQuest Social Sciences Premium Collection
ProQuest Central (Corporate)
University Readers
ProQuest Central (purchase pre-March 2016)
Education Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Education Collection
ProQuest Central
ProQuest Central Student
Education Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Education
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
ERIC
ERIC - Full Text Only (Discovery)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Education
Social Science Premium Collection
University Readers
Education Collection
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Education Journals
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest Education Journals (Alumni Edition)
ProQuest One Academic (New)
ProQuest Central (Alumni)
ERIC
DatabaseTitleList ERIC
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Education
EISSN 2227-7102
ERIC EJ1220412
ExternalDocumentID oai_doaj_org_article_c21130fe568b4953b4cec10d0f29cc46
EJ1220412
10_3390_educsci9020110
GeographicLocations United States--US
Germany
Singapore
GeographicLocations_xml – name: Singapore
– name: United States--US
– name: Germany
GroupedDBID -W8
0-V
5VS
AADQD
AAHSB
AAYXX
ABOPQ
ABUWG
ADBBV
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ARALO
AZQEC
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
CJNVE
DWQXO
GNUQQ
GROUPED_DOAJ
IAO
KQ8
M0P
MODMG
OK1
PHGZM
PHGZT
PIMPY
PQEDU
PQQKQ
PROAC
3V.
4U-
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
ERI
GA5
IER
IPNFZ
ITC
RDL
RIG
ID FETCH-LOGICAL-c395t-767e6562c567d7a0f088af105eb91f9a0c3cfdc8de2e5ed2a23471dcb7fd0aca3
IEDL.DBID M0P
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000475301900044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-7102
IngestDate Fri Oct 03 12:45:54 EDT 2025
Tue Dec 02 16:48:20 EST 2025
Sat Nov 01 15:14:47 EDT 2025
Tue Nov 18 22:02:23 EST 2025
Sat Nov 29 07:15:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c395t-767e6562c567d7a0f088af105eb91f9a0c3cfdc8de2e5ed2a23471dcb7fd0aca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2845-0292
OpenAccessLink https://www.proquest.com/docview/2313729863?pq-origsite=%requestingapplication%
PQID 2313729863
PQPubID 2032405
PageCount 32
ParticipantIDs doaj_primary_oai_doaj_org_article_c21130fe568b4953b4cec10d0f29cc46
eric_primary_EJ1220412
proquest_journals_2313729863
crossref_citationtrail_10_3390_educsci9020110
crossref_primary_10_3390_educsci9020110
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Education sciences
PublicationYear 2019
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Mathys (ref_23) 2011; 5
Egalite (ref_46) 2016; 19
Kaplan (ref_21) 2016; 4
Shannon (ref_27) 1953; 1
Bekele (ref_25) 2011; 42
ref_36
ref_13
ref_35
Guoyi (ref_32) 2012; 90
Button (ref_17) 2013; 14
Pezzulo (ref_43) 2016; 23
Zhang (ref_20) 2007; 31
ref_31
ref_30
Lauritzen (ref_41) 1988; 50
Lee (ref_16) 2004; 39
Brusilovsky (ref_9) 2004; 14
ref_18
Fox (ref_33) 2009; 139
ref_39
Kschischang (ref_42) 2001; 47
Chamberlin (ref_45) 2017; 87
Levy (ref_22) 2016; 51
ref_37
Pearl (ref_15) 1986; 29
Garrido (ref_3) 2012; 2
VanLehn (ref_6) 2006; 16
Wilson (ref_1) 2017; 34
Hox (ref_10) 2012; 6
ref_47
Peterson (ref_34) 2004; 31
Boyer (ref_7) 2014; Volume 8474
Mantzicopoulos (ref_48) 2018; 86
Walker (ref_19) 2007; 31
Agosta (ref_26) 2002; 32
Jameson (ref_38) 1996; 5
ref_40
ref_2
ref_29
ref_28
Fateel (ref_44) 2018; 11
Asparouhov (ref_24) 2012; 17
Cen (ref_5) 2007; 158
Kaplan (ref_12) 2014; 85
VanLehn (ref_4) 2011; 46
Bayes (ref_11) 1763; 53
Magoulas (ref_8) 2003; 34
Pearl (ref_14) 2015; 44
References_xml – ident: ref_28
– ident: ref_37
  doi: 10.1007/978-3-7091-2670-7_24
– volume: 23
  start-page: 322
  year: 2016
  ident: ref_43
  article-title: Active inference, epistemic value, and vicarious trial and error
  publication-title: Learn. Mem.
  doi: 10.1101/lm.041780.116
– volume: Volume 8474
  start-page: 150
  year: 2014
  ident: ref_7
  article-title: Learning Bayesian Knowledge Tracing Parameters with a Knowledge Heuristic and Empirical Probabilities
  publication-title: Intelligent Tutoring Systems
  doi: 10.1007/978-3-319-07221-0_18
– volume: 16
  start-page: 227
  year: 2006
  ident: ref_6
  article-title: The behavior of tutoring systems
  publication-title: Int. J. Artif. Intell. Educ.
– volume: 32
  start-page: 171
  year: 2002
  ident: ref_26
  article-title: Pérez de la Bayesian student modeling and the problem of parameter specification
  publication-title: Br. J. Educ. Technol.
– volume: 34
  start-page: 2
  year: 2017
  ident: ref_1
  article-title: Adaptive systems in education: A review and conceptual unification
  publication-title: Int. J. Inf. Learn. Technol.
  doi: 10.1108/IJILT-09-2016-0040
– volume: 29
  start-page: 241
  year: 1986
  ident: ref_15
  article-title: Fusion, propagation, and structuring in belief networks
  publication-title: Artif. Intell.
  doi: 10.1016/0004-3702(86)90072-X
– volume: 42
  start-page: 395
  year: 2011
  ident: ref_25
  article-title: A Bayesian performance prediction model for mathematics education: A prototypical approach for effective group composition
  publication-title: Br. J. Educ. Technol.
  doi: 10.1111/j.1467-8535.2009.01042.x
– volume: 46
  start-page: 197
  year: 2011
  ident: ref_4
  article-title: The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems
  publication-title: Educ. Psychol.
  doi: 10.1080/00461520.2011.611369
– volume: 44
  start-page: 149
  year: 2015
  ident: ref_14
  article-title: Causes of Effects and Effects of Causes
  publication-title: Sociol. Methods Res.
  doi: 10.1177/0049124114562614
– ident: ref_30
  doi: 10.1201/b10391
– volume: 14
  start-page: 402
  year: 2004
  ident: ref_9
  article-title: Layered evaluation of adaptive learning systems
  publication-title: Int. J. Contin. Eng. Educ. Lifelong Learn.
– volume: 47
  start-page: 498
  year: 2001
  ident: ref_42
  article-title: Factor graphs and the sum product algorithm
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.910572
– ident: ref_40
– volume: 53
  start-page: 269
  year: 1763
  ident: ref_11
  article-title: A Letter from the Late Reverend Mr. Thomas Bayes, F.R.S. to John Canton, M.A. and F. R. S
  publication-title: R. Soc. Philos. Trans.
  doi: 10.1098/rstl.1763.0044
– volume: 85
  start-page: 842
  year: 2014
  ident: ref_12
  article-title: A Gentle Introduction to Bayesian Analysis: Applications to Developmental Research
  publication-title: Child Dev.
  doi: 10.1111/cdev.12169
– ident: ref_18
– ident: ref_35
– ident: ref_47
  doi: 10.1093/oxfordhb/9780199796304.013.0033
– volume: 86
  start-page: 214
  year: 2018
  ident: ref_48
  article-title: Predicting Kindergarteners’ Achievement and Motivation from Observational Measures of Teaching Effectiveness
  publication-title: J. Exp. Educ.
  doi: 10.1080/00220973.2016.1277338
– volume: 5
  start-page: 193
  year: 1996
  ident: ref_38
  article-title: Numerical uncertainty management in user and student modeling: An overview of systems and issues
  publication-title: User Modeling User-Adapt. Interact.
  doi: 10.1007/BF01126111
– volume: 17
  start-page: 313
  year: 2012
  ident: ref_24
  article-title: Bayesian structural equation modeling: A more flexible representation of substantive theory
  publication-title: Psychol. Methods
  doi: 10.1037/a0026802
– ident: ref_39
  doi: 10.1007/3-540-68716-5_49
– volume: 2
  start-page: 22
  year: 2012
  ident: ref_3
  article-title: AI and Mathematical Education
  publication-title: Educ. Sci.
  doi: 10.3390/educ2010022
– volume: 14
  start-page: 365
  year: 2013
  ident: ref_17
  article-title: Power failure: Why small sample size undermines the reliability of neuroscience
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3475
– volume: 5
  start-page: 39
  year: 2011
  ident: ref_23
  article-title: A Bayesian foundation for individual learning under uncertainty
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2011.00039
– volume: 90
  start-page: 1235
  year: 2012
  ident: ref_32
  article-title: Response surface methodology with prediction uncertainty: A multi-objective optimisation approach
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2011.12.012
– volume: 31
  start-page: 374
  year: 2007
  ident: ref_20
  article-title: Bayesian analysis of longitudinal data using growth curve models
  publication-title: Int. J. Behav. Dev.
  doi: 10.1177/0165025407077764
– ident: ref_29
– volume: 158
  start-page: 511
  year: 2007
  ident: ref_5
  article-title: Is Over Practice Necessary?—Improving learning efficiency with the cognitive tutor through Educational Data Mining
  publication-title: Front. Artif. Intell. Appl.
– volume: 1
  start-page: 105
  year: 1953
  ident: ref_27
  article-title: The lattice theory of information
  publication-title: IRE Prof. Group Inf. Theory
  doi: 10.1109/TIT.1953.1188572
– volume: 50
  start-page: 157
  year: 1988
  ident: ref_41
  article-title: Local computations with probabilities on graphical structures and their application to expert systems
  publication-title: J. R. Stat. Soc.
  doi: 10.1111/j.2517-6161.1988.tb01721.x
– volume: 87
  start-page: 422
  year: 2017
  ident: ref_45
  article-title: Using confirmatory factor analysis to validate the Chamberlin affective instrument for mathematical problem solving with academically advanced students
  publication-title: Br. J. Educ. Psychol.
  doi: 10.1111/bjep.12157
– volume: 51
  start-page: 368
  year: 2016
  ident: ref_22
  article-title: Advances in Bayesian Modeling in Educational Research
  publication-title: Educ. Psychol.
  doi: 10.1080/00461520.2016.1207540
– ident: ref_31
  doi: 10.1145/956804.956838
– volume: 139
  start-page: 2498
  year: 2009
  ident: ref_33
  article-title: Bayesian credible intervals for response surface optima
  publication-title: J. Stat. Plan. Inference
  doi: 10.1016/j.jspi.2008.10.002
– ident: ref_36
  doi: 10.1007/3-540-61327-7_156
– volume: 11
  start-page: 97
  year: 2018
  ident: ref_44
  article-title: Students’ Achievement in Math and Science: How Grit and Attitudes Influence?
  publication-title: Int. Educ. Stud.
  doi: 10.5539/ies.v11n2p97
– ident: ref_13
  doi: 10.1017/CBO9780511803161
– volume: 31
  start-page: 366
  year: 2007
  ident: ref_19
  article-title: The application of Bayesian analysis to issues in developmental research
  publication-title: Int. J. Behav. Dev.
  doi: 10.1177/0165025407077763
– volume: 6
  start-page: 87
  year: 2012
  ident: ref_10
  article-title: How few countries will do? Comparative survey analysis from a Bayesian perspective
  publication-title: Surv. Res. Methods
– volume: 34
  start-page: 511
  year: 2003
  ident: ref_8
  article-title: Adaptive web-based learning: Accommodating individual differences through system’s adaptation
  publication-title: Br. J. Educ. Technol.
  doi: 10.1111/1467-8535.00347
– volume: 39
  start-page: 653
  year: 2004
  ident: ref_16
  article-title: Evaluation of the Bayesian and maximum likelihood approaches in analyzing structural equation models with small sample sizes
  publication-title: Multivar. Behav. Res.
  doi: 10.1207/s15327906mbr3904_4
– volume: 31
  start-page: 251
  year: 2004
  ident: ref_34
  article-title: A Bayesian approach for multiple response surface optimization in the presence of noise variables
  publication-title: J. Appl. Stat.
  doi: 10.1080/0266476042000184019
– volume: 19
  start-page: 27
  year: 2016
  ident: ref_46
  article-title: The softer side of learning: Measuring students’ non-cognitive skills
  publication-title: Improv. Sch.
  doi: 10.1177/1365480215616313
– ident: ref_2
  doi: 10.1007/978-3-642-14363-2
– volume: 4
  start-page: 7
  year: 2016
  ident: ref_21
  article-title: Causal inference with large-scale assessments in education from a Bayesian perspective: A review and synthesis
  publication-title: Large-Scale Assess. Educ.
  doi: 10.1186/s40536-016-0022-6
SSID ssj0000913829
Score 2.2479615
Snippet Artificial intelligence-enabled adaptive learning systems (AI-ALS) are increasingly being deployed in education to enhance the learning needs of students....
SourceID doaj
eric
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 110
SubjectTerms Adaptive learning
Artificial Intelligence
Bayesian
Bayesian analysis
Bayesian Statistics
Cognition & reasoning
Cognitive ability
Control Groups
Education policy
Educational Environment
Educational Policy
Educational technology
Evaluation Methods
evaluation of artificial intelligence educational systems
Hypotheses
Hypothesis Testing
intelligent adaptive learning
Intelligent Tutoring Systems
Interactive learning
Mathematical problems
Mathematics education
Mathematics teachers
nonparametric data
Nonparametric statistics
Pedagogy
Prediction
Pretests Posttests
Probability
Problem Solving
Researchers
Simulation
Stakeholders
Students
Teaching
Teaching Methods
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LSwMxEICDiAcv4hPrixwET8Ft9pHN0UqLihRBBW9LMklE1FraKnjzb3jyv_lLzCTbpQrixduyzL6S2XmQyTeE7CsldeaEYxwyzTKQBZOOKwYl9riyUmgT6Prnot8vb27kxUyrL6wJi3jgOHCH4DOUNHE2L0qNtZA6AwvtxCSOS4AswLYTIWeSqWCDJbL1ZKQ0pj6vP0QQqncqMgke75sXCrD-n_XOU5Mc_ExvmSzVASI9ii-2QubsYBV7K9d1GGvkozn2Yj5WvLe4guSjuM-3d3radLWd0G4D8qZPjqpBuGcERtDTGRIn64b9U4YeGTVE60dr6OotjTxzGuoKaEe9WtxySfuxdJxejHCVJ1xxefdY9wEbr5PrXvfq-ITVbRYYpDKfMFEI66M6DnkhjFCJ84ZHOR93WS3bTqoEUnAGSmO5za3hiqfeoxnQwplEgUo3yPzgaWA3CTUChI8JuFDWZtq4MpOQi0wXotBCc2gRNh32CmoGObbCeKh8LoLTVH2fphY5aOSHkb7xq2QHZ7GRQmp2OOF1qap1qfpLl1pkA3WguUn3rM05AslaZGeqFVX9j48rHxnjmmdZpFv_8fBtsui_RMYytB0yPxk9212yAC-Tu_FoL6j3F7DaBWw
  priority: 102
  providerName: Directory of Open Access Journals
Title Educational Stakeholders’ Independent Evaluation of an Artificial Intelligence-Enabled Adaptive Learning System Using Bayesian Network Predictive Simulations
URI https://www.proquest.com/docview/2313729863
http://eric.ed.gov/ERICWebPortal/detail?accno=EJ1220412
https://doaj.org/article/c21130fe568b4953b4cec10d0f29cc46
Volume 9
WOSCitedRecordID wos000475301900044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7102
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913829
  issn: 2227-7102
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Education Database
  customDbUrl:
  eissn: 2227-7102
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913829
  issn: 2227-7102
  databaseCode: M0P
  dateStart: 20120601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/education
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-7102
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913829
  issn: 2227-7102
  databaseCode: BENPR
  dateStart: 20120601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2227-7102
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913829
  issn: 2227-7102
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NThsxELYo9NALlLaItDTyAakni433x-tTRapFTQXRqj8SPa3ssY0QkKRJWqm3vgYn3o0nqcfrbEsleuG28s5aK3k8M54Zfx8h-0pJnTnhGIdMswxkwaTjikGJHFdWCm0Cuv6xGI_L01NZx4TbIrZVrmxiMNRmCpgjP_BxCFaYyiJ9O_vGkDUKq6uRQuMR2fCBskQNP0nqLseCmJclly1WY-pP9wcIh-pdi0yC37vjiwJk_79dzyvDHLzN0dZD__Mp2YxxJj1sFWObrNnJM6Roju0cz8lN9-zFfMh5YbEQ5YPB21_XdNSR4y5p1eGB06mjahLmbHEn6OgvQE9WhWtYhh4aNUMjSiN26xltYdFpaE-gQ_XT4s1NOm470Gk9x2JR-OLT-VWkE1u8IF-Oqs_v3rPI1sAglfmSiUJYHxxyyAthhEqct1_K-fDNajlwUiWQgjNQGsttbg1XPPWO0YAWziQKVLpD1ifTid0l1AgQPrTgQlmbaePKTEIuMl2IQgvNoUfYat0aiFDmyKhx2fgjDa5zc3ede-RNJz9rQTzulRyiGnRSCL4dBqbzsybu5Qb8oTlNnM2LUmN7rs7AwiAxieMSICt6ZAeVqJuk-jDgHHHNemRvpTNNNBWL5o_CvPz_61fkif9H2fap7ZH15fy7fU0ew4_l-WLeJxvDalx_7IekQj_sAz9Wj07qr78BmhkXww
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VLRJc-K9YKOADiFPUrPPj-IBQC1s1dLtaiSKVU7DHdlUBu8vuAuqN1-DEG_BQPAke5weKBLceuEWJY0XO55mxZ_x9AA-Vkjp1wkUcUx2lKPNIOq4iLEjjykqhTWDXH4nxuDg6kpM1-N6ehaGyytYmBkNtZkh75Fs-DqEMU5EnT-cfIlKNouxqK6FRw2Lfnn72S7blk_K5_7-PON8dHj7bixpVgQgTma0ikQvrgxiOWS6MULHz80w5H2ZYLQdOqhgTdAYLY7nNrOGKJ96AG9TCmVihSny_F2A9JbD3YH1SHkxed7s6xLJZcFmzQyaJjLeIgNU7MxkHT3vG-wWRgD_rrFtXEPzb7tX_bWSuwZUmkmbbNfSvw5qd3iAR6qZg5SZ86659Mx9Uv7WUavPh7o8vX1nZyf-u2LBjPGczx9Q09Fkza7DyN8rSaBgOmhm2bdSc3ARr2GmPWU38zkIBBttRp5bOprJxXWPPJgtKh4U3Xp68bwTTlrfg1bmMzwb0prOpvQ3MCBQ-eOJCWZtq44pUYiZSnYtcC82xD1GLkwobsnbSDHlX-UUb4ao6i6s-PO7az2uakr-23CHYda2IXjzcmC2Oq8ZaVcgHPrZxNssLTQXIOkWLg9jEjkvENO_DBoG262T4YsA5Mbf1YbPFaNUYw2X1C6B3_v34AVzaOzwYVaNyvH8XLvvvlXVV3ib0VouP9h5cxE-rk-XifjPvGLw5b0D_BNZTdQA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qU4TY8K4YKOAFiJU1GefheIFQS2fE0DKKBEhlFexru6qAmWFmAHXHb7DiP_gcvgTbcQJFgl0X7KLEsaLk-N4T-_ocgPtSCpVZbinDTNEMRUGFZZJi6T2ujOBKB3X9Az6dloeHotqA7-1eGF9W2cbEEKj1HP0c-cDxEL_CVBbpwMayiGpv_HjxgXoHKb_S2tppNBDZNyef3e_b6tFkz33rB4yNRy-fPKXRYYBiKvI15QU3jtAwzAuuuUysG3PSOsphlBhaIRNM0WostWEmN5pJlrpgrlFxqxOJMnX9noNNR8kz1oPNavK8et3N8HjFzZKJRikyTUUy8GKsLrGJJGTdU5kwGAb8WXPdpoWQ68aX_-e3dAUuRYZNdpohcRU2zOyaN6eOhSzX4Vt37Jo5sv3W-CU4R4N_fPlKJp0t8JqMOiV0MrdEzkKfjeIGmfwmZUpHYQOaJjtaLnz6IFG19og0gvAkFGaQXXli_J5VMm1q70m19Mtk4Y4Xx--jkdrqBrw6k_ezBb3ZfGZuAtEcuSNVjEtjMqVtmQnMeaYKXiiuGPaBtpipMYq4ey-Rd7X7mfMYq09jrA8Pu_aLRr7kry13PQS7Vl52PJyYL4_qGMVqZEPHeazJi1L5wmSVocFhohPLBGJW9GHLA7jrZPRsyJhXdOvDdovXOgbJVf0LrLf-ffkeXHAorg8m0_3bcNE9rmiK9baht15-NHfgPH5aH6-Wd-MQJPDmrPH8E3P_fcA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Educational+Stakeholders%E2%80%99+Independent+Evaluation+of+an+Artificial+Intelligence-Enabled+Adaptive+Learning+System+Using+Bayesian+Network+Predictive+Simulations&rft.jtitle=Education+sciences&rft.au=HOW%2C+Meng-Leong&rft.au=HUNG%2C+Wei+Loong+David&rft.date=2019-06-01&rft.issn=2227-7102&rft.eissn=2227-7102&rft.volume=9&rft.issue=2&rft.spage=110&rft_id=info:doi/10.3390%2Feducsci9020110&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_educsci9020110
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7102&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7102&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7102&client=summon